中高应变速率轧制制备超细晶镁合金板材原理探索及相关基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金板材具有密度低、比强度和比刚度高、导热性好、阻尼减震性和电磁屏蔽性能高、易回收利用等一系列优点,在交通运输车辆、航空航天、3C电子产品等领域具有极其重要的应用价值和广阔的应用前景。特别是超细晶镁合金板材,不仅强度高,而且塑性、韧性也非常好,属于高强高塑性轻质化材料,并可表现出低温或高应变速率超塑性,因此其应用价值更大。国内外虽然在超细晶镁合金制备技术及相关基础理论方面开展了一些探索性研究,但一直未能取得突破。
     本论文在前期探索性实验研究结果的基础上,提出采用中高应变速率轧制工艺制备超细晶镁合金板材的方法;并通过提高轧制应变速率来强化孪生和动态再结晶在轧制变形过程中的作用,以此来改善镁合金的塑性变形能力;同时,通过孪晶内发生的强烈动态再结晶来细化晶粒组织,获得超细晶板材。
     论文选取常见的轧制牌号AZ31和高合金含量的ZK60为研究对象,探索了采用中高应变速率轧制镁合金的工艺可行性并探讨了镁合金的变形原理;通过对两种合金进行热轧模拟实验,研究了镁合金在轧制变形过程中的流变行为及微观组织演变规律。深入研究了轧制应变速率和轧制温度对镁合金板材微观组织、晶粒取向和力学性能的影响,重点探讨了变形过程中的晶粒细化机制。另外还对中高应变速率轧制过程中镁合金中合金相的应变诱导析出行为进行了研究,并重点探讨这种析出行为对轧制变形行为的影响。
     论文得到主要结论如下:
     (1)镁合金在中高应变速率下的轧制成形性能是由其变形机制决定的。镁合金在中高应变速率轧制变形过程中的变形机制与传统的低应变速率小变形量轧制过程的有很大不同。常规轧制工艺中,镁合金的变形机制以位错滑移为主导,而在中高应变速率下轧制过程中,孪生机制占主导,同时发生强烈的动态再结晶,孪生和和动态再结晶为变形过程中先后出现的两个最重要的变形行为。孪生、动态再结晶和裂纹的萌生和扩展均为轧制过程中消耗变形储能的方式,孪生和动态再结晶的形核和裂纹萌生之间形成了竞争关系。当应变速率足够大时,孪生和动态再结晶的形核速率快到足以抑制裂纹萌生,轧制过程得以顺利进行,这是镁合金中高应变速率轧制过程具备可行性的最根本原因。
     (2)无论在低应变速率(0.01s-1-0.1s-1)还是在中高应变速率(10s-1-50s-1)下,ZK60和AZ31合金在轧制变形过程中均表现出类似的硬化—软化—硬化流变行为。但在中高应变速率下,流变曲线的变化更为急剧,且变形前期流变曲线出现了明显的应力波动现象。在低应变速率变形条件下,前期应变硬化过程是由位错增殖所主导,随后的软化过程则由晶界动态再结晶的形成和扩展所主导,变形后期的再次应变硬化则是由动态再结晶所引起的晶粒细化作用所造成的。在中高应变速率变形条件下,前期变形由高密度的变形孪生所主导,随后应力的急剧下降是由孪晶上高密度的动态再结晶形核所引起的,而随后再次的应变硬化也是由于细晶强化所造成的。
     (3)采用中高应变速率单道次轧制工艺成功地制备出了高强度高塑性的超细晶板材。在温度为300℃,道次应变量80%,平均轧制应变速率为9.1s-1时轧制所得ZK60板材的平均晶粒尺寸为0.5μm,屈服强度为307MPa,抗拉强度达371MPa,断后伸长率达28%;AZ31板材的平均晶粒尺寸为3μ.m,屈服强度为238MPa,抗拉强度达317MPa,断后伸长率为29%。而常规轧制AZ31板材的平均晶粒尺寸为18μm,屈服强度222MPa,抗拉强度262MPa,延伸率为17%。中高应变速率轧制工艺是一种短流程高效率制备超细晶镁合金板材的有效方法。
     (4)采用中高应变速率轧制工艺可以拓宽镁合金的轧制温度范围。本研究在9.1s-1的应变速率下,在250℃-400℃温度范围内对两种镁合金进行轧制,均获得了综合力学性能优异的细晶镁合金板材,突破了常规轧制中加工窗口狭窄的局限性。随着应变速率的增加,板材的晶粒得到进一步细化,ZK60合金在16.8s-1的应变速率下轧制时晶粒被细化到了纳米晶。
     (5)镁合金在中高应变速率轧制过程中通过强烈的动态再结晶形成均匀超细晶组织。在此过程中,材料内发生了一系列的组织转变。在轧制变形初期,合金中形成了高密度的变形孪晶片层,并且孪晶片层中产生了高密度的位错,位错随即发生重排和动态回复;通过动态回复,孪晶片层内先后形成多边形结构、胞状结构和亚晶,而这些亚晶则成为连续动态再结晶形核核心。核心通过旋转和长大,最终形成细小均匀低位错密度的大角动态再结晶晶粒。在进一步的变形中,这些连续动态再结晶的晶界上会发生非连续动态再结晶形核,从而抑制晶粒长大。
     (6)与常规轧制板材相比,采用中高应变速率轧制的板材虽仍具有{0002}基面织构,但其强度明显减弱,特别是当应变速率增加时,织构密度出现双峰分布特征,这和孪晶类型和密度的增加,以及动态再结晶形核密度的增加有关。
     (7)在中高应变速率轧制变形过程中,ZK60和AZ31合金中发生了纳米第二相的应变诱导析出,其中ZK60中的析出相分布更密集,其成分也更复杂。第二相析出过程和轧制变形行为之间相互影响,并最终影响板材的微观组织。第二相析出主要影响变形过程中位错的产生、运动和重排,动态再结晶形核和晶粒的长大过程。第二相分布密度不同是造成ZK60板材和AZ31板材动态再结晶晶粒尺寸和再结晶比例差别的主要原因。
Magnesium alloy sheets have many outstanding advantages, such as low density, high specific strength and stiffness, good thermal conductivity, superior damping and electromagnetic shielding properties, and good recycling potential, which make them of great application importance and potentials in the fields such as transport vehicles, aerospace,3C products. Especially, the unltafine grained magnesium sheets present excellent strength and high ductility and toughness except for the lightness; in addition, they show low temperature and high strain rate superplasticity. Therefore, the unltafine grained magnesium sheets have wider application. Some domestic and overseas researches have done some exploratory studies on the fabrication of ultrafine grained magnesium sheets and the associated fundamental theories. However, they have been unable to achieve a breakthrough.
     Based on the results of the preliminary exploratory experiements of this study, the present dissertation explores a novel methods called medium-high strain rate rolling to produce ultrafine grained magnesium sheets. In order to improve the formability of magnesium alloys, the effects of twinning and dynamic recrystallization (DRX) on the rolling process are strengthened by increasing the rolling strain rate. The ultrafine grained microstucuture is obtained via the extensive DRX in twins.
     Two series of magnesium alloys were chose in this study, which are AZ31and ZK60. AZ31is the most common magnesium alloy for rolling and ZK60is a high-alloy content sery. The feasibility of the MHSRR process and the deformation principle of magnesium alloys were explored. The thermal rolling simulation experiments were conducted upon the two alloys, and the flow behaviors and micro structural evolution of magnesium alloys during rolling process were studied. The effects of rolling strain rate and rolling temperature on the microstructure, grain orientation and mechanical properties of the magnesium sheets were discussed and the grain refinement mechanisms were focused. The strain-induced precipitation of magnesium alloys during MHSRR was observed and the influence of the precipitation on the rolling deformation behaviors was concentrated.
     The main conclusions are listed below
     (1) The feasibility of MHSRR of magnesium alloys depends on the deformation mechanism. The deformation mechanism during MHSRR are of great difference from that of conventional rolling with low strain rate and small strain. During conventional rolling, dislocation sliding dominates the deformation. However, during MHSRR, twinning dominates the deformation and extensive DRX occurs. Twinning and DRX are the most important deformation behaviors successively taking place during the deformation. Since twinning, DRX and the initiation and propagation of cracks are all the ways consuming strain energy during rolling, twinning and DRX compete with cracking. When the deformation strain rate is high enough, the initiation of twinning and DRX is rapid enough to prohibit cracking and guarantee the rolling process, which is the basic reason for the feasibility of MHSRR on magnesium alloys.
     (2) During the thermal simulation experiments, both at low strain rates (0.01-0.1s"1) and medium-high strain rates (10-50s-1), ZK60and AZ31alloys showed similar overall flow behaviour, i.e., hardening-softening-hardening. But at medium-high strain rates, the change of the flow curves was sharper and the flow curves fluctuated at the early stages. At low strain rate, the strain hardening at early stages was dominated by dislocation multiplication, and the subsequent softening was controlled by the nucleation and extension of DRX at grain boundaries, and the hardening at the later stages was induced by the grain refinement caused by DRX. At medium-high strain rate, the early-stage hardening was dominated by high-density deformation twinning, the subsequent sharp stress drop was due to the high-density DRX nucleation in twins, and the later-stage hardening was also resulted from the grain refinement.
     (3) The ultrafine grained magnesium sheets with high strength and high ductility were successfully produced by on-pass MHSRR. Rolled at300℃, with a strain-per-pass80%and a strain rate of9.1s-1, the average grain size of the ZK60sheet was0.5μm. The yield strength (YS) was307MPa and the ultimate tensile strength (UTS) reached371MPa and the elongation to failure was28%; the average grain size of AZ31sheet was3μm with the YS of238MPa, UTS317of MPa and elongation to failure of29%. However, the average grain size of the conventionally rolled AZ31sheet was18μm. The YS and UTS were222MPa and262MPa, respectively, and the elongation to failure was17%. The MHSRR is an efficient method to produce ultrafine grained magnesium sheets with a high efficiency and shortened process.
     (4) The rolling temperature range of magnesium were broadened by MHSRR. Rolled at250-400℃with a strain rate of9.1s-1, the fine grained sheets with superior mechanical properties were obtained in both the two alloys, which breaks the limitation of the narrow process window for conventional rolling. With the increase in strain rate, the grains were futher refined. In the ZK60sheets produced at16.8s-1, grains were refined to nano size.
     (5) MHSRR produced homogeneous ultrafine grained microstructure via extensive DRX. During MHSRR, a series of microstructural evolution occurred in the materials. First, very high-density deformation twinning took place and high-intensity dislocations formed in these twin lamellae. Subsequently, the dislocations rearranged and dynamic recovery (DRV) occured. The DRV successively formed polygons, cells and subgrains in the twin lamellae. The subgrains turned into the nuclei of continuous DRX. These nuclei transformed to the homogeneous fine DRX grains with low dislocation density and high misorientation by rotation and growth. With further deformation, the nucleation of discontinuous DRX took place at the grain boundaries of the continuous DRX grains, which prohibits the grain growth.
     (6) Compared with conventionally rolled sheets, the sheets fabricated by MHSRR still presented{0002}basal texture, but the intensity reduced remarkably. Especially with the increase in strain rate, the texture intensity of the sheets split to two peaks. The weakening of the basal texture results from the increase in both of the types and intensity of twins and the increase in the density of DRX nucleation.
     (7) During MHSRR, the strain-induced precipitation for the nano-sized second phase occurred in both of the ZK60and AZ31alloys. However, the distribution of the precipitates in ZK60alloy was much denser than AZ31alloy, and the composition of the precipitates was more complex. The precipitation processs and various deformation behaviors have mutual effects with each other, and thus influenced the final microstructure of the sheets. The main effects of precipitation were on the dislocation formation, movement and rearrangement, the DRX nucleation and grain growth. The difference of DRX grain size and DRX ratio between ZK60and AZ31sheets was attributed to the difference of the distribution density of the precipitates.
引文
[1]Jaschik C, Haferkamp H, Niemeyer M. New magnesium wrought alloys. In: Magnesium Alloys and Their Applications. Weinheim:WILEY-VCH Verlag Gmbh,2000,41-46
    [2]Luo A A. Magnesium:Current and potential automotive applications. Jom-Journal of the Minerals Metals & Materials Society,2002,54 (2):42-48
    [3]Luo A, Pekguleryuz. Cast magnesium alloys for elevated temperature applications. Journal of Materials Science,1994,29 (20):5259-5271
    [4]Mordike B L, Ebert T. Magnesium-Properties-Applications-Potential. Materials Science and Engineering a-Structural Materials Properties Micro structure and Processing,2001,302 (1):37-45
    [5]Aghion E, Bronfin B, Eliezer D. The role of the magnesium industry in protecting the environment. Journal of Materials Processing Technology,2001, 117(3):381-385
    [6]Froes F H, Eliezer D, Aghion E. The science, technology, and applications of magnesium. JOM Journal of the Minerals, Metals and Materials Society,1998, 50 (9):30-34
    [7]Zarandi F, Yue S. Magnesium sheet; Challenges and Opportunities, first ed. Rijeka:InTech,2011,297-320
    [8]Friedrich H E, Mordike B L. Magnesium Technology:Metallurgy, Design Data, Applications, first ed. Berlin Heidelberg:Springer-Verlag,2006,269-310
    [9]Kubota K, Mabuchi M, Higashi K. Processing and mechanical properties of fine-grained magnesium alloys. Journal of Materials Science,1999,34 (10): 2255-2262
    [10]Mukai T, Yamanoi M, Watanabe H, et al. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scripta Materialia,2001,45 (1):89-94
    [11]Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys Acta Materialia,2003,51 (7):2055-2065
    [12]Mukai T, Watanabe H, Higashi K. Application of superplasticity in commercial magnesium alloy for fabrication of structural components. Materials Science and Technology,2000,16 (11-12):1314-1319
    [13]Watanabe H, Mukai T, Ishikawa K, et al. Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion. Scripta Materialia,2002,46 (12):851-856
    [14]Matsubara K, Miyahara Y, Horita Z, et al. Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP. Acta Materialia,2003,51 (11):3073-3084
    [15]Staroselsky A, Anand L. A constitutive model for hep materials deforming by slip and twinning:application to magnesium alloy AZ31B International Journal of Plasticity,2003,19 (10):1843-1864
    [16]Yoo M H. Slip, twinning, and fracture in hexagonal close-packed metals. Metallurgical Transactions A,1981,12A(3):409-418
    [17]Jain A, Agnew S R. Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet Materials Science & Engineering A,2007,462 (1-2):29-36
    [18]Nave M D, Barnett M R. Microstructures and textures of pure magnesium deformed in plane-strain compression. Scripta Materialia,2004,51 (9):881-885
    [19]Jiang L, Jonas J J. Effect of twinning on the flow behavior during strain path reversals in two Mg (+Al, Zn, Mn) alloys. Scripta Materialia,2008,58 (10): 803-806
    [20]Christian J W, Mahajan S. Deformation twinning. Progress in Materials Science, 1995,39(1-2):1-157
    [21]Wang Y N, Huang J C. The role of twinning and untwinning in yielding behavior in hot-extruded Mg-Al-Zn alloy Acta Materialia,2007,55 (3):897-905
    [22]Barnett M R, Keshavarz Z, Nave M D. Microstructural features of rolled Mg-3Al-lZn. Metallurgical and Materials Transactions A,2005,36A (7):1697-1704
    [23]Zhu S Q, Yan H G, Xia W J, et al. Influence of different deformation processing on the AZ31 magnesium alloy sheets. Journal of Materials Science,2009,44 (14):3800-3806
    [24]Jiang L, Jonas J J, Luo A A, et al. Twinning-induced softening in polycrystalline AM30 Mg alloy at moderate temperatures. Scripta Materialia, 2006,54 (5):771-775
    [25]Jiang L, Jonas J J, Mishra R K, et al. Twinning and texture development in two Mg alloys subjected to loading along three different strain paths. Acta Materialia,2007,55 (11):3899-3910
    [26]Meyers M A, Vohringer O, Lubarda V A. The onset of twinning in metals:A constitutive description. Acta Materialia,2001,49 (19):4025-4039
    [27]Agnew S R, Yoo M H, Tome C N. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Materialia,2001,49 (20):4277-4289
    [28]Murr L E, Esquivel E V. Observations of common microstructural issues associated with dynamic deformation phenomena:Twins, microbands, grain size effects, shear bands, and dynamic recrystallization Journal of Materials Science,2004,39 (4):1153-1168
    [29]Barnett M R, Keshavarz Z, Beer A G, et al. Influence of grain size on the compressive deformation of wrought Mg-3Al-lZn. Acta Materialia,2004,52 (17):5093-5103
    [30]Yin D L, Zhang K F, Wang G F, et al. Warm deformation behavior of hot-rolled AZ31 Mg alloy. Materials Science and Engineering A,2005,392 (1-2):320-325
    [31]Sun H Q, Shi Y N, Zhang M A, et al. Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy. Acta Materialia,2007,55 (3):975-982
    [32]葛列里克S S,阿芬艾塞耶V.金属和合金的再结晶.第1版.北京:机械工业出版社,1985,35
    [33]Jiang L. Effect of twinning on texture and strain hardening in magnesium alloys subjected to different strain paths:[McGill University Doctor]. Montreal, Canada:Department of Mining and Materials Engineering, May,14-16
    [34]Kalidindi S R, Salem A A, Doherty R D. Role of deformation twinning on strain hardening in cubic and hexagonal polycrystalline metals. Advanced Engineering Materials,2003,5 (4):229-232
    [35]Rohatgi A, Vecchio K S, Gray III G T. The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys:Deformation twinning, work hardening, and dynamic recovery. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science,2001,32 (1):135-145
    [36]Basinski Z S, Szczerba M S, Niewczas M, et al. The transformation of slip dislocations during twinning of copper-aluminum alloy crystals. Revue De Metallurgie-Cahiers d~1 Informations Techniques,1997,94 (9):1037-1043
    [37]Barnett M R. Twinning and the ductility of magnesium alloys Part I:"Tension" twins. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2007,464 (1-2):1-7
    [38]Barnett M R. Twinning and the ductility of magnesium alloys Part II. "Contraction" twins. Materials Science and Engineering A,2007,464 (1-2):8-16
    [39]Tan J C, Tan M J. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-lZn alloy sheet. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2003,339(1-2):124-132
    [40]Ion S E, Humphreys F J, White S H. Dynamic recrystallisation and the development of microstructure during the high-temperature deformation of magnesium. Acta Metallurgica,1982,30 (10):1909-1919
    [41]Doherty R D, Hughes D A, Humphreys F J, et al. Current issues in recrystallization:a review. Materials Science & Engineering A,1997,238 (2): 219-274
    [42]Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena, second ed. Oxford:Elsevier,2004,1-4,208,305
    [43]Al-Samman T, Gottstein G. Dynamic recrystallization during high temperature deformation of magnesium. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2008,490 (1-2):411-420
    [44]Xu S W, Kamado S, Matsumoto N, et al. Recrystallization mechanism of as-cast AZ91 magnesium alloy during hot compressive deformation. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2009,527 (1-2):52-60
    [45]Yin D L, Zhang K F, Wang G F, et al. Warm deformation behavior of hot-rolled AZ31 Mg alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2005,392 (1-2):320-325
    [46]Yan H, Xu S W, Chen R S, et al. Twins, shear bands and recrystallization of a Mg-2.0%Zn-0.8%Gd alloy during rolling. Scripta Materialia,2011,64 (2):141-144
    [47]Myshlyaev M M, McQueen H J, Mwembela A, et al. Twinning, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2002,337 (1-2):121-133
    [48]Sitdikov O, Kaibyshev R, Sakai T. Dynamic recrystallization based on twinning in coarse-grained Mg. In:Proceeding of the Second Osaka International Conference on Platform Science and Technology for Advanced Alloys 2003. Uetikon-Zuerich:Trans Tech Publications Ltd,2003,521-526
    [49]Shimizu I. Theories and applicability of grain size piezometers:The role of dynamic recrystallization mechanisms. Journal of Structural Geology,2008,30 (7):899-917
    [50]钟家湘,郑秀华,刘颖.金属学教程.第1版.北京:北京理工大学出版社1995,341-343
    [51]毛卫民,赵新兵.金属的再结品与品粒长大.第1版.北京:冶金工业出版社,1994,197-198
    [52]Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy Zk60. Acta Materialia,2001,49 (7):1199-1207
    [53]McQueen H J, Imbert C A C. Dynamic recrystallization:plasticity enhancing structural development. Journal of Alloys and Compounds,2004,378 (1-2):35-43
    [54]陈振华,夏伟军,严红革,等.变形镁合金.第1版.北京:化学工业出版社,2005,48-70
    [55]Chang C I, Lee C J, Huang J C. Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys. Scripta Materialia,2004,51 (6):509-514
    [56]Samajdar I, Doherty R D. Cube recrystallization texture in warm deformed aluminum:Understanding and prediction. Acta Materialia,1998,46 (9):3145-3158
    [57]Cottam R, Robson J, Lorimer G, et al. Dynamic recrystallization of Mg and Mg-Y alloys:Crystallographic texture development. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008,485 (1-2):375-382
    [58]Xiong F, Davies C H J. Strain path and temperature effects on texture and microstructure evolution of AZ31. In:Magnesium Technology 2005.2005,217-222
    [59]Agnew S R, Duygulu O. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. International Journal of Plasticity,2005,21 (6): 1161-1193
    [60]Agnew S R, Tome C N, Brown D W, et al. Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling. Scripta Materialia,2003, 48(8):1003-1008
    [61]Brown D W, Agnew S R, Bourke M A M, et al. Internal strain and texture evolution during deformation twinning in magnesium. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2005,399(1-2):1-12
    [62]Agnew S R, Horton J A, Lillo T M, et al. Enhanced ductility in strongly textured magnesium produced by equal channel angular processing. Scripta Materialia,2004,50 (3):377-381
    [63]Somekawa H, Mukai T. Effect of grain refinement on fracture toughness in extruded pure magnesium. Scripta Materialia,2005,53 (9):1059-1064
    [64]Somekawa H, Singh A, Mukai T. Deformation structure after fracture-toughness test of Mg-Al-Zn alloys processed by equal-channel-angular extrusion. Philosophical Magazine Letters,2006,86 (3):195-204
    [65]Mukai T, Yamanoi M, Watanabe H, et al. Effect of grain refinement on tensile ductility in ZK60 magnesium alloy under dynamic loading. Materials Transactions,2001,42 (7):1177-1181
    [66]Li B, Joshi S, Azevedo K, et al. Dynamic testing at high strain rates of an ultrafine-grained magnesium alloy processed by ECAP. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2009,517 (1-2):24-29
    [67]田兰桥,段祝平.应用霍普金森压杆技术进行材料动态断裂韧性研究.兵器材料科学与工程,1991,122(11):33-39
    [68]胡时胜.霍普金森压杆技术.兵器材料科学与工程,1991,122(11):40-47
    [69]刘文建.霍普金森杆在复合材料动态测试中的应用.纤维复合材料,2005,2:44-46
    [70]Zhang Y, Zeng X, Lu C, et al. Deformation behavior and dynamic recrystallization of a Mg-Zn-Y-Zr alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2006,428 (1-2): 91-97
    [71]Prasad Y V R K, Rao K P. Effect of crystallographic texture on the kinetics of hot deformation of rolled Mg-3Al-lZn alloy plate. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2006,432(1-2):170-177
    [72]Lee B H, Reddy N S, Yeom J T, et al. Flow softening behavior during high temperature deformation of AZ31Mg alloy. Journal of Materials Processing Technology,2007,187:766-769
    [73]Guan S K, Wu L H, Wang L G. Flow stress and microstructure evolution of semi-continuous casting AZ70 Mg-alloy during hot compression deformation. Transactions of Nonferrous Metals Society of China,2008,18 (2):315-320
    [74]Yang Y Q, Li B C, Zhang Z M. Flow stress of wrought magnesium alloys during hot compression deformation at medium and high temperatures. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2009,499 (1-2):238-241
    [75]Barnett M R. Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31. journal of Light Metals,2001,1 (3):167-177
    [76]Beer A G, Barnett M R. Influence of initial microstructure on the hot working flow stress of Mg-3Al-1Zn. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2006,423 (1-2):292-299
    [77]Liu L, Ding H. Study of the plastic flow behaviors of AZ91 magnesium alloy during thermomechanical processes. Journal of Alloys and Compounds,2009, 484(1-2):949-956
    [78]Watanabe H, Ishikawa K. Effect of texture on high temperature deformation behavior at high strain rates in a Mg-3Al-1Zn alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2009,523 (1-2):304-311
    [79]Ishikawa K, Watanabe H, Mukai T. High strain rate deformation behavior of an AZ91 magnesium alloy at elevated temperatures. Materials Letters,2005,59 (12):1511-1515
    [80]Ishikawa K, Watanabe H, Mukai T. High temperature compressive properties over a wide range of strain rates in an AZ31 magnesium alloy. Journal of Materials Science,2005,40 (7):1577-1582
    [81]Yang Y B, Wang F C, Tan C W, et al. Plastic deformation mechanisms of AZ31 magnesium alloy under high strain rate compression. Transactions of Nonferrous Metals Society of China,2008,18 (5):1043-1046
    [82]吴秀玲,谭成文.冲击载荷作用下AZ3 1镁合金中的变形局域化.稀有金属材料与工程,2008,37(6):1111-1113
    [83]毛萍莉,刘正,王长义,等.高应变速率F AZ31B 镁合金的压缩变形组织.中国有色金属学报,2009,19(5):816-820
    [84]杨续跃,张之岭,张雷,等.应变速率对AZ61镁合金动态再结晶行为的影 响.中国有色金属学报, 2011,21(8):1801-1807
    [85]Wang C Y, Wang X J, Chang H, et al. Processing maps for hot working of ZK60 magnesium alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2007,464 (1-2):52-58
    [86]Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural control International Materials Reviews,1998,43 (6):243-258
    [87]Sivakesavam O, Prasad Y. Hot deformation behaviour of as-cast Mg-2Zn-1Mn alloy in compression:a study with processing map. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2003,362 (1-2):118-124,
    [88]Srinivasan N, Prasad Y V R K, Rao P R. Hot deformation behaviour of Mg-3A1 alloy-A study using processing map. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2008,476 (1-2): 146-156
    [89]Slooff F A, Dzwonczyk J S, Zhou J, et al. Hot workability analysis of extruded AZ magnesium alloys with processing maps. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2010,527 (3):735-744
    [90]Zhou H T, Li Q B, Zhao Z K, et al. Hot workability characteristics of magnesium alloy AZ80-A study using processing map. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2010,527 (7-8):2022-2026
    [91]夏伟军.镁合金板材特殊轧制变形技术研究:[湖南大学博士学位论文].长沙:材料科学与工程学院,2010,6-7
    [92]Kim W J, Kim M J, Wang J Y. Superplastic behavior of a fine-grained ZK60 magnesium alloy processed by high-ratio differential speed rolling. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2009,527 (1-2):322-327
    [93]Galiyev A, Kaibyshev R. Superplasticity in a magnesium alloy subjected to isothermal rolling. Scripta Materialia,2004,51 (2):89-93
    [94]Gong X B, Kang S B, Li S Y, et al. Enhanced plasticity of twin-roll cast ZK60 magnesium alloy through differential speed rolling. Materials & Design,2009, 30 (9):3345-3350
    [95]Chen H M, Yu H S, Kang S B, et al. Optimization of annealing treatment parameters in a twin roll cast and warm rolled ZK60 alloy sheet. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2010,527 (4-5):1236-1242
    [96]Chen H M, Kang S B, Yu H S, et al. Effect of heat treatment on microstructure and mechanical properties of twin roll cast and sequential warm rolled ZK60 alloy sheets. Journal of Alloys and Compounds,2009,476 (1-2):324-328
    [97]Chen H M, Yu H S, Kang S B, et al. Effect of rolling temperature on microstructure and texture of twin roll cast ZK60 magnesium alloy. Transactions of Nonferrous Metals Society of China,2010,20 (11):2086-2091
    [98]Kainer K U. Magnesium-Alloys and Technology, first ed. Weinheim:W1LEY-VCH Verlag GmbH & Co. KG aA,2003,8-9
    [99]Watari H, Haga T, Koga N, et al. Feasibility study of twin roll casting process for magnesium alloys. Journal of Materials Processing Technology,2007,192 (SI):300-305
    [100]Liang D, Cowley C B. The twin-roll strip casting of magnesium. Jom,2004,56 (5):26-28
    [101]Park S S, Bae G T, Kang D H, et al. Microstructure and tensile properties of twin-roll cast Mg-Zn-Mn-Al alloys. Scripta Materialia,2007,57 (9):793-796
    [102]del Valle J A, Perez-Prado M T, Ruano O A. Texture evolution during large-strain hot rolling of the Mg AZ61 alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2003,355 (1-2): 68-78
    [103]Perez-Prado M T, del Valle J A, Contreras J M, et al. Microstructural evolution during large strain hot rolling of an AM60 Mg alloy. Scripta Materialia,2004, 50 (5):661-665
    [104]Perez-Prado M T, del Valle J A, Ruano O A. Effect of sheet thickness on the microstructural evolution of an Mg AZ61 alloy during large strain hot rolling. Scripta Materialia,2004,50 (5):667-671
    [105]Perez-Prado M T, del Valle J A, Ruano O A. Achieving high strength in commercial Mg cast alloys through large strain rolling. Materials Letters,2005, 59(26):3299-3303
    [106]Eddahbi M, del Valle J A, Perez-Prado M T, et al. Comparison of the microstructure and thermal stability of an AZ31 alloy processed by ECAP and large strain hot rolling. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2005,410:308-311
    [107]Stanford N, Barnett M R. Fine grained AZ31 produced by conventional thermo- mechanical processing. Journal of Alloys and Compounds,2008,466 (1-2): 182-188
    [108]Vespa G, Mackenzie L W F, Verma R, et al. The influence of the as-hot rolled microstructure on the elevated temperature mechanical properties of magnesium AZ31 sheet. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2008,487 (1-2):243-250
    [109]Koh H, Sakai T, Utsunomiya H, et al. Deformation and texture evolution during high-speed rolling of AZ31 magnesium sheets. Materials Transactions,2007,48 (8):2023-2027
    [110]Sakai T, Utsunomiya H, Koh H, et al. Texture of AZ31 magnesium alloy sheet heavily rolled by high speed warm rolling. Materials Science Forum,2007, 539-543:3359-3364
    [111]Sakai T, Watanabe Y, Utsunomiya H. Microstructure and Texture of AZ80 Magnesium Alloy Sheet Rolled by High Speed Warm Rolling. Materials Science Forum,2009,618-619:483-486
    [112]赵志业.金属塑性变形与轧制理论.第2版.北京:冶金工业出版社1994,20-22
    [113]徐愚.冷轧宽带钢生产技术的现状及我国今后发展的思考.上海金属,1993,15(4):28-33
    [114]Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials-Development of the accumulative roll-bonding (ARB) process. Acta Materialia,1999,47 (2):579-583
    [115]Lee S H, Sakai T, Saito Y, et al. Strengthening of sheath-rolled aluminum based MMC by the ARB process. Materials Transactions Jim,1999,40 (12):1422-1428
    [116]Saito Y, Utsunomiya H, Tsuji N, et al. Accumulative roll-bonding of 1100 aluminum. Journal of the Japan Institute of Metals,1999,63 (6):790-795
    [117]Tsuji N, Saito Y, Utsunomiya H, et al. Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process. Scripta Materialia,1999,40 (7): 795-800
    [118]Dehsorkhi R N, Qods F, Tajally M. Investigation on microstructure and mechanical properties of Al-Zn composite during accumulative roll bonding (ARB) process. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2011,530:63-72
    [119]Pirgazi H, Akbarzadeh A, Petrov R, et al. Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2008,497 (1-2):132-138
    [120]Chang H, Zheng M Y, Wu K, et al. Microstructure and mechanical properties of the accumulative roll bonded (ARBed) pure magnesium sheet. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2010,527 (27-28):7176-7183
    [121]Jiang L, Perez-Prado M T, Gruber P A, et al. Texture, microstructure and mechanical properties of equiaxed ultrafine-grained Zr fabricated by accumulative roll bonding. Acta Materialia,2008,56 (6):1228-1242
    [122]Perez-Prado M T, del Valle J A, Ruano O A. Grain refinement of Mg-Al-Zn alloys via accumulative roll bonding. Scripta Materialia,2004,51 (11):1093-1097
    [123]del Valle J A, Perez-Prado M T, Ruano O A. Accumulative roll bonding of a Mg-based AZ61 alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2005,410:353-357
    [124]Lu J S, Harrer O K, Schwenzfeier W, et al. Analysis of the bending of the rolling material in asymmetrical sheet rolling. International Journal of Mechanical Sciences,2000,42 (1):49-61
    [125]Watanabe H, Mukai T, Ishikawa K. Differential speed rolling of an AZ31 magnesium alloy and the resulting mechanical properties. Journal of Materials Science,2004,39 (4):1477-1480
    [126]Huang X S, Suzuki K, Saito N. Microstructure and mechanical properties of AZ80 magnesium alloy sheet processed by differential speed rolling. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2009,508 (1-2):226-233
    [127]Kim W J, Lee J B, Kim W Y, et al. Microstructure and mechanical properties of Mg-Al-Zn alloy sheets severely deformed by asymmetrical rolling. Scripta Materialia,2007,56 (4):309-312
    [128]Kim W J, Hwang B G, Lee M J, et al. Effect of speed-ratio on microstructure, and mechanical properties of Mg-3Al-lZn alloy, in differential speed rolling. Journal of Alloys and Compounds,2011,509 (34):8510-8517
    [129]Xia W J, Chen Z H, Chen D, et al. Microstructure and mechanical properties of AZ31 magnesium alloy sheets produced by differential speed rolling. Journal of Materials Processing Technology,2009,209 (1):26-31
    [130]朱素琴,严红革,夏伟军,等.异步轧制AZ31镁合金板材的组织性能研究.湖南大学学报(自然科学版),2008,35(8):51-54
    [131]Kim W J, Lee Y G, Lee M J, et al. Exceptionally high strength in Mg-3Al-lZn alloy processed by high-ratio differential speed rolling. Scripta Materialia,2011, 65(12):1105-1108
    [132]Kim W J, Lee H W, Yoo S J, et al. Texture and mechanical properties of ultrafine-grained Mg-3Al-lZn alloy sheets prepared by high-ratio differential speed rolling. Materials Science and Engineering a-Structural Materials Properties Micro structure and Processing,2011,528 (3):874-879
    [133]Cho J H, Kim H W, Kang S B, et al. Bending behavior, and evolution of texture and micro structure during differential speed warm rolling of AZ31B magnesium alloys. Acta Materialia,2011,59 (14):5638-5651
    [134]Saito Y, Utsunomiya H, Suzuki H, et al. Improvement in the r-value of aluminum strip by a continuous shear deformation process. Scripta Materialia, 2000,42(12):1139-1144
    [135]Utsunomiya H, Hatsuda K, Sakai T, et al. Continuous grain refinement of aluminum strip by conshearing. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2004,372 (1-2):199-206
    [136]Okamura Y, Utsunomiya H, Sakai T, et al. Texture and microstructure of ultra-low carbon IF steel strip processed by conshearing. Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan,2003,89 (6):666-672
    [137]程永奇.AZ31镁合金板材等径角轧制及冲压性能研究:[湖南大学博士学位论文].长沙:材料科学与工程学院,2007,15-16
    [138]Chen Z H, Cheng Y Q, Xia W J. Effect of Equal-Channel Angular Rolling Pass on Microstructure and Properties of Magnesium Alloy Sheets. Materials and Manufacturing Processes,2007,22 (1):51-56
    [139]Cheng Y Q, Chen Z H, Xia W J. Effect of crystal orientation on the ductility in AZ31 Mg alloy sheets produced by equal channel angular rolling. Journal of Materials Science,2007,42 (10):3552-3556
    [140]Cheng Y Q, Chen Z H, Xia W J, et al. Effect of channel clearance on crystal orientation development in AZ31 magnesium alloy sheet produced by equal channel angular rolling. Journal of Materials Processing Technology,2007,184 (1-3):97-101
    [141]Cheng Y Q, Chen Z H, Xia W J. Drawability of AZ31 magnesium alloy sheet produced by equal channel angular rolling at room temperature. Materials Characterization,2007,58 (7):617-622
    [142]陈振华,严红革,陈吉华,等.镁合金.第1版.北京:化学工业出版社2004,10100
    [143]丁文江.镁合金科学与技术.第1版.北京:科学出版社,2007,14
    [144]Ma Q, Li B, Marin E B, et al. Twinning-induced dynamic recrystallization in a magnesium alloy extruded at 450 degrees C. Scripta Materialia,2011,65 (9): 823-826
    [145]赵德文,铁维麟.轧制应变速率参数的精确计算方法.应用科学学报,1995,13(1):103-107
    [146]Lee J B, Konno T J, Jeong H G. Grain refinement and texture evolution in AZ31 Mg alloys sheet processed by differential speed rolling. Materials Science and Engineering B-Advanced Functional Solid-State Materials,2009, 161 (1-3):166-169
    [147]Kassner M E, Barrabes S R. New developments in geometric dynamic recrystallization. Materials Science and Engineering A,2005,410-411:152-155
    [148]Hull D, Bacon D J. Introduction to Dislocations, fourth ed. Oxford: Butterworth-Heinemann,2001,51
    [149]McQueen H J, Myshlyaev M M, Mwembela A. Microstructural evolution and strength in hot working of ZK60 and other Mg alloys. Canadian Metallurgical Quarterly,2003,42 (1):97-112
    [150]Shahzad M, Wagner L. Microstructure development during extrusion in a wrought Mg-Zn-Zr alloy. Scripta Materialia,2009,60 (7):536-538
    [151]Zlateva G, Martinova Z. Microstrucure of metals and alloys:an atlas of transmission electron microscopy images, first ed. New York:Taylor & Francis Group,2008,31
    [152]Xin Y, Wang M, Zeng Z, et al. Strengthening and toughening of magnesium alloy by{10-12} extension twins. Scripta Materialia,2012,66 (1):25-28
    [153]Kleiner S, Uggowitzer P J. Mechanical anisotropy of extruded Mg-6%Al-1% Zn alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2004,379 (1-2):258-263
    [154]Koike J, Fujiyama N, Ando D, et al. Roles of deformation twinning and dislocation slip in the fatigue failure mechanism of AZ31 Mg alloys. Scripta Materialia,2010,63 (7):747-750
    [155]Li Q, Yu Q, Zhang J, et al. Effect of strain amplitude on tension-compression fatigue behavior of extruded Mg6AllZnA magnesium alloy. Scripta Materialia, 2010,62 (10):778-781
    [156]Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystaliine materials. Progress in Materials Science,2006,51 (4):427-556
    [157]Liao X Z, Zhao Y H, Srinivasan S G, et al. Deformation twinning in nanocrystalline copper at room temperature and low strain rate. Applied Physics Letters,2004,84 (4):592-594
    [158]Liao X Z, Zhao Y H, Zhu Y T, et al. Grain-size effect on the deformation mechanisms of nanostructured copper processed by high-pressure torsion. Journal of Applied Physics,2004,96 (1):636-640
    [159]Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation. Progress in Materials Science,2000,45 (2): 103-189
    [160]Galiyev A, Kaibyshev R. Dynamic recrystallization and grain growth in a ZK60 magnesium alloy sheet produced by isothermal rolling. Materials Science Forum,2004,467-470:1175-1180
    [161]Belyakov A, Miura H, Sakai T. Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1998,255(1-2):139-147
    [162]Miura H, Sakai T, Hamaji H, et al. Preferential nucleation of dynamic recrystallization at triple junctions. Scripta Materialia,2004,50 (1):65-69
    [163]Miura H, Sakai T, Mogawa R, et al. Nucleation of dynamic recrystallization at grain boundaries in copper bicrystals. Scripta Materialia,2004,51 (7):671-675
    [164]Sakai T. Dynamic recrustallization microstructures under hot-working conditions. Journal of Materials Processing Technology,1995,53 (1-2):349-361
    [165]Wusatowska-Sarnek A M, Miura H, Sakai T. Nucleation and microtexture development under dynamic recrystallization of copper. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2002,323(1-2):177-186
    [166]Miura H, Andiarwanto S, Sato K, et al. Preferential dynamic nucleation at triple junction in copper tricrystal during high-temperature deformation. Materials Transactions,2002,43 (3):494-500
    [167]Monzen R, Sumi Y, Kitagawa K, et al. Nanometer grain boundary sliding in Cu: [011] symmetric tilt boundaries, misorientation dependence and anisotropy. Acta Metallurgica Et Materialia,1990,38 (12):2553-2560
    [168]李炎,长谷川明,吴忆贵.多品体钛形变孪品的电子显微分析.河南科技大学学报(自然科学版),2004,25(1):5-8
    [169]Zhou H T, Zhang Z D, Liu C M, et al. Effect of Nd and Y on the microstructure and mechanical properties of ZK60 alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2007,445:1-6
    [170]Yu W B, Liu Z Y, He H, et al. Microstructure and mechanical properties of ZK60-Yb magnesium alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2008,478 (1-2):101-107
    [171]Zhao Y H, Bingert J F, Zhu Y T, et al. Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density. Applied Physics Letters,2008,92 (8):081903
    [172]Barnett M R, Keshavarz Z, Beer A G, et al. Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy. Acta Materialia,2008, 56(1):5-15
    [173]张静,潘复生,郭正晓,等.含锆高镁合金系中的合金相.兵器材料科学与工程,2002,25(6):50-56
    [174]麻彦龙,潘复生,左汝林.高强度变形镁合金ZK60的研究现状.重庆大学学报,2004,27(9):80-85
    [175]Singh A, Tsai A P. Structural characteristics of beta(1)' precipitates in Mg-Zn-based alloys. Scripta Materialia,2007,57 (10):941-944
    [176]Wei L Y, Dunlop G L, Westengen H. Precipitation haedening of Mg-Zn and Mg-Zn-Re alloys. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science,1995,26 (7):1705-1716
    [177]Gao X, Nie J F. Characterization of strengthening precipitate phases in a Mg-Zn alloy. Scripta Materialia,2007,56 (8):645-648
    [178]Oh-ishi K, Hono K, Shin K S. Effect of pre-aging and Al addition on age-hardening and microstructure in Mg-6 wt%Zn alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008,496(1-2):425-433
    [179]Buha J. Characterisation of precipitates in an aged Mg-Zn-Ti alloy. Journal of Alloys and Compounds,2009,472 (1-2):171-177
    [180]Buha J. Mechanical properties of naturally aged Mg-Zn-Cu-Mn alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2008,489 (1-2):127-137
    [181]Buha J. Reduced temperature (22-100 degrees C) ageing of an Mg-Zn alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2008,492 (1-2):11-19
    [182]Homma T, Mendis C L, Hono K, et al. Effect of Zr addition on the mechanical properties of as-extruded Mg-Zn-Ca-Zr alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2010,527 (9):2356-2362
    [183]Oh-ishi K, Mendis C L, Homma T, et al. Bimodally grained microstructure development during hot extrusion of Mg-2.4 Zn-0.1 Ag-0.1 Ca-0.16 Zr (at.%) alloys. Acta Materialia,2009,57 (18):5593-5604
    [184]Sha G, Li J H, Xu W, et al. Hardening and microstructural reactions in high-temperature equal-channel angular pressed Mg-Nd-Gd-Zn-Zr alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2010,527 (20):5092-5099
    [185]StJohn D H, Cao P, Oian M, et al. A new analytical approach to reveal the mechanisms of grain refinement. Advanced Engineering Materials,2007,9 (9): 739-746

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700