时序水色遥感图像融合与赤潮信息提取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水色遥感数据凭借较高的光谱分辨率和时间分辨率,以及覆盖范围广等优势,在海洋生产力评估、海洋污染监测等领域中都得到了广泛应用。在多云多雨地区,水色遥感数据应用的一个最大的限制就是数据覆盖问题,而在信息提取方面,数据的时间动态信息尚未充分应用。论文面向赤潮信息提取的应用,通过研究时间序列水色遥感图像的融合方法,进行赤潮信息的提取与预测研究。主要研究内容和结论如下:
     (1)多传感器水色遥感图像处理与光谱分析。对多平台水色遥感图像进行预处理,包括地理校正、大气校正、参数反演、镶嵌等过程,建立了服务于时序水色遥感图像融合和赤潮信息提取的数据集。
     (2)水色遥感图像融合。对叶绿素浓度、叶绿素荧光高度、443nm和667nm波段遥感反射率的数据进行比较,结果表明同一天不同传感器数据一致性良好,在空间覆盖上形成互补。提出了自适应加权平均融合算法,并把其应用于叶绿素浓度和叶绿素荧光高度融合,该融合方法能减小融合像元与邻近像元的差异,提高图像的空间覆盖率和数据采样频率,并降低图像噪声。开展GSM01模型在遥感反射率图像融合中的应用研究,该模型能充分利用光谱的冗余信息,提高融合数据的置信度,但对图像噪声敏感。
     (3)基于时序水色遥感图像的赤潮信息提取研究。在分析赤潮光谱特征的基础上,利用统计分析和可视化分析方法,对赤潮典型案例进行分析。发展了综合应用叶绿素浓度及差值、叶绿素荧光高度、MRI、离水反射率以及海表温度等综合特征进行赤潮信息的提取方法,并提出了简单可行的阈值确定方案。通过可视化分析方法,迅速获取参数信息在时间和空间上的变化拐点,提高赤潮监测的精度和效率。
     (4)赤潮信息提取技术在赤潮预报中的应用。利用融合的时序水色遥感图像和赤潮信息提取技术,以2010年福建省沿海数据为例,提取赤潮发生前期的水色异常信息,开展其在赤潮预报中的应用研究。结果表明赤潮发生前期的水色异常信息特别是叶绿素浓度和荧光高度的时空异常可作为赤潮预报的重要依据。
     (5)赤潮信息处理原型系统开发。基于赤潮信息提取的关键技术,构建赤潮信息处理系统,包括图像融合、赤潮光谱信息增强和时间序列数据分析等主要模块,为利用多源时序水色遥感数据进行赤潮预报提供了一个良好的平台。
With high temporal and spatial resolution, wider coverage and other advantages, oceancolor data have been widely used in ocean productivity evaluation, ocean pollution, andrelated areas. But in cloud-prone and rainy area,the biggest application limitation of oceancolor remote sensing is data coverage, and the dynamic temporal information has not beenfully exploited yet. Aiming at the red tide detection, techniques of time-series ocean colordata merging were studied, as well methods for red tide extraction and change forecast wereinvestigated. The main contents are listed as following:
     (1) Processing and spectral analysis for multi-sensor ocean color images: multipleremote sensing images were preprocessed by geocorrecion, atmospheric correction,parameter inversion and mosaicking, then dataset for time-series ocean color datamerging and red tide extraction was established.
     (2) Merging of ocean color remote sensing images: comparisons among different chlaconcentration images, fluorescence line height images, remote sensing reflectance at443nm and667nm were analyzed, which demonstrate that different source data onthe same day were comparable and consistent, and can complement each other inspatial coverage. The adaptive weighted averaging method was applied on the chlaconcentration images, fluorescence line height images, which can reduce the noiseand the difference between merged and neighborhood pixels, and also can improvespatial coverage and sampling frequency. The bio-optical model of GSM01wasemployed to merge the remote sensing reflectance images and its capacity wasproved in expoiting the redundancy of spectral information and improving productconfidence,but it is sensitive to the noise.
     (3) Red tide information extraction based on time series ocean color images: accordingto the spectral analysis of red tide, typical red tide cases were analyzed by statisticaland visual analysis methods. Method of integrating chla concentration anddifference, fluorescence line height, modified red tide index, remote sensingreflectance and sea surface temperature was developed to extract the comprehensivered tide information, then simple and feasible threshold method was suggested.Spatial and temporal changes of red tide parameters can be achieved rapidly throughthe visual analysis method, which can highly enhance the detection accuracy andefficiency.
     (4) Applicaton of relevant technology in red tide forecast: using merged time series of ocean color images in Fujian coastal areas and red tide information extractiontechnology, the ocean color information especially the abnormal chla concentrationand fluorescence line height before the red tide incidents can be used as thescientific basis for prediction.
     (5) Development of prototype system: based on the key techniques of red tide extraction,information processing system for red tide was constructed, including imagemerging, spectral analysis, time-series data analysis and other modules, whichprovide a great platform for red tide information extraction by using time-series andmulti-sensor ocean color data.
引文
[1] Maritorena S, d'Andon OHF, Mangin A, et al. Merged satellite ocean color data products using abio-optical model: Characteristics, benefits and issues. Remote Sensing of Environment,2010,114(8):1791-1804.
    [2] Gregg WW, Woodward, R.H,. Improvements in coverage frequency of ocean color: combining datafrom SeaWiFS and MODIS,1998,36(4):1350-1353.
    [3] Melin F, Zibordi G, Djavidnia S. Merged series of normalized water leaving radiances obtained frommultiple satellite missions for the Mediterranean Sea. Advances in Space Research,2009,43(3):423-437.
    [4] Bertrand S, Gohin F, Garello R. Regional objective analysis for merging MERIS, MODIS/Aqua andSeaWiFS Chlorophyll-a data from1998to2008on the European Atlantic Shelf at a resolution of1.1Km.OCEANS '09IEEE Bremen: Balancing Technology with Future Needs, May11,2009-May14,2009;Bremen, Germany: IEEE Computer Society,2009.
    [5] Melin F, Zibordi G. Optically based technique for producing merged spectra of water-leavingradiances from ocean color remote sensing. Applied Optics,2007,46(18):3856-3869.
    [6] IOCCG. Ocean-Colour Data Merging. Dartmouth,Canada: IOCCG;2007. Report No.:6.
    [7] Morel A, Huot Y, Gentili B, et al. Examining the consistency of products derived from various oceancolor sensors in open ocean (Case1) waters in the perspective of a multi-sensor approach. Remote Sensingof Environment,2007,111(1):69-88.
    [8] Gregg WW, Casey NW. Sampling biases in MODIS and SeaWiFS ocean chlorophyll data. RemoteSensing of Environment,2007,111(1):25-35.
    [9] Gregg WW. Assimilation of SeaWiFS ocean chlorophyll data into a three-dimensional global oceanmodel. Journal of Marine Systems,2008,69(3-4):205-225.
    [10] Pottier C, Garcon V, Larnicol G, et al. Merging SeaWiFS and MODIS/aqua ocean color data in Northand Equatorial Atlantic using weighted averaging and objective analysis. IEEE Transactions on Geoscienceand Remote Sensing,2006,44(11):3436-3450.
    [11] Conkright ME, Gregg WW. Comparison of global chlorophyll climatologies: In situ, CZCS, Blendedin situ-CZCS and SeaWiFS. International Journal of Remote Sensing,2003,24(5):969.
    [12] Reynolds RW, Smith TM. Improved Global Sea Surface Temperature Analyses Using OptimumInterpolation. Journal of Climate,1994,7(6):929-948.
    [13] Maritorena S, Siegel DA. Consistent merging of satellite ocean color data sets using a bio-opticalmodel. Remote Sensing of Environment,2005,94(4):429-440.
    [14] Kwiatkowska EJ, Fargion GS. Merger of ocean color data from multiple satellite missions within theSIMBIOS project. Ocean Remote Sensing and Applications, October24,2002-October26,2002;Hangzhou, China: SPIE,2003.168-182.
    [15] Kwiatkowska EJ, Fargion GS. Application of machine-learning techniques toward the creation of aconsistent and calibrated global chlorophyll concentration baseline dataset using remotely sensed oceancolor data. Geoscience and Remote Sensing, IEEE Transactions on,2003,41(12):2844-2860.
    [16] Gregg W. Ocean-Colour Data Merging. Dartmouth,Canada.: IOCCG;2007. Report No.
    [17] Zhang C, Hu C, Shang S, et al. Bridging between SeaWiFS and MODIS for continuity ofchlorophyll-a concentration assessments off Southeastern China. Remote Sensing of Environment,2006,102(3-4):250-263.
    [18]曲利芹,管磊,贺明霞. Sea WiFS和MODIS叶绿素浓度数据及其融合数据的全球可利用率.中国海洋大学学报(自然科学版),2006,36(2):321-326.
    [19] Mélin F, Vantrepotte V, Clerici M, et al. Multi-sensor satellite time series of optical properties andchlorophyll a concentration in the Adriatic Sea. Progress In Oceanography, In Press, Accepted Manuscript.
    [20]周名江,朱明远,张经.中国赤潮的发生趋势和研究进展.生命科学,2001,13(2):54-59.
    [21]苏纪兰.中国的赤潮研究.中国科学院院刊,2001,(5):339-342.
    [22] Tang D, Kawamura H, Oh IS, et al. Satellite evidence of harmful algal blooms and relatedoceanographic features in the Bohai Sea during autumn1998. Advances in Space Research,2006,37(4):681-689.
    [23] Steidinger KA. Historical perspective on Karenia brevis red tide research in the Gulf of Mexico.Harmful Algae,2009,8(4):549-561.
    [24] Carvalho GA, Minnett PJ, Banzon VF, et al. Long-term evaluation of three satellite ocean coloralgorithms for identifying harmful algal blooms (Karenia brevis) along the west coast of Florida: Amatchup assessment. Remote Sensing of Environment,2011,115(1):1-18.
    [25]周良明,刘玉光,郭佩芳.关于赤潮水色研究的探讨.海洋湖沼通报,2004,(4):61-67.
    [26] Groom SB, Holligan PM. Remote sensing of coccolithophore blooms. Advances in Space Research,1987,7(2):73-78.
    [27]孙强,杨燕明,顾德宇, et al. Sea WiFS探测1997年闽南赤潮模型研究.台湾海峡,2000,19(1):70-73.
    [28]王其茂,马超飞,唐军武, et al. Eos/Modis遥感资料探测海洋赤潮信息方法.遥感技术与应用,2006,21(1):6-10.
    [29]黄韦艮,毛显谋,张鸿翔, et al.赤潮卫星遥感监测与实时预报.海洋预报,1998,15(3):110-115.
    [30]毛显谋,黄韦艮.多波段卫星遥感海洋赤潮水华的方法研究.应用生态学报,2003,14(7):1200-1202.
    [31]丘仲锋.东海赤潮高发区水色遥感算法及赤潮遥感监测研究:[博士学位论文].青岛:中科院海洋研究所,2006.
    [32]赵冬至. Avhrr遥感数据在海表赤潮细胞数探测中的应用.海洋环境科学,2003,22(1):10-14.
    [33]唐军武,丁静,王其茂, et al.大气散射对采用归一化植被指数进行赤潮遥感监测的影响研究.海洋学报(中文版),2004,(03):136-142.
    [34] Qiu Z, Xi H, He Y. Red tide detection in the East China Seas based on AVHRR and MODIS data.2006IEEE International Geoscience and Remote Sensing Symposium, IGARSS, July31,2006-August4,2006; Denver, CO, United states: Institute of Electrical and Electronics Engineers Inc.,2006.3390-3393.
    [35] Zhao J, Cao W, Yang Y, et al. Measuring natural phytoplankton fluorescence and biomass: A casestudy of algal bloom in the Pearl River estuary. Marine Pollution Bulletin,2008,56(10):1795-1801.
    [36] Hu C. A novel ocean color index to detect floating algae in the global oceans. Remote Sensing ofEnvironment,2009,113(10):2118-2129.
    [37] Hu C, Muller-Karger FE, Taylor C, et al. Red tide detection and tracing using MODIS fluorescencedata: A regional example in SW Florida coastal waters. Remote Sensing of Environment,2005,97(3):311-321.
    [38] Hu C, Cannizzaro J, Carder KL, et al. Remote detection of Trichodesmium blooms in opticallycomplex coastal waters: Examples with MODIS full-spectral data. Remote Sensing of Environment,2010,114(9):2048-2058.
    [39] Kim Y, Byun Y, Kim Y, et al. Detection of Cochlodinium polykrikoides red tide based on two-stagefiltering using MODIS data. Desalination,2009,249(3):1171-1179.
    [40] Davidson K, Miller P, Wilding TA, et al. A large and prolonged bloom of Karenia mikimotoi inScottish waters in2006. Harmful Algae,2009,8(2):349-361.
    [41] Cannizzaro JP, Hu C, English DC, et al. Detection of Karenia brevis blooms on the west Florida shelfusing in situ backscattering and fluorescence data. Harmful Algae,2009,8(6):898-909.
    [42] Wynne TT, Stumpf RP, Tomlinson MC, et al. Detecting Karenia brevis blooms and algal resuspensionin the western Gulf of Mexico with satellite ocean color imagery. Harmful Algae,2005,4(6):992-1003.
    [43] Tomlinson MC, Stumpf RP, Ransibrahmanakul V, et al. Evaluation of the use of SeaWiFS imagery fordetecting Karenia brevis harmful algal blooms in the eastern Gulf of Mexico. Remote Sensing ofEnvironment,2004,91(3-4):293-303.
    [44] Stumpf RP, Litaker RW, Lanerolle L, et al. Hydrodynamic accumulation of Karenia off the west coastof Florida. Continental Shelf Research,2008,28(1):189-213.
    [45] Cannizzaro JP, Carder KL, Chen FR, et al. A novel technique for detection of the toxic dinoflagellate,Karenia brevis, in the Gulf of Mexico from remotely sensed ocean color data. Continental Shelf Research,2008,28(1):137-158.
    [46] Stumpf RP, Culver ME, Tester PA, et al. Monitoring Karenia brevis blooms in the Gulf of Mexicousing satellite ocean color imagery and other data. Harmful Algae,2003,2(2):147-160.
    [47] Hu C, Luerssen R, Muller-Karger FE, et al. On the remote monitoring of Karenia brevis blooms of thewest Florida shelf. Continental Shelf Research,2008,28(1):159-176.
    [48] Azanza RV, David LT, Borja RT, et al. An extensive Cochlodinium bloom along the western coast ofPalawan, Philippines. Harmful Algae,2008,7(3):324-330.
    [49] Ahn Y-H, Shanmugam P, Ryu J-H, et al. Satellite detection of harmful algal bloom occurrences inKorean waters. Harmful Algae,2006,5(2):213-231.
    [50] Shutler JD, Grant MG, Miller PI, et al. Coccolithophore bloom detection in the north east Atlanticusing SeaWiFS: Algorithm description, application and sensitivity analysis. Remote Sensing ofEnvironment,2010,114(5):1008-1016.
    [51] Siegel H, Ohde T, Gerth M, et al. Identification of coccolithophore blooms in the SE Atlantic Oceanoff Namibia by satellites and in-situ methods. Continental Shelf Research,2007,27(2):258-274.
    [52] Reinart A, Kutser T. Comparison of different satellite sensors in detecting cyanobacterial bloomevents in the Baltic Sea. Remote Sensing of Environment,2006,102(1-2):74-85.
    [53] Mao Z, Stuart V, Pan D, et al. Effects of phytoplankton species composition on absorption spectra andmodeled hyperspectral reflectance. Ecological Informatics,2010,5(5):359-366.
    [54] Wei G, Tang D, Wang S. Distribution of chlorophyll and harmful algal blooms (HABs): A review onspace based studies in the coastal environments of Chinese marginal seas. Advances in Space Research,2008,41(1):12-19.
    [55] Son S, Wang M, Shon J-K. Satellite observations of optical and biological properties in the Koreandump site of the Yellow Sea. Remote Sensing of Environment,2011,115(2):562-572.
    [56] Shanmugam P, Ahn Y-H, Ram PS. SeaWiFS sensing of hazardous algal blooms and their underlyingmechanisms in shelf-slope waters of the Northwest Pacific during summer. Remote Sensing ofEnvironment,2008,112(7):3248-3270.
    [57] Werdell PJ, Bailey SW, Franz BA, et al. Regional and seasonal variability of chlorophyll-a inChesapeake Bay as observed by SeaWiFS and MODIS-Aqua. Remote Sensing of Environment,2009,113(6):1319-1330.
    [58]矫晓阳.叶绿素α预报赤潮原理探索.海洋预报,2004,21(2):56-63.
    [59] Martin JL, Hanke AR, LeGresley MM. Long term phytoplankton monitoring, including harmful algalblooms, in the Bay of Fundy, eastern Canada. Journal of Sea Research,2009,61(1-2):76-83.
    [60] Heil CA, Steidinger KA. Monitoring, management, and mitigation of Karenia blooms in the easternGulf of Mexico. Harmful Algae,2009,8(4):611-617.
    [61] Stumpf RP, Tomlinson MC, Calkins JA, et al. Skill assessment for an operational algal bloom forecastsystem. Journal of Marine Systems,2009,76(1-2):151-161.
    [62] Barale V, Jaquet J-M, Ndiaye M. Algal blooming patterns and anomalies in the Mediterranean Sea asderived from the SeaWiFS data set (1998-2003). Remote Sensing of Environment,2008,112(8):3300-3313.
    [63] Cai Y, Chung SH, Stumpf R, et al. Spatial Interaction Filters for Monitoring Harmful Algae Blooms.In: Earth Sun System Technology Conference. ed.;2005.
    [64]翟亮,李霖,姜文亮, et al.基于生态事件序列的时态关联规则挖掘.测绘科学,2006,31(3):41-44.
    [65] Cervone G, Kafatos M, Napoletani D, et al. An early warning system for coastal earthquakes.Advances in Space Research,2006,37(4):636-642.
    [66] Acker J, Leptoukh G, Shen S, et al. Remotely-sensed chlorophyll a observations of the northern RedSea indicate seasonal variability and influence of coastal reefs. Journal of Marine Systems,2008,69(3-4):191-204.
    [67]沈菲王冯孙.知识发现在赤潮预测预警系统研究中的应用.海洋技术,2003,22(2):19-22.
    [68] Daschiel H, Datcu M. Information mining in remote sensing image archives: system evaluation.Geoscience and Remote Sensing, IEEE Transactions on,2005,43(1):188-199.
    [69] Turdukulov UD, Kraak M-J, Blok CA. Designing a visual environment for exploration of time seriesof remote sensing data: In search for convective clouds. Computers&Graphics,2007,31(3):370-379.
    [70] Barnes CF, Fritz H, Jeseon Y. Hurricane Disaster Assessments With Image-Driven Data Mining inHigh-Resolution Satellite Imagery. Geoscience and Remote Sensing, IEEE Transactions on,2007,45(6):1631-1640.
    [71] Gordon HR, Wang M. Retrieval of water-leaving radiance and aerosol optical thickness over theoceans with SeaWiFS: a preliminary algorithm. Applied Optics,1994,33(Compendex):443-452.
    [72] Zhang M, Tang J, Dong Q, et al. Retrieval of total suspended matter concentration in the Yellow andEast China Seas from MODIS imagery. Remote Sensing of Environment,2010,114(2):392-403.
    [73] Hu C, Wang Y, Yang Q, et al. Comparison of ocean color data products from meris, modis, andseawifs: Preliminary results for the East China seas. Envisat Symposium2007, April23,2007-April27,2007; Montreux, Switzerland: European Space Agency,2007.
    [74] Gregg WW, Esaias WE, Feldman GC, et al. Coverage opportunities for global ocean color in amultimission era. Geoscience and Remote Sensing, IEEE Transactions on,1998,36(5):1620-1627.
    [75] Zubko V, Leptoukh GG, Gopalan A. Study of Data-Merging and Interpolation Methods for Use in anInteractive Online Analysis System: MODIS Terra and Aqua Daily Aerosol Case. Geoscience and RemoteSensing, IEEE Transactions on,2010,48(12):4219-4235.
    [76] Werdell PJ, Bailey SW. An improved in-situ bio-optical data set for ocean color algorithmdevelopment and satellite data product validation. Remote Sensing of Environment,2005,98(1):122-140.
    [77] Franz BA, J.Kwiatkowska E, Meister G, et al. Moderate Resolution Imaging Spectroradiometer onTerra: limitations for ocean color applications. Journal of Applied Remote Sensing,2008,2(023525):1-17.
    [78] Maritorena S, Siegel DA, Peterson AR. Optimization of a semianalytical ocean color model forglobal-scale applications. Applied Optics,2002,41(15):2705-2714.
    [79] Smith RC, Baker KS. OPTICAL PROPERTIES OF THE CLEAREST NATURAL WATERS(200-800nm). Applied Optics,1981,20(Compendex):177-184.
    [80] Pope RM, Fry ES. Absorption spectrum (380-700nm) of pure water. II. Integrating cavitymeasurements. Applied Optics,1997,36(Compendex):8710-8710.
    [81] Kou L, Labrie D, Chylek P. Refractive indices of water and ice in the0.65-to2.5micrometer spectralrange. Applied Optics,1993,32(Compendex):3531-3540.
    [82]周名江,于仁成.有害赤潮的形成机制、危害效应与防治对策.自然杂志,2007,29(02):72-77.
    [83]申力,许惠平,吴萍.长江口及东海赤潮海洋环境特征综合探讨.海洋环境科学,2010,29(05):631-635.
    [84]许翠娅,黄美珍,杜琦.福建沿岸海域主要赤潮生物的生态学特征.台湾海峡,2010,(03).
    [85] Tang D, Di B, Wei G, et al. Spatial, seasonal and species variations of harmful algal blooms in theSouth Yellow Sea and East China Sea. Hydrobiologia,2006,568(1):245-253.
    [86]刘亚林,刘洁生,俞志明, et al.陆源输入营养盐对赤潮形成的影响.海洋科学,2006,30(6):66-72.
    [87]孙霞,王保栋,王修林, et al.东海赤潮高发区营养盐时空分布特征及其控制要素.海洋科学,2004,28(8):28-32.
    [88]王素芬,唐丹玲.南海赤潮的时空分布特征及其与南海环境关系的综合分析.海洋通报,2010,29(05):577-583.
    [89]王爱军,王修林,王江涛, et al.光照对东海赤潮高发区春季硅藻生长的影响.中国海洋大学学报(自然科学版),2006,36(S1):173-178.
    [90]张春桂,任汉龙,吴幸毓, et al.福建沿海赤潮灾害气象预报.气象科技,2010,38(2):253-258.
    [91] Ahn Y-H, Shanmugam P. Detecting the red tide algal blooms from satellite ocean color observationsin optically complex Northeast-Asia Coastal waters. Remote Sensing of Environment,2006,103(4):419-437.
    [92]曾银东. SeaWiFS遥感数据应用于福建近海赤潮监测的适用性初步评估.福建水产,2006,(3):12-16.
    [93]张春桂,曾银东,张星, et al.海洋叶绿素a浓度反演及其在赤潮监测中的应用.应用气象学报,2007,18(6):821-831.
    [94]顾德宇,许德伟,陈海颖.赤潮遥感进展与算法研究.遥感技术与应用,2003,18(6):434-440.
    [95] Koeller P, Fuentes-Yaco C, Platt T, et al. Basin-Scale Coherence in Phenology of Shrimps andPhytoplankton in the North Atlantic Ocean. Science,2009,324(5928):791-793.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700