高速动车组转向架构架强度设计与试验验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动车组高速运行引起的复杂高频振动恶化了转向架构架受力状态,构架强度设计在高速动车组研究中显得尤为重要。基于焊接结构疲劳设计方法,本文提出了在现行焊接构架制造工艺及材料性能条件下,以有限的线路试验数据作为支撑,利用数值仿真作为服役载荷获取的主要手段,强化台架强度试验验证,作为构架强度设计的基本框架。
     本文构建了部分焊接接头基础性能数据库,在各类强度评定方法的分析以及有限元计算与台架试验比较的基础上,得出名义应力法和结构应力法能满足构架强度设计的需要的结论。确定精细网格有限元模型可获得足够精度的应力数据,较高应力区的计算误差可控制在10%以内。
     为全面获取构架动态服役的载荷条件,本文开发了车辆系统动力学仿真软件。该软件的理论基础为多体动力学理论,根据小弹性变形假定对车体、构架进行模态柔性处理。程序使用面向对象C++语言编写,在MFC架构下实现动力学方程自动生成及求解。
     本文进行了箱梁型和管梁型两类构架在各种运行工况下的刚-柔耦合动力学仿真,对比分析两类构架的动应力水平及疲劳损伤分布状况,研究表明对于构架主体结构其扭转刚度和垂向弯曲刚度是动应力幅值和均值的直接相关指标。由两类构架谐响应分析及扭转频率与侧梁各部位疲劳损伤的相关性分析结果,确定了构架结构的刚度指标与强度指标的关联性,为构架强度设计提供了指导建议。
     本文在国外主要强度标准及主要厂商试验验证程序的基础上,研究了某型动车构架在各类验证程序下的评定结果的差异。在分析结果的基础上,总结出合理保守且代价较小的静载试验方案。
     本文还就动态加载的试验载荷谱开展研究。在损伤等同原则下,将经试验数据修正的短程仿真数据拓展生成与设计寿命目标一致的台架试验谱。由于车辆动力学性能随服役时间增长呈现下降的趋势,本文提出了利用特征指标和性能劣化函数计算全寿命周期内等效服役特征的方法。本文还采用刚-柔耦合动力学模型构建了虚拟试验加载系统以验证各影响因素对加载效果的影响。
As the running velocity grade increased, high frequency vibrations deteriorate the service conditions of the bogie frames. Fatigue strength design and reliability are essential issues of the research of the high speed electric multi-units (EMU) trains. Based on the welded structures fatigue design methods, the thesis introduced a complete frame of design process composed of construction of the fatigue database of the welded joints, loads obtained by numerical simulations that validated by line tests and enhanced test behch verifications.
     Partial fatigue database of welding joints were constructed in the thesis. Based on the anslysis of main welding design codes and comparision between FEM calculations and bench tests, norminal stress and structural stress design methods are feasible for frame design. Nominal stress FEM evaluation model with extra dense finite elements grids could meet the precision requirements. Relative errors could be limited below 10% compared with tests in critical areas.
     According to the requirements of strength evaluation and fatigue damage computation, vehicle dynamics simulation program were developed. The software is based on the multibody dynamics theory and implemented with object oriented C++ language. The bogie frame and carbody can be made flexible with small elastic deformation assumption. Open source routine OpenSceneGraph was used to implement 3D graphic interface as the rendering engine. The workflow was implemented by the MFC single document view architecture that can manage vehicle components, assemble and solve system equations.
     Comparation analyses between box-type and pipe-type boige frames by rigid flexible dynamics simulations and fatigue damage computations were taken. Vertical bending stiffness and torsion stiffness are closely interrelated with the mean value and amplitue of the dynamic stresses. According to the FEM harmonic analyses and fatigue damage computations of the variational tortional stiffness frame, the stiffness and strength design parameters have the identical optimization targets.
     The differences of the evaluation results about a pipe-type motor bogie frame under four test programs were studied in the thesis. Based on the analyses, optimized static test program was summarized with the costs and safety margin respected.
     Dynamic tests were studied in the thesis. The tests spectrum is generated by short term simulation data that corrected by tests data and extrapolated by usage factor based on damage equivalent principle. Serve charecateric index and deterioration function were introduced for facts that vehicle dynamic performances decrease during operation cycles. Virtual test bench model was developed to research design factors of physical test bench that can influence the channels synchronization and loading effects.
引文
[1]张曙光.京津城际铁路开启中国高速铁路新时代.中国铁路.2009,8:
    [2]张卫华.高速转向架技术的创新研究.中国工程科学.2009,11(10):8-17.
    [3]杨文艺,翟炜华.提速后客车转向架构架裂纹原因分析与对策.铁道车辆.2000,38(5):12-13.
    [4]Bernd Bertsche. Reliability in Automotive and Mechanical Engineering. Springer, 2008:8-256.
    [5]Stefan Dietz, Klaus Knothe, Willi Kortum. Fatigue Life Simulations Applied to Railway Bogies. Simpack Users Meetings, Berlin,1998:1-10.
    [6]S. Dietz, H. Netter, D. Sachau. Fatigue life prediction of a railway bogie under dynamic loads through simulation. Vehicle System Dynamics.1998,29(6):385-402.
    [7]S. H. Baek, S. S. Cho, W. S. Joo. Fatigue life prediction based on the Rainflow cycle conuting method for the end beam of a freight car bogie. International Journal of Automotive Technoloty.2008,9(1):95-101.
    [8]Davood Younesian, Ali Solhmizaei, Alireza Gachloo. Fatigue life estimation of MD36 and MD523 bogies based on damage accumulation and random fatigue theory. Journal of Mechanical Science and Technology.2009,23:2150-2155.
    [9]Jaap Schijve. Fatigue of Structures and Materials. KLUWER ACADEMIC PUBLISHERS, 2001:8-42.
    [10]S. Suresh. Fatigue of Materials. Second Edition. Cambridge University Press, 1998:24-126.
    [11]Yung Li Lee, Jwo Pan, Richard B. Hathaway, Mark E. Barkey. Fatigue Testing and Analysis. Elsevier,2005:103-236.
    [12]Tom Lassen, Naman Recho. Fatigue Life Analyses of Welded Structures. ISTE Ltd., 2006:11-136.
    [13]D.拉达伊.焊接结构疲劳强度.郑朝云,张式程译.机械工业出版社,1994:22-149.
    [14]Stephen John Maddox. Fatigue Strength of Welded Structures. Second Edition. Woodhead Publishing,1991:79-170.
    [15]Dieter Radaj. Design and Analysis of Fatigue Resistant Welded Structures. Abington Publishing,1991:36-299.
    [16]Dieter Radaj, Cetin Morris, Wlofgang Fricke. Fatigue Analysis of Welded Joints by Local Approach. Second Edition. CRC Press,2006:67-225.
    [17]T. R. Gurney. The Fatigue Strength of Transverse Fillet Joints:A Study of the Influence of Joint Geometry. Abington Publishing,1991:56-120.
    [18]Tadeusz Lagoda. Lifetime Estimation of Welded Joints. Springer Verlag,2008:5-92.
    [19]W. Fricke. Fatigue analysis of welded joints:state of development. Marine Structures. 2003,16(1):185-200.
    [20]D. Rdaj. Review of fatigue strength assessment of non-welded and welded structures based on local parameters. Int. J. Fatigue.1996,18(3):153-170.
    [21]C. M. Sonsino. Multiaxial fatigue of welded joints under in-phase and out-of-phase local strains and stresses. Int. J. Fatigue.1995,17(1):55-70.
    [22]Aeno M. van Wingerde, Jeffrey A. Packer, Jaap Wardenier. Criteria of the fatigue assessment of hollow structural section connections. J. Construct. Steel Research.1995, 35:71-115.
    [23]Wlofgang Fricke. Fatigue analysis of welded joints:state of development. Marine Structures.2003,16:185-200.
    [24]Espen H. Cramer, Robert Loseth, Kjell Olaisen. Fatigue Assessment of Ship Structures. Marine Structures.1995,8:359-383.
    [25]Abir Ghosh. Modern Approach of Design of Welded Components Subjected to Fatigue Loading. Journal of Structural Engineering.2004,130(5):812-820.
    [26]David Taylor, Niall Barrett, Gabriele Lucano. Some new methods for predicting fatigue in welded joints. International Journal of Fatigue.2002,24:509-518.
    [27]W. Fricke, W. Cui, H. Kierkegaard, D. Kihl, M. Koval, T. Mikkola, G. Parmentier, M. Toyosada, J. H. Yoon. Comparative fatigue strength assessment of a structural detail in a containership using various approaches of classification societies. Marine Structures.2002, 15:1-13.
    [28]O. Doerk, W. Fricke, C. Weissenborn. Comparison of different calculation methods for structural stresses at welded joints. International Journal of Fatigue.2003,25:359-369.
    [29]Michele Ciavarella, Giovanni Meneghetti. On fatigue limit in the presence of notches: classical vs. recent unified formulations. International Journal of Fatigue.2004,26:289-298.
    [30]J. Tang, V. Ogarevic, C. S. Tsai. An integrated CAE environment for simulation based durability and reliability design. Advances in Engineering Software.2001,32:1-14.
    [31]E Weib, M. Rauth. FEM integrated concept for the detailed proof of fatigue strength of nozzle to vessel connections. Pressure Vessels and Piping.2000,77:215-225.
    [32]M. Fermer, H. Svensson. Industrial experiences of FE based fatigue life predictions of welded automotive structures. Fatigue Fract. Engng. Master Struct.2001,24:489-500.
    [33]Ahmed A. Shabana. Dynamics of Multibody Systems. Third Edition. Cambridge University Press,2005:28-307.
    [34]Harold Josephs, Ronald L. Huston. Dynamics of Mechanical Systems. CRC Press, 2002:57-271.
    [35]Louis N. Hand, Janet D. Finch. Analytical Mechanics. Cambridge University Press, 1998:1-75.
    [36]Javier Carcia de Jalon, Eduardo Bayo. Kinematic and Dynamic Simulation of Multibody Systems. Springer Verlag,2002:16-85.
    [37]Roy Featherstone. Rigid Body Dynamics Algorithm. Springer,2008:39-87.
    [38]Giancarlo Benettin, Jacques Henrard, Sergei Kuksin. Hamilton Dynamics-Theory and Applications. Springer,1999:77-89.
    [39]Edmund Wittbrodt, Iwona Adamiec Wojcik, Stanistlaw Wojciech. Dynamics of Flexible Multibody Systems. Springer,2006:35-69.
    [40]陆佑方.柔性系统多体动力学.高等教育出版社,1996:3-320.
    [41]Ahmed A. Shabana. Computational Dynamics. Second Edition. John Wlley and Sons, 2001:1-295.
    [42]K. E. Brenan, S. L. Campbell, L. R. Ptezold. Numerical Solution of Initial Value Problems in Differential Algebraic Equations. SIAM,1996:15-108.
    [43]Granville Sewell. The Numerical Solution of Ordinary and Partial Differential Equations. Second Edition. John Wlley and Sons,27-58.
    [44]Bud Fox, Leslie S. Jennings, Albert Y. Zomaya. Numerical Computation of Differential Algebraic Equations for Nonlinear Dynamics of Multibody Android Systems in Automobile Crash Simulation. IEEE Transactions on Biomedical Engineering.1999,46(10):1199-1205.
    [45]Christian Engstler, Peter Kaps. A Comparison of One-step Methods for Multibody System Dynamics in Descriptor and State Space Form. Applied Numerical Mathematics.1997, 24(1):457-468.
    [46]Olivier A. Bauchau, Carlo L. Bottasso, Lorenzo Trainelli. Robust Integration Schemes for Flexible Multibody Systems. Computer Methods in Applied Mechanics and Engineering.2003, 192(3):395-420.
    [47]J. J. Kalker. A Fast Algorithm for the Simplified theory of Rolling Contact. Vehicle System Dynamics.1982,11:1-13.
    [48]Z. Y. Shen, J. K. Hedrick, J. A. Elkins. A Comparison of Alternative Creep Force Models for Rail Vehicle Dynamic Analysis. The 8th IAVSD Symposium, Cambridge MA, 1983:591-605.
    [49]O. Polach. Creep Forces in Simulations of Traction Vehicles Running on Adhesion Limit. WEAR.2005,258:992-1000.
    [50]Joao C. Pombo, Jorge A. C. Ambrosio. Application of A Wheel-Rail Contact Model to Railway Dynamics in Small Radius Curved Tracks. Multibody Systems Dynamics.2008, 19:91-114.
    [51]Joao Pombo. A Computational Efficient General Wheel Rail Contact Detection Method. Journal of Mechanical Science and Technology.2005,19(1):411-421.
    [52]Ahmed A. Shabana, Marcello Berzeri, Jalil R. Sany. Numerical Procedure for the Simulation of Wheel/Rail Contact Dynamics. Journal of Dynamic Systems, Measurement, and Control.2001,123:168-178.
    [53]Mark. A. Pompetzki, Bernhard Grunder, Michael Speckert. Design of Durability Sequences Based on Rainflow Matrix Optimization. International Congress and Exposition, Session Fatigue Research and Applications, Detroit MI,1998:125-135.
    [54]Haibach E. Fatigue Strength of Welded Joints from Viewpoint of Local Strain Measurement. Report FB-77 Fraunhofer-institut fur Betriebsfestigkeit (LBF), Darmstadt. 1968:1-63.
    [55]E. Chang, W. D. Dover. Stress concentration factor parametric equations for tubular X and DT joints. Int. J. Fatigue.1996,18(6):363-387.
    [56]Aron M. van Wingerde. Simplified SCF formulae and graphs for CHS and RHS K-and KK-connections. J. Const. Steel Research.2001,57:221-252.
    [57]Spyros A. Karamanos. SCF equations in multi-planar welded tubular DT-joints including bending effects. Marine Structures.2002,15:157-173.
    [58]S. P. Chiew. Strain concentrations at intersection regions of a multi-planar tubular DX-joint. Int. Const. Steel Research.2000,53:225-244.
    [59]Spyros A. Karamanos. Stress concentrations in multi-planar welded CHS XX-connections. Int. Const. Steel Research.1999,50:259-282.
    [60]Spyros A. Karamanos. Stress concentrations in tubular gap K-joints:mechanics and fatigue design. Engineering Structures.2000,22:4-14.
    [61]Hobbacher A. Recommendations for fatigue design of welded joints and components. Document XIII-1539-96/XV-845-96. Paris:International Institute of Welding,1996:1-24.
    [62]G. Savaidis. Hot-spot evaluation of fatigue in welded structural connections supported by finite element analysis. Int. J. Fatigue.2000,22:85-91.
    [63]Niemi E. J. Recommendations concerning stress determination for fatigue analysis of welded components. International Institute of Welding. Document XIII-1458-92/XV-797-92. Abington publishing,1995:1-50.
    [64]P. Dong. A structural stress definition and numerical implementation for fatigue analysis of welded joints. Int. J. Fatigue.2001,23:865-876.
    [65]Hiroko Kyuba. Equilibrium-equivalent structural stress approach to fatigue analysis of a rectangular hollow section joint. Int. J. Fatigue.2005,27:85-94.
    [66]P. Dong. A Robust Structural Stress Method for Fatigue Analysis of Offshore/Marine Structures. Transactions of the ASME.2005,127:68-74.
    [67]Daniel Bellett. The fatigue behaviour of three-dimensional stress concentrations. Int. J. Fatigue.2005,27:207-221.
    [68]D. Taylor. Prediction of fatigue failure location on a component using a critical distance method. Int. J. Fatigue.2000,22:735-742.
    [69]H. Adib, G. Pluvinage. Theoretical and numerical aspects of the volumetric approach for fatigue life prediction in notched components. Int. J. Fatigue.2003,25:67-76.
    [70]D. Taylor, W. Zhou. Mixed-mode fatigue from stress concentrations:an approach based on equivalent stress intensity. Int. J. Fatigue.1999,21:173-178.
    [71]David Taylor. Geometrical effects in fatigue:a unifying theoretical model. International Journal of Fatigue.1999,21:413-420.
    [72]D. Radaj. Fatigue notch factor of gaps in welded joints reconsidered. Engineering Fracture Mechanics.1997,57(4):405-407.
    [73]D. Radaj., C. M. Sonsino, D. Flade. Prediction of service fatigue strength of a welded tubular joint on the basis of the notch strain approach. Int. J. Fatigue.1998,20(6):471-480.
    [74]George Shepherd, Scot Wingo.深入解析MFC.赵剑云,卿瑾译.中国电力出版社,2003:47-148.
    [75]Jeff Prosise. Programming Windows with MFC. Second Edition. Microsoft Press, 1999:1-260.
    [76]侯俊杰.深入浅出MFC. Second Edition.松岗电脑图书资料股份有限公司,1997:55-216.
    [77]Ahmed A. Shabana, Khaled E. Zaazaa, Hiroyuki Sugiyama. Railroad Vehicle Dynamics A Computational Approach. CRC Press,2007:35-248.
    [78]Giancarlo Genta. Vibration Dynamics and Control. Springer,2009:263-318.
    [79]R. R. Craig, M. C. C Bampton. Coupling of substructure for dynamic analysis. AAIA Journal.1968,6(7):1313-1319.
    [80]R. J. Guyan. Reduction of stiffness and mass matrix. AAIA Journal.1965,3(2):380-382.
    [81]Ulf Sellgren. Component Mode Synthesis-A method for efficient dynamic simulation of complex technical systems. Technical Report, KTH Sweden.2003:2-26.
    [82]Dan Negrut, Rajiv Rampalli, Gisli Ottarsson, Anthony Sajdak. On an Implemention of the Hilber-Hughes-Taylor Method in the Context of Index 3 Differential Algebrac Equations of Multibody Dynamics. Journal of Computational and Nonlinear Dynamics.2007,2:73-84.
    [83]Hilbert, H. M., Hughes, T. J. R., Taylor, R. L.. Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics. Earthquake Eng. Struct. Dyn.1977,5:283-292.
    [84]Newmark, N. M.. A method of computation for structural dynamics. J. Engrg. Mech. 1959,85:67-94.
    [85]Ahmed A. Shabana, Jalil R. Sany. A survey of rail vehicle track simulations and flexible Multibody dynamics. Nonlinear Dynamics.2001,26:179-210.
    [86]T. Nakanishi, A. A. Shabana. On the Numerical Solution of Tracked Vehicle Dynamic Equations. Nonlinear Dynamics.1994,6:391-417.
    [87]Ahmed A. Shabana, Mahmoud Tobaa, Hiroyuki Sugiyama. On the Computer Formulations of the Wheel/Rail Contact Problems. Nonlinear Dynamics.2005,40:169-193.
    [88]Ahemed A. Shabana, Khaled E. Zaazaa, Jose L. Escalona, Jalil R. Sany. Development of elastic force model for wheel/rail contact problems. Journal of Sound and Vibration.2004, 269:295-325.
    [89]Cheta Rathod, Ahmed A. Shabana. Rail Geometry and Euler Angles. Journal of Computational and Nonlinear Dynamics.2006,1:264-268.
    [90]张卫华.机车车辆动态模拟.中国铁道出版社,2006:39-63.
    [91]Socie D. F., Park K... Analytical descriptions of service loading suitable for fatigue analysis. Proceedings of the tenth international conference on vehicle structural mechanics and CAE, SAE.1997:203-206.
    [92]Socie D.F.. Modeling expected service usage from short term loading measurements. International Journal of Materials and Product Technology.2001,16:295-303.
    [93]Socie D. F., Pompetzki M. A..Modeling variability in service loading spectra. Probabilistic Aspects of Life Predictions, ASTM PA.2003:1-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700