混合菌丝球形成机理及其净化效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在废水处理过程中,直接投加菌体虽然简单易行,但是所投加的特效菌体容易流失,或被其他微生物吞噬。固定化微生物技术可以将游离的微生物固定在载体上,使其高度密集并保持活性,使废水处理系统高效、稳定地运行。菌丝球是发酵过程中自然形成的一种微生物颗粒,它生物活性良好、沉降速度快、易于固液分离,能够较好地用于重金属废水和印染废水的处理。然而,废水是一个十分复杂的混合体系,复杂的水质成分、不同环境因子对微生物的诱变作用等因素使纯种的单纯菌丝球难以形成。因此,以单纯菌丝球为载体,采用混合菌种固定化技术,建立混合菌群组成的微生态环境,使各种固定化微生物协同发挥作用,必将成为废水处理领域研究的重点。
     以霉菌Y3形成的菌丝球作为生物质载体分别采用同时培养法和吸附法对菌株JH-9进行固定化,并率先提出了一种新型培养方法“同时培养法”。两种方法的对比结果表明:同时接种法在单位时间内可固定的细菌量更多、其堆积体积更大,成球总数量更多,球体直径较小,总重量和总相对密度也较小。同时培养法形成的混合菌丝球内部细菌是非常均匀的排列生长在每一根菌丝上,无论菌丝交联与否;而吸附法形成的混合菌丝球内部,细菌只存在于多条菌丝交叉形成平台的地方。
     对混合菌丝球的降解效能进行考察发现,混合菌丝球对苯胺保持了良好的降解效能,同时培养法形成的混合菌丝球对苯胺的降解效能要明显好于吸附法形成的混合菌丝球,且效果稳定、持久。与固定化陶粒相比,混合菌丝球对苯胺的降解能力略显优势。菌丝球再生实验表明,经过碎片繁殖再生的混合菌丝球能很好的保持对苯胺的降解能力。为了进一步在反应器中考察混合菌丝球的生物强化效能,将混合菌丝应用于SBR工艺中。结果表明,针对初始苯胺浓度为130mg/L的苯胺废水,混合菌丝球从第三个运行周期开始即实现了100%的苯胺去除率、COD去除率在60%以上,并一直稳定维持到运行的第八个周期。通过考查混合菌丝球的形成过程及机制发现:曲霉Y3和菌株JH-9同时培养形成混合菌丝球经历4个阶段,静电引力和细胞表面的粘附力是混合菌丝球形成的主要原因。
In the wastewater treatment process, it is easy to add in bacteria directly, but the bacteria is also easily missing, or being swallowed by other microorganisms. Immobilized Microbe Technology (IMT) can fix free microorganisms on carriers with a high concentration and keep their activity. IMT makes the wastewater treatment system operate efficiently and stablely. Mycelium pellet is a kind of bio-granule that can from spontaneously in the process of ferment. It has a good biological activity, fast sedimentation velocity, and no need for carrier, good condition of liquid solid separation. It can be used in the treatment of wastewater with heavy metals and dye. However, actual wastewater is a complex system; complex water ingredients and microbial mutagenesis of different environmental factors make it difficult to form mycelium pellets in it. Therefore, usimg the mycelium pellet as a carrier, adopting the“mixed bacteria self-immobilization technology”, to establish a micro-ecology environment made up of mixed bacteria group, in order to let all kinds of immobilized microorganisms play its role together, will become a focus in the field of wastewater treatment.
     Immobilized strain JH-9 with simultaneity culture and adsorption respectively, with mycelium pellet forming by aspergillus Y3 as the biomass carrier. It is the first time to propose a new immobilization method-simultaneity culture method. Comparative results of the two methods showed that: simultaneity culture method has many advantages such as more immobilization bacteria, bigger cumuli volum, more pellets, and shorter pellet diameter, light gross weight and small relative density. No matter mycelium crosslinking or not, bacteria within the combined pellet foaming by simultaneity culture method are growing equably on each of the mycelium. But the bacteria within the combined pellet forming by adsorption method are existted on the cross-platform forming with a number of mycelium only.
     Then we review the degrading performance of the combined pellet. The result shows that it maintained a good performance of strain JH-9, combined pellet forming by simultaneity culture method has better steady and permanence degrading performance than that forming by adsorption method. Compired with immbolized ceramsite, combined pellet has a small advantage in aniline degradation performance. The result of regeneration experiment shows that combined pellet regenerated by fragment breedding can keep high aniline degradationg ability. In order to text bioaugmentation performance of combined pellet in reactor, combined pellet was casted into SBR. The result shows that the aniline removal rate of output was 100% and the COD removal rate above 60% from the third running period, as the input aniline concentration was 130mg/L, and this result was stay the course. Through tracing the formation process and mechanism of combined pellt, we found that combined pellet forming by simultaneity culture method with aspergillus Y3 and strain JH-9 experienced four stages, and the main pellet forming reasons are the electrostatic attraction and cell surface adhesion.
引文
1 S. Kelly, L.H. Grimm, C. Bendig, D.C. etal. Effects of Fluid Dynamic Induced Shear Stress on Fungal Growth and Morphology. Process Biochemistry. 2006, 41(10):2113~2117
    2 P. T. Sangeetha, M. N. Ramesh, S. G. Prapulla. Fructooligosaccharide production using fructosyl transferase obtained from recycling culture of Aspergillus oryzae CFR 202. Process Biochemistry. 2005, 40(3-4):1085~1088
    3刘效梅,辛宝平,徐文国.微生物颗粒在废水处理中的应用与研究.工业水处理2005, 25(8):87~91
    4 C. Domingues, et al. The Influence of Cultrure Condition on Mycelial Structure and Cellulose Productin by Trichoderma Reesei Rut C- 30. Microb. Technol. 2000, 26(5-6):394~401
    5 ho Sing, Jisn Yu. Copper Adsorption and Removal from Water by Living Mycelium of White-rot Fungus. Phanerochaete Chrysosporium. Wat. Res., 1998, 32(9):2746~2752
    6 A. Sharma, S. R. Padwal-Desai. On the Relationship Between Pellet Size and Aflatoxin Yield in Asper Gillus Parasiticus. Biotechnol. and Bioeng. 1985, 27(11):1577~1580
    7 S. Linko. Production and Characterization of Extracellularlignin Peroxidase from Immobilized Phanerochaete Chrysosporium in a 10L Bioreactor. Enzyme Microb-technol. 1988, 10(6):410~417
    8林鹿,王双飞,陈嘉翔.白腐菌对蔗渣浆CEH漂白废水的脱色.工业水处理. 1996, 16(3):25~26
    9 J. Prosser, A. J. Tough. Growth Mechanisms and Growth Kinetics of Filamentous Microorganism. Biotechnology. 1991, 10(4):253~274
    10 Juan Wu, Han-Qing Yu. Biosorption of 2,4-dichlorophenol from aqueous solution by Phanerochaete chrysosporium biomass: Isotherms, kinetics and thermodynamics. Journal of Hazardous Materials, 2006, 137(1):498~508
    11 E.M. Rodríguez Porcel, J.L. Casas López, J.A. Sánchez Pérez, J.M. Effects ofpellet morphology on broth rheology in fermentations of Aspergillus terreus. Biochemical Engineering. 2005, 26(2-3):139~144
    12雷德柱,于淑娟.灰树花深层发酵过程中菌丝球形态结构的研究.食用菌学报. 2003, 10(1):6~11
    13阳葵,王积分.形态解析法用于菌体生长.化工学报. 1999, 8(4):573~576
    14丁乐洪,储炬.产黄青霉形态的显微图像分析研究.中国抗生素杂志. 2003, 3(4):131~134
    15熊宗贵.发酵工艺原理.北京:中国医药科技出版社. 1995, 114
    16 J. Nielsen, P. Krabben. Hyphal Growth and Fragmentation of P Chrysogenum in Suberged Cultrures. Biotechnol Bioeng. 1995, 46:588
    17汪维云,吴梧桐.灰树花深层培养的生长动力学与计算机模拟.生物数学学报. 2003, 17(4):494~498
    18张敬泽,胡东维.立枯丝核菌菌丝隔膜超微结构的研究.菌物系统. 2003, 22(2):319~323
    19孙玉梅,朱蓓薇,刘阳等.黑曲霉菌丝凝集机制的研究.大连轻工业学院学报. 1994, 13(4):16~20
    20 B. Metz, N. W. F. Kossen. The Growth of Molds in the Form of Pellets-A Literature Review. Biotechnol Bioeng. 1977, 19:781~799
    21张用良,叶勤,王水红等.青霉素发醉过程菌丝成球的工程特性研究.华东化工学院学报. 1993, 19(5):577~583
    22夏宁茂,张嗣良.青霉素菌丝球内氧浓度分布与生长模型的研究.华东理工大学学报. 1995, 21(8):141~143
    23高敏.生物质载体菌丝球的形成机制及脱色效能的研究.哈尔滨工业大学硕士学位论文. 2006,7
    24 D. K. Belsare, D. Y. Prasad. Decolorization of Effluent from the Bagasse-based Pulp Mills by White-rot Fungus, Schizophyllum commune. Appl Microbiol Biotechnol. 1988, 28:301~304
    25 J. S. Knapp, Fu-m ing Zhang, K. N. Tapley. Decolourisation of Orange 11 by a Wood-rotting Fungus. Chem. Tech. Biotechnol. 1997, 69(3):289~296
    26 Elif Apohan, Ozfer Yesilada. Role of White Rot Fungus Funalia Trogii in Detoxification of Textile Dyes. Basic Microbiol. 2005, 45(2):99~105
    27 Rashmi Sanghi, Awantika Dixit, Sauymen Guha. Sequential batch culture studies for the decolorisation of reactive dye by Coriolus versicolor. BioresourceTechnology. 2006, 97(3):396~400
    28 S. Kahraman, et al. Biosorption of Copper(II) by Live and Died Biomass of the White Rot Fungi Phanerochaete chrysosporium and Funalia trogii. Eng. Life Sci., 2005, 5(1):72~77
    29 Juan Wu, Han-Qing Yu. Biosorption of phenol and chlorophenols from aqueous solutions by fungal mycelia. Process Biochemistry. 2006, 1(41):44~49
    30刘桂萍,刘长风.霉菌菌丝球对Pb2+的吸附研究.沈阳化工学院学报. 2005, 19(2):56~59
    31吴涓,肖亚中.黄孢原毛平革菌菌丝球对Pb2+的动态吸附及其洗脱.安徽大学学报. 2002, 26(1):26~30
    32李薇,吴涓.黄孢展齿革菌菌丝球上铅的解吸.厦门大学学报(自然科学版). 2000, 39(4):321~326
    33赵力,张利,孔德领等.明胶包埋黑根霉菌丝体对水中Pb2+吸附性能的研究.离子交换与吸附. 1996, 12(5):418~424
    34李清彪,吴涓.白腐真菌菌丝球形成的物化条件及其对铅的吸附.环境科学. 1999, 26(1):165~168
    35胡勇有,刘铁梅.烟束曲霉HLS6的筛选及其对Cr(VI)的吸附特性.华南理工大学学报(自然科学版). 2005, 9(4):73~77
    36张书军,杨敏.应用青霉菌BX1活体吸附水中活性艳蓝KNR.环境科学. 2004, 25(1):26~32
    37张一竹,王清棋.橘青霉菌丝球形成条件及其处理废水的应用.氨基酸和生物资源. 2003, 25(1):44~46
    38辛宝平,邹其猛.吸附菌GX2对活性艳蓝KNR的脱色作用研究.环境科学学报. 2000, 20(5):164~168
    39董新姣,陈珠.无花果曲霉对直接冻黄(G)的脱色特性研究.城市环境与城市生态. 2001, 14(1):556~561
    40林晓华.青霉菌X5对活性艳蓝KN-R脱色研究.四川环境. 2002, 21(4):172~125
    41成文,胡勇有.曲霉菌丝球HX对偶氮染料的吸附脱色.应用与环境生物学报. 2004, 10(4):489~492
    42刘效梅,辛宝平.开放系统中4株丝状真菌的成球生长及其对染料的吸附脱色.环境科学. 2005, 26(4):172~178
    43满悦之,庄源益.染料生物吸附影响因素与解吸条件研究.化工环保. 2003,23(4):235~239
    44吴绵斌,夏黎明.应用Coriolusvericolor催化染料及印染废水脱色.化工学报. 2002, 53(9):249~257
    45袁丽梅,张书军.应用气升式反应器培养草酸青霉菌菌丝球的研究.微生物学报. 2004, 44(3):326~33
    46黄民生,安世杰,等.白腐真菌对活性染料废水脱色实验研究.华东师范大学学报(自然科学版). 2005(1):139~143
    47张世敏,徐淑霞,张跃灵等.黄孢原毛平革菌对印染废水脱色条件研究.安全与环境学报. 2005, 6(3):9~11
    48李蒙英,倪建国,孟祥勋等.青霉菌对印染废水吸附脱色及深度处理的研究.环境污染治理技术与设备. 2004, 9(4):36~40
    49肖继波,胡勇有.吸附菌HX5对活性艳蓝KN-R的吸附脱色作用.应用与环境生物学报. 2005, 11(6):763~766
    50黄锦丽,龙敏南,傅雅婕.产酸克雷伯氏菌的吸附固定及其产氢研究.厦门大学学报. 2005, 9(4):710~714
    51赵立军,马放,山丹,等.曲霉菌丝球Y3对细菌的固定化效能[J].江苏大学学报:自然科学版, 2007, 28(5):446~449
    52司航.化工产品手册—有机化工原料(第二版).北京.化学工业出版社. 1995:32
    53 Kearney P C, Kaufman D, D. Herbicides Chemistry. Degradation and Mode of Action. 2nd ed. New York: Marcel Dekker, 1975:97~103
    54刘志培,杨惠芳,周培谨.微生物降解苯胺的特性及其降解代谢途径.应用于环境生物学报. 1995, 5(增刊):5~9
    55 Itoh, N. Naoki, M. and Toyoko, K. Oxidation of aniline to nitrobenzene by nonheme bromoperoxidase. Biochem. Mol. Biol.Intl. 1993, 29:785~791
    56陆昌淼,张忠祥等.污水综合排放标准详解.北京.中国标准出版社. 1991:127~128
    57于瑞莲,赵元慧,袁星.取代苯胺和苯酚类化合物对大型蚤的毒性及pH值对其毒性的影响.环境化学. 1998, 17(5):451~455
    58吴文新.苯胺.辽宁化工. 1990, (6):55~56
    59梁城.苯胺发展中应关注的不利因素.中国石油和化工. 2001, (5):54~55
    60王跃志.苯胺生产消费及市场需求预测.中国石油和化工. 2000, (7):54~55
    61吕永梅.我国苯胺生产现状与市场分析.中国石油和化工经济分析. 2006, (10):26~30
    62崔小明.我国苯胺生产消费现状及发展建议.中国石油和化工. 2002, (9):55~57
    63吕永梅.国内外苯胺的供需市场分析.石油化工技术经济. 2005,(2):39~43
    64伍桂松.我国苯胺行业发展态势.化工技术经济. 2005, 23(10):7~11
    65丁惠平.微生物法处理苯胺工业废水.广东化工. 2005, (12):20~22
    66 F. J. Oneill, K. C. A. Bromley-Challenor, J. S. Knapp, et al. Bacterial Growth on Aniline: Implications for the Biotreatment of Industrial Wastewater. Wat.Sci. 2000, 34:4397~4409
    67 Gheewaha, S. H. and A. P. Annachhatre. Biodegradation of Aniline. War.Sci.Tech. 1997, 36:53~63
    68章健,刘庆都.苯胺的微生物降解.安徽农业大学学报, 1997, 24(3):283~286
    69曾国驱,任随周,许玫英等.微生物降解苯胺的研究现状.中国医学生物技术应用杂志. 2003, 4:74~77
    70冯旭东,戴猷元.取代苯胺的生物降解性研究.水处理技术.2002, 28(5):266~268
    71甘平,朱婷婷,樊耀波等.氯苯类化合物的生物降解.环境污染治理技术与设备. 2000, 1(4):1~12
    72王思菊,赵丽辉,匡欣等.某些芳香化合物生物降解性研究.环境科学学报, 1995,15(4):407~415
    73马放,任南琪,杨基先.污染控制微生物学实验.哈尔滨.哈尔滨工业大学出版社. 2002:53~57, 67~84, 105
    74刘桂萍,陈晓霞,刘长风等.霉菌TM-3的成球条件及其对染料的吸附脱色研究.环境保护科学. 2008, 2(34):28~31
    75谢天卉.自凝集产氢细菌代谢特性及扩大培养研究.哈尔滨工业大学硕士学位论文. 2006, 7
    76国家环保局水和废水检测分析方法编委会.水和废水检测分析方法(第三版).北京.中国环境科学出版社. 1989
    77杨胜武,顾军农,张春雷.生物陶粒—硅藻土联合工艺脱氮除磷.环境科学导刊. 2008, 27(1):62~64
    78李芳芳.电气石的性质及应用展望.矿业快报. 2007, 455:10~13
    79冀志江,金宗哲,梁金生等.电气石对水体pH值得影响.中国环境科学. 2002, 22(6):515~519
    80张立永,贾树妍,肖光辉等.应用Zeta电位研究液态奶的稳定机制.中国乳品工业. 2007, 35(12):38~41
    81赵晓伟,何瑾馨.应用Zeta电位分析荧光增白剂分散体系的稳定性.纺织学报. 2007, 28(12):69~72
    82刘静,王君,白新宇等.一株高温产粘菌株的筛选及其产胞外聚合物分析.微生物学报. 2008, 48(2):152~156
    83傅金祥,由昆,朱志锋等.磁力搅拌/阳离子交换树脂法提取胞外聚合物的试验研究.沈阳建筑大学学报(自然科学版). 2007, 23(1):101~104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700