金属材料在强激光超高应变率作用下的微观组织响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光冲击技术是一种新的材料表面改性新技术。激光冲击处理能使零件材料表面性能得到改善,并产生有利的残余压应力,降低生成疲劳裂纹源的几率和增加应力腐蚀抗力,从而延长零件的服役寿命。本文研究了三种不同晶格类型金属材料在激光冲击的超高应变率作用下的微观组织响应及其硬度和残余应力变化情况,并考证研究了激光冲击在铝合金材料表面形成的强化效果和对疲劳寿命的影响。
     金属材料在外力作用下能产生大量的微结构,为了研究常见不同晶格类型材料在激光冲击下的响应,本课题选择三种最常见晶格类型(b.c.c.、f.c.c.、h.c.p.)的金属材料进行了激光冲击,利用热场发射高分辨率扫描电镜和光学显微镜对激光冲击后三种不同晶格类型材料的微观组织演变情况进行了观察。用X-350A型X射线应力分析仪对激光冲击在这些材料表面形成的残余应力进行了分析,并利用HVS-1000型数字显微硬度计对激光冲击后的材料进行了截面显微硬度测量。为了验证激光冲击对材料疲劳性能的影响,对经过激光冲击和未冲击的LY2铝合金进行了疲劳对比试验,用扫描电镜观察对疲劳行为进行了分析。
     不同晶体结构对激光冲击超高应变率的反应具有不同的特点:b.c.c.结构的铁素体晶粒中出现了大量微观条状组织,这些条状组织包含形变孪晶和大量位错列形成的晶粒分割;在f.c.c.结构的奥氏体晶粒中则更多地出现了滑移,甚至多滑移现象;h.c.p.结构的钛合金薄板在激光冲击超高应变率作用下产生了宏观形变,在压缩形变区内观察到应变马氏体,在拉伸形变区内则以孪晶和滑移交替进行为主。
     表面残余应力测试和显微硬度测量结果表明:激光冲击可在金属材料表面产生明显的残余压应力,材料表面硬度也有较大提高。
     激光冲击后LY2铝合金的低周疲劳寿命得到明显提高,断口分析表明激光冲击后形成的残余压应力有效地延缓了疲劳源的萌生,降低了疲劳扩展条带的宽度和扩展速度。
Laser shock is a new surface technology to modify the surface properties of materials. It makes use of the laser shock energy to improve the surface properties of materials, and induces residual compressive stress, so as to reduce the probability of fatigue crack source and increase resistance to stress corrosion cracking, and to extend the service life of working parts. The microstructure response of several materials with different types of lattice induced by the ultra high strain rate of laser shock was investigated in this paper, as well as the micro-hardness and residual stress changes. The effects of laser shock on surface strengthening and fatigue life of aluminum alloy were verified.
     Metallic materials can produce a large number of micro-structure at the acting of external force. In order to study the response of materials with different types of crystal lattices under the laser shock, three metallic materials with the most common typical lattices (b.c.c, f.c.c, h.c.p.) were selected as test materials. The microstructures evolution of the three materials with these different types of lattice after laser shock was observed on the thermal field emission high-resolution scanning electron microscope and optical microscope; the residual stress induced by laser shock in the substrate of these materials was analyzed using X-350A X-ray stress analyzer; and the hardness measurements on laser shocked section was conducted on HVS-1000 digital microscopic hardness tester. To verify the effects of laser shock on the performance of material's fatigue performance, a comparative fatigue was carried out on the laser shocked LY2 aluminum alloy and original one respectively, and then the fatigue behaviors of the material were analyzed on the basis of fracture observation on scanning electron microscopy.
     The response of materials with different crystal structure under ultra high strain rate of laser shock has different features: a great number of micro-strips were observed in the ferrite grains with b.c.c. structure after laser shocked, which mainly consists of deformation twins and grain segmentation by a great deal of dislocation alignments; in the austenite grains of f.c.c. structure more slips, or even multi-slips were discovered; and macro-deformation was produced on the titanium alloy sheet with h.c.p. crystal structure under the action of ultra high strain rate of laser shock, in the region of compressed deformation, the strain-induced martensite was observed, and in the region of tensile deformation, induced twinning and slipping proceed alternatively as predominant.
     Surface residual stress testing and the micro-hardness measurement results suggest that: laser shock can induce significant residual compressive stress on material surface, and the micro-hardness can be also increased a lot.
     The fatigue life of LY2 aluminum alloy laser shocked got significantly increase in the low cycle fatigue test, fracture analyses indicates that residual compressive stress induced in laser shock effectively slows down the onset of fatigue cracking source, reduces the width and propagation speed of fatigue striations.
引文
[1]邹世坤.激光冲击处理技术的最新进展[J].新技术新工艺,2005(4):44-46
    [2]Srinivasan S.,Garcia D.B.,Gean M.C.,Murthy H.,Farris T.N..Fretting fatigue of laser shock peened Ti-6A1-4V[J].Tribology International,2009,42(9):1324-1329
    [3]Amarchinta H.K.,Grandhi,R.V.,Langer K.,Stargel D.S..Material model validation for laser shock peening process simulation.Modelling and Simulation in Materials Science and Engineering,2009,17(1):015010-1-14
    [4]Porneala,Cristian,Willis,David A.Time-resolved dynamics of nanosecond laser-induced phase explosion[J].Journal of Physics D:Applied Physics,2009,42(15):155503-1-9
    [5]Colvin,Jeffrey D.,Minich,Roger W.,Kalantar,Daniel H.A model for plasticity kinetics and its role in simulating the dynamic behavior of Fe at high strain rates[J].International Journal of Plasticity,2009,25(4):603-611
    [6]Wittenberg,Joshua S.,Merkle,Maxwell G.,Alivisatos,A.Paul.Wurtzite to rocksalt phase transformation of cadmium selenide nanocrystals via laser-induced shock waves:Transition from single to multiple nucleation[J].Physical.Review Letters,2009,103(12):125701-1-13
    [7]Vukelic,Sinisa,Kysar,Jeffrey W.,Lawrence Yao Y..Grain boundary response of aluminum bicrystal under micro scale laser shock peening[J].International Journal of Solids and Structures,2009,46(18-19):3323-3335
    [8]Chen Hongqiang,Wang Youneng,Kysar Jeffrey W.,Yao Y.Lawrence.Study of anisotropic character induced by microscale laser shock peening on a single crystal aluminum[J].Journal of Applied Physics,2007,101(2):024904-1-8
    [9]Wenwu Zhang,Y.Lawrence Yao.Microscale Laser Shock Processing-Modeling,Testing,and Microstructure Characterization[J].Journal of Manufacturing Processes,2001,3(2):128-143
    [10]Hongqiang Chen,Y.Lawrence Yao,Jeffrey W.Kysar,I.Cev Noyan,Youneng Wang.Fourier analysis of X-ray micro-diffraction prof'des to characterize laser shock peened metals[J].International Journal of Solids and Structures,2005,42(11-12):3471-3485
    [11]张永康.激光冲击强化效果的直观判别与控制方法研究[J].中国激光,1997,A24(5):467-471
    [12]张永康,张淑仪,余承业等.激光冲击参数优化及激光光路系统配置研究[J].自然科学进展,1997,7(5):550-555
    [13]张永康主编.激光加工技术[M].北京:化学工业出版社,2004
    [14]Yang Chaojun,Zhang Yongkang,Zhou Jianzhong,Zhang Fang,Feng Aixin.Laser shock wave and its applications[A].3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies:Advanced Optical Manufacturing Technologies,2007,6722:67221X
    [15]Zhang Y.K.,Lu J.Z.,Ren X.D.,Yao H.B.,Yao H.X..Effect of laser shock processing on the mechanical properties and fatigue lives of the turbojet engine blades manufactured by LY2 aluminum alloy.Materials and Design,2009,30(5):1697-1703
    [16]Ren X.D.,Zhang Y.K.,Li Y.H.,Cheng W.,Zhuang M..Mechanism influence on fatigue characters of aerial engine blade by laser shock processing[A].Precision Surface Finishing and Deburdng Technology - 9th International Symposium on Precision Surface Finishing and Deburring Technology,2007,6724:67241F
    [17]Hua Y.Q.,Zhang Y.K.,Yang J.C.,Chen R.E,Ye Y.X..Study on Improving Wearability of Ductile Iron QT800-2 by Laser Compound Treatments[J].Key Engineering Materials,2004,258-259:374-377
    [18]郭乃国.激光冲击处理40Cr钢及其残余应力场数值模拟[M].江苏大学硕士学位论文,2007
    [19]Zhou J.Z.,Liu H.X.,Yang C.J.,Cao X.G.,Du J.J.,Ni M.X...Non-traditional forming process of sheet metal based on laser shock waves[J].Key Engineering Materials,2007,329:637-642
    [20]Yang J.C.,Zhou J.Z.,Zhang Y.K.,Yin S.M.,Feng A.X.,Zuo D.W..Ultra-speed plastic deformation of TC6 sheet induced by laser shock loading[J].Key Engineering Materials,2006,315-316:612-616
    [21]花银群.金属材料的激光复合强化机理研究[M].江苏大学,2003,6
    [22]孙承伟,卫玉章,周之奎著.应用爆轰物理[M].北京:国防工业出版社,2000
    [23]A.H.Clauer,B.P Fairand,B.A.Wilcox.Laser shock hardening of weld zones in aluminum alloys[J].Metallurgical Transactions,1977,8(12):1871-1877
    [24]S.C.Ford,B.P Fairand et al.Investigation of laser shock processing.Technical Report AFWAL-TR-Air Wright Aeronautical Laboratories(United States),1980,2
    [25]A.W.Warren,Y.B.Guo,S.C.Chen.Massive parallel laser shock peening:Simulation,analysis and validation[J].International Journal of Fatigue,2008,30(1):188-197
    [26]R.Fabbro,J.Fournier et al.Physical study of laser-produced plasma in confined[J].Geomertry Journal of Applied Physics,1990,68(2):775-784
    [27]Xin Hong,Shengbo Wang,Dahao Guo,Hongxing Wu,Jie Wang,Yusheng Dai,Xiaoping Xia and Yanning Xie.Confining medium and absorptive overlay:Their effects on a laser-induced shock wave[J].Optics and Lasers in Engineering,1998,29(6):447-455
    [28]Jean-Eric Masse,Gerard Barreau.Laser generation of stress waves in metal[J].Surface and Coating Technology,1995,70(2):231-234
    [29]D GREVEY,L.MaifFredy,A.B.Vannes.Laser shock on a TRIP alloy:mechanical and metallurgical consequences[J].Journal of Materials Science,1992,27(8):2110-2116
    [30]肖爱民.激光冲击强化约束层选择的研究[M].江苏大学硕士学位论文,2001,5
    [31]Arvi Kruusing.Underwater and water-assisted laser processing:Part 1-general features,steam cleaning and shock processing[J].Optics and Lasers in Engineering,2004,41(2):307-327
    [32]刘世伟,郭大浩,王声波等.实验参数对激光冲击强化的影响[J].中国激光,2000,A27(10):938-940
    [33]段志勇,王声波,吴鸿兴,等.约束层材料及靶材表面特征对激光冲击波的影响[J].激光杂志,2000,21(2):19-21
    [34]马壮,李应红,张永康,等.激光冲击处理对304不锈钢力学性能的影响[J].材料热处理学报,2007,28(3):102-105
    [35]唐通鸣,张永康.激光冲击诱导应力波的机理初探[J].南通工学院学报,1999,15(1):26-31
    [36]]袁钢.强激光作用下金属材料在等离子体点燃阅值附近力学效应研究[M].中国科学技术大学,1988
    [37]J.P.Hirth,et al.Theory of Dislocations.New York,John Wdey & Sons,INC.,1982,791
    [38]Yilbas B.S.,Arif A.F.M.,Shuja S.Z.,Gondal M.A.,Shirokof J..Investigation Into Laser Shock Processing[J].Journal of Materials Engineering and Performance,2004,13(1):47-54
    [39]花银群,陈瑞芳,路淼,等.激光冲击强化处理40Cr钢的实验研究[J].中国激光,2004,31(4):495-498
    [40]李晓轩,孙锡军,王华明,等.奥氏体不锈钢1Cr18Ni9Ti激光冲击强化研究[J].宇航材料工艺,1999(4):16-19
    [41]Chu Jinn P.Microstructure and mechanical properties of laser shocked iron-based alloys.Ann Arbor,Mich.:UMI,1992:88-173
    [42]邹世坤,谭永生,郭大浩,王声波,吴鸿兴.激光冲击处理对铝锂合金力学性能的影响[J].中国激光,2004,31(6):371-373
    [43]杨建风,周建忠,冯爱新.激光冲击强化区的残余应力测试分析[J].应力激光,2006,26(3):157-159
    [44]Patrick J.Golden,Michael J.,Shepard.Life prediction of fretting fatigue with advanced surface treatments.Materials[J].Science and Engineering:A,2006,468-470:15-22
    [45]King A.,Steuwer A.,Woodward C.,Withers P.J..Effects of fatigue and fretting on residual stresses introduced by laser shock peening[J].Materials Science and Engineering A,2006,435-436(5):12-18
    [46]Peyre P,Fabbro P,Merrien P,etal.Laser shock processing of aluminum alloys application to high cycle fatigue behaviour[J].Mater Sci Eng,1996,A210:102-113
    [47]Wielage Hanna,Vollertsen Frank.Investigations of forming behavior in laser shock forming [J].Steel Research International,2009,80(5):323-310
    [48]顾永玉,张兴权,史建国,等.激光冲击成形对表面光洁度的影响[J].激光技术,2007,31(6):653-655
    [49]刘玉亮,熊天英.40Cr钢表面塑性变形后微观结构的观察[J].电子显微学报,2008,增刊:80
    [50]Ansell.G.A.and Lenel.F.V.[J].Acta Metall.,1960,83:612
    [51]梁高飞,王成全,刘俊亮,于艳,方园.TWIP钢应变诱导孪晶原位观察[J].宝钢技术,2007(6):26-30
    [52]Lida K,Hirose Y.in Nakonieczny.The Residual Stress Distribution in Shot Peened Carburized Steel under Fatigue[A].Proc.7th Int.Conf.on Shot Peening,Warsaw Poland,1999:96
    [53]方晓英,王卫国,周邦新.金属材料晶界特征分布(GBCD)优化研究进展[J].稀有金属材料工程,2007,36(8):1500-1504
    [54]何肇基.金属的力学性能[M].北京:冶金工业出版社,1982:84
    [55]刘锁.金属材料的疲劳性能与喷丸强化工艺[M].北京:国防工业出版社
    [56]郭大浩,张永康,吴鸿兴,等.激光冲击强化机理研究[J].中国科学,1999(3):222-226
    [57]逯丹,刘铸,王春光.喷丸强化原理与表层材料性能[J].中国高新技术企业,2008,14:104
    [58]郭琴.铁镍合金激光冲击处理表面强化效应研究[M].江苏大学硕士学位论文,2006,6
    [59]束德林.工程材料力学性能[M].第2版,北京:机械工业出版社,2007
    [60]孙晓旭,郑子樵,陈圆圆,等.含Zr Al-Cu-Mg合金的微观组织与疲劳行为[J].中国有色金属学报,2009,19(1):50-55
    [61]杜凤山,闫亮,戴圣龙,等.高强铝合金疲劳特性研究[J].航空材料学报,2009,29(1):96-100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700