面向静止卫星红外云图“晴空区”导风的亮温度敏感性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前的“卫星导风”技术主要是以卫星云图上“云”和水汽图上的水汽作为示踪物追踪得到云区和水汽区的大气风场信息(称为“云导风”、“水汽导风”),进行导风的主要原理是在连续时间间隔三十分钟或一小时的二或三幅卫星红外图像或水汽图像上,通过模块相关性计算,搜索匹配的示踪模块,计算示踪模块的移动速度的大小以及方向,并以此代表相应高度上的大气风矢运动。然而,在卫星红外云图中存在的不能被识别为“云”的区域(本研究称其为“晴空区”),则不进行“云”目标的追踪匹配计算,因此,传统的“云导风”技术无法获得“晴空区”风矢信息。
     为进一步为气象应用提供数量更多、连续性更好的风向、风速资料,本文围绕利用静止卫星红外图像计算卫星云图“晴空区”大气风矢的目标开展研究,主要研究工作和结果如下:
     1、根据大气对辐射的选择性吸收特征,分析了在大气红外“窗区”谱段内的大气主要吸收气体对辐射的衰减特征和几种不同类型气溶胶粒子在大气红外“窗区”谱段内的折射指数差异特征,指出大气水汽以及气溶胶粒子在长波红外两“分裂窗”谱段内对辐射衰减的差异性,为从卫星观测得到的辐射量中提取“晴空导风”示踪信号提供了可能。
     2、结合FY-2E星载辐射计红外“分裂窗”通道的光谱响应函数特征,利用MODTRAN4大气辐射传输模式分别模拟计算了中纬度夏、冬季晴空大气条件下,卫星观测亮温度对大气水汽以及气溶胶光学厚度的敏感性;同时计算了满足星载辐射计红外观测通道0.2~0.5K不同温度灵敏度条件下进行“晴空导风”的示踪物应满足的条件。
     3、根据模拟计算获得的敏感性结果,分别利用FY-2E晴空大气可降水量产品和Terra MODIS MOD04L2大气气溶胶产品数据,分析了在实际大气中晴空区示踪模块内示踪物含量变化满足相应特征条件的可能性。(1)利用2010年FY-2E晴空大气可降水量产品分析了(15°N-50°N,70°E-140°E)区域范围内晴空大气水汽分布特征;(2)利用2009年03-04时(UTC)时间段内的Terra MODIS MOD04_L2产品数据分析了晴空大气溶胶分布特征,计算了所研究的空间或时间范围内的“有效示踪模块”占晴空模块总数的百分比月平均值。实例分析和统计计算的结果揭示了利用静止气象卫星红外云图计算大气晴空区风矢所需要的示踪模块条件能够被满足的概率估计值。
     4、利用“分裂窗”差值法进行了云图“晴空区”导风的实例分析,计算结果所获得的红外云图“晴空区”大气风矢与相应的NCEP850hPa高度的大气风场具有较好的一致性。
The current techniques for atmospheric motion vector derivation from satellite images are mainly concentrated on cloud motion which uses cloud in IR imagery as tracer and water vapor motion which uses water vapor in water vapor imagery as tracer. The main theory is to search the matching tracer module from two or three continuous satellite images with half or one hour time interval and calculate the displacement of module to represent the atmospheric wind vector on corresponding altitude. If a region can not be identified as cloud-covered, the cloud-tracing technique would fail to obtain atmospheric motion vectors in this "clear" region with IR imagery.
     This paper is focused on retrieving atmospheric motion information in "clear regions" from geostationary satellite IR images to provide more wind materials with better spatial continuity for meteorological application. This work mainly includes the following four aspects:
     1、We analysis the attenuation characteristics of radiation and the refractive index difference characteristics of some different kind of aerosol particles in IR window spectrum region on the basis of atmosphere's selective absorption characteristics of radiation. On this basis, we point out the atmosphere's attenuation characteristics of radiation provide possibility for derive atmospheric motion vectors in clear region with IR imageries.
     2、On the basis of radiation transfer theory in IR window, we apply MODTRAN radiation transfer model to make sensitivity analysis on brightness temperature in thermal IR window channels with respect to water vapor and aerosol contents in the observation pixel, which might be used as tracers for deriving atmospheric motion wind vectors in clear atmosphere regions under middle latitude summer and winter atmosphere condition, by combination of atmospheric parameters and satellite-borne radiometer sensitivity performance. Additionly, we calculate the threshold value of tracer content change which could cause the difference of satellite-borne IR radiometer observation brightness temperature be greater than the different sensitivity of temperature (0.2-0.5K) in FY-2E borne radiometer IR channels.
     3、We also carry out the feasibility analysis to ensure the existence of the tracer signals under certain conditions in real atmosphere by combination of the sensitivity results and data that includes FY-2E Atmospheric Total Precipitation Water products and Terra MODIS MOD04_L2Atmospheric Aerosol products. In addition, we calculate the monthly average percent of effective modules in total clear modules with FY-2E Atmospheric Total Precipitation Water products data in the region of (15°N~50°N,70°E~140°E) of2010and with Terra MODIS MOD04_L2Atmospheric Aerosol products data during the day time of03:00~04:00(UTC) of2009. The cases study and statistical analysis results reveal the estimated value to meet the required conditions for deriving atmospheric motion vectors in clear regions from IR imageries.
     4、We take a case analysis on retrieving atmospheric motion information in "clear" regions from satellite IR images with "split window" difference method and the calculate result shows a good consistency with the NCEP atmospheric wind on850hPa height.
引文
[1]葛润生,朱晓燕,姜海燕.提高多普勒雷达晴空探测能力的一种方法[J].应用气象学报,2000,11(3):257-263.
    [2]梁海河,张沛源,葛润生.多普勒天气雷达风场退模糊方法的研究[J].应用气象学报,2002,13(5):591-599.
    [3]胡明宝,肖文建.风廓线雷达中风切变分析方法的初步研究[J].气象科学,2010,30(4):510-515.
    [4]周小林,孙东松,钟志庆,等.多普勒测风激光雷达研究进展[J].大气与环境光学学报.2007,2(3):161-168.
    [5]王改利,刘黎平,邱崇践等.多普勒激光雷达风场反演方法研究[J].大气科学,2010,34(1):143-153.
    [6]王咏梅,付利平,杜述松等.中高层大气风场和温度场星载探测技术研究进展[J].空间科学学报,2009,29(1):1-5.
    [7]Tod R Stewant, Christopher M. Hayden, William L. Smith. A Note on Water-Vapor Wind Tracking Using VAS Data on McIDAs [J]. Amer. Meteor. Soc., 1985,66(9):1111-1115.
    [8]JOHANNES SCHMETZ, KENNETH HOLMLUND. Operational Cloud-Mtion Winds from Meteosat Infrared Images [J]. J. Appl. Meteor.,1993,32:1206-1225.
    [9]Christopher S. Velden, Christopher M. Hayden, et al. Upper-Tropospheric Winds Derived from Geostationary Satellite Water Vapor Observations [J]. Amer. Meteor. Soc.,1997,78(2):173-194.
    [10]Kallberg, R, Uppala, S., Gustafsen, N., Palleaux, J., The Impact of Cloud Drift Wind Data on Global Analysis and Medium Range Forecasts [R]. ECMWFTechnical Note,1982.
    [11]Kelly, G., Numerical Experiments Using Cloud Motion Winds at ECMWE [J]. Second International Wind Workshop, Tokyo, Japan,13-15 December, 1993:227-224.
    [12]J. Le Marshall. Cloud and Water Vapour Motion Vectors in Tropical Cyclone Track Forecasting- A Review [J]. Meteorol. Atmos. Phys.,1998,65:141-151.
    [13]Izawa. T and T. Fujita. Relationship between winds and cloud velocities determined from pictures obtained by the ESSA 3, ESSA 5 and AST-I satellites, Space Research IX, Amsterdam, North-Holland Publ. Co.,1969:571-579.
    [14]Nieman S J, Menzel W P, Hayden C M, et al. Fully automatic cloud -drift winds in NESDIS operations [J]. Bull Amer. Meteor. Soc.1997,78 (6):1121-1133.
    [15]Leese J A, Novak C S, Clark B B, et al. An automated technique for obtaining cloud motion from geosynchronous satellite data using cross correlation [J]. J. Appl. Meteor.,1971,10(1):118-132.
    [16]R. M. Endlich, D. E. Wolf, et al. Use of a Pattern Recognition Technique for Determining Cloud Motions from Sequences of Satellite Photographs [J]. J. Appl. Meteor.,1971,10:105-117.
    [17]Xu, J., K. Holmlund, Q. Zhang, et al. Comparison of two schemes for derivation of atmospheric motion vectors [J]. J. Geophys. Res.2002,107(D14), ACL 4:1-15.
    [18]Xu Jianmin, Zhang Qisong, Fang Xiang, et al. Cloud Motion Winds from FY2 and GMS-5 Meteorological Satellites [C]. Proceedings of the 4th International Winds Workshop, Saanenmoser, Switzerland, October 1998, EUMETSAT Publication, EUM P24:41-48.
    [19]许健民,张其松,方翔.用红外和水汽两个通道的卫星测值指定卫星风的高度[J].气象学报,1997,55(4):408-417.
    [20]Schejwach G. Determination of semitransparent cirrus cloud temperature from infrared radiances:Application to Meteosat [J]. J. Appl. Meteor,1982,21(3): 84-393.
    [21]陈华,许健民,张其松,等.用高度调整法进行云迹风高度的质量控制[J].气象科学,1999,19(1):20-25.
    [22]白洁,王洪庆,陶祖珏.GMS卫星红外云图云迹风的反演[J].北京大学学报,1997,33(1):85-92.
    [23]王振会,曾维琳.卫星云迹风微机客观导出系统[J].南京气象学院学报,1996,19(1):69-75.
    [24]王振会,陈金娥,曾维琳.微机客观导出云迹风的效果评价[J].南京气象学院学报,1997,20(3):382-386.
    [25]Wang Z, K A Browning and G A Kelly. Verification of the tracking technique used in an experimental cloud motion wind inferring system [R]. Joint Centre for Mesoscale Meteorology, University of Reading, J. CMM. Report,1997, 78:1-24.
    [26]Purdom J F W. Detailed cloud motions from satellite imagery taken at thirty seconds, one and three minute intervals [C]. In:Proc. To the 3rd international wind workshop. Ascona, Switzerland,1996:137-146.
    [27]Wang Z. A preliminary study of Fourier series analysis for cloud tracking with GOES high temporal resolution images [R]. Joint Center for Mesoscale, University of Reading, J CMM Report,1997,79:1-21.
    [28]Wang Z, Zhou J. Application of Fourier Phase Analysis in cloud tracking with GOES 1-minute interval images [J]. Acta Meteorologica Sinica,2000, 14(1):82-94.
    [29]王振会,许建明.基于傅立叶相位分析的卫星云图导风技术[J].气象科学,2004,24(1):9-15.
    [30]许建明,王振会.傅立叶相位分析导风技术的适用范围和相位重叠分析[J].气象科学2004,24(3):309-313.
    [31]孙林,王振会,许建明.卫星导风的二维傅立叶相位分析技术初步研究[J].南京气象学院报,2004,27(2):210-217.
    [32]许健明,王振会,G. Kelly.傅立叶相位分析导风技术中的频谱分析[J].气象科学,2005,25(5):499-503.
    [33]张红,王振会,许建明.利用静止卫星云图进行二维傅里叶相位导风试验[J].高原气象,2006,25(1):105-109.
    [34]WANG Zhenhui(王振会), XU Jianming, HE Huiqing, et al. An experiment to derive cloud motion vectors from satellite images with 2-d fourier phase analysis technique [C]. Proceedings 8th International Winds Workshop, Beijing, China,24-28 April 2006, EUMETSAT:47.
    [35]朱平,王振会,许建明.TCFM导风技术介绍及其初步试验研究[J].遥感学报,2007,11(4):538-544.
    [36]Le Marshall, J. F., Pescod, N. R., et al. The real-time generation and application of cloud drift winds in the Australian region [J]. Aust. Meteor. Mag.,1993, 42(3):89-103.
    [37]John Le Marshall, Neil Pescod, Bob Seaman, et al. An operational system for generating cloud drift winds in the Australian region and their impact on numerical weather prediction [J]. Bull. Amer. Meteor. Soc.,1994,9:361-370.
    [38]Le Marshall, J. E, Leslie, L. M., Bennett, A. E. Tropical Cyclone Beti-an example of the benefits of assimilating hourly satellite wind data [J]. Aust. Meteor. Mag.,1996b:275-279.
    [39]Velden, C. S., Hayden, C. M., Menzel, et al. The impact of satelliate-derived winds on numerical hurricane track forecasting [J]. Weather and Forecasting, 1992,7(1):107-118.
    [40]Velden, C. S. Winds derived from geostationary satellite moisture channel observations:applications and impact on numerical weather prediction [J]. Meteorol. Atmos. Phys.,1996,60:37-46.
    [41]Nieman S J, Menzel W P, Hayden C M, et al. Fully automatic cloud-drift winds in NESDIS operations [J]. Bull. Amer. Meteor. Soc.,1997,78 (6):1121-1133.
    [42]Holmlund K. The utilization of statistical properties of satellite-derived atmospheric motion vectors to derive quality indicators [J]. Weather and Forecasting,1998,13:1093-1104.
    [43]Grijn G, Garcia-Mendez A. Monitoring of Atmospheric MotionVectors at ECMWF [C]. Proceedings of the 6th International Winds Workshop, Madison, U.S.A,7-10 May 2002, EUMETSAT Publication, EUM P35:81-86.
    [44]Forsythe M, Garcia Mendez A, Berger H, et al. Status and Development of Satellite Wind Monitoring by the NWP SAF [C]. Proceedings of the 6th International Winds Workshop, Madison, U.S.A,7-10 May 2002, EUMETSAT Publication, EUM P35:105-112.
    [45]周兵,徐海明,吴国雄,等.卫星风资料同化对暴雨预报影响的数值模拟[J].气象学报,2002,60(3):309-317.
    [46]侯青,许健民.卫星导风所揭示的对流层上部环流形势与我国夏季主要雨带之间的关系[J].应用气象学报,2006,17(2):138-144.
    [47]方翔,许健民,张其松.高密度卫星风资料所揭示的发展和不发展热带气旋的对流层上部环流特征[J].热带气象学报,2000,16(3):217-224.
    [48]张守峰,王诗文.在台风业务系统中使用卫星云导风资料的试验[J].气象,1999,25(8):22-25.
    [49]张守峰,王诗文.应用卫星云导风进行台风路径预报试验[J].热带气象报,1999,15(4):347-355.
    [49]刘正光,喻远飞,吴冰,等.利用云导风矢量的台风中心自动定位[J].气象学报.2003,61(5):636-640.
    [51]黄彦彬,雷恒池,郭学良,等.卫星导风资料对REM中尺度数值模拟的改进研究[J].高原气象,2003,22(6):574-582.
    [52]黄彦彬,雷恒池,王振会,等.卫星云迹风资料对中尺度数值模式初始风场改进试验[J].南京气象学院学报,2003,26(5):668-676.
    [53]曹文博,沈桐立.卫星云导风资料应用于伴随同化系统数值试验研究[J].南京气象学院学报,2007,30(4):495-501.
    [54]何斌,翟国庆,高坤,等.云迹风资料同化对东亚海域风场数值模拟的影响[J].海洋学报,2007,29(6):23-32.
    [55]王振会,杨艳蓉,肖稳安,等.基于TCFM技术的卫星导风数据在台风模拟研究中的应用初探[J].遥感学报,2009,13(3):515-521.
    [56]李峰,王振会,官莉,等.两种导风方法在台风路径分析中的应用比较研究[J].气象科学,2009,29(3):330-334.
    [57]河惠卿,王振会,金正润,等.三种云导风资料及其对台风数值预报影响试验的比较分析[J].热带气象学报,2009,25(1):82-88.
    [58]Allison L.J, J. Steranka, G.T. Cherrix and E. Hilsenrath. Meteorological application of the NIMBUS4 temperature humidity infrared radiometer, 6.7micro channel data [J]. Bull. Amer. Meteor. Soc.1972,53(6):526-535.
    [59]Steranka, Joseph. Allison, Lewis J. Salomonson, Vincent V. Application of Nimbus 4 THIR 6.7 μm observations to regional and global moisture and wind field analyses [J]. J. Appl. Meteor.,1973,12(2):386-395.
    [60]Kaestner, M., Fischer, H., Bolle, H-J. Wind determination from Nimbus 5 observations in the 6.3μm water vapour band [J]. J. Appl. Meteor.,1980, 19:409-418.
    [61]Eigen willing N and Fischer H. Determination of midtropospheric wind vectors by tracking pure water vapor structure in METEOSAT water vapor image sequences [J]. Bull. Amer. Meteor. Soc.1982,63:44-58.
    [62]Stewart T R, Hayden CM, Smith W L. A note on water vapor wind tracking using VAS data on McIDAS [J]. Bull. Amer. Meteor. Soc.1985,66(9):1111-1115.
    [63]Hayden C M and Stewart T R. An update on cloud and water vapor tracers for providing wind estimates Extended Abstracts, Sixth Symp. Meteorological Observation and Instrumentation, New Orleans, LA [J]. Amer. Meteor. Soc. 1987:70-75.
    [64]Laurent H. Wind extraction from Meteosat water vapor channel image data [J]. Appl. Meteor.1993,32(6):1124-1133.
    [65]杨文凯,白洁,刘健文等.静止气象卫星水汽风反演研究[J].遥感技术与应用,2007,22(1):31-34.
    [66]刘启汉,陈受钧.梅雨锋云带内a-中尺度对流系统周边水汽风的分析[J].气象学报,2004,62(2):237-241.
    [67]Xu Jianmin, Zhang Qisong. Calculation of cloud motion wind with GMS-5 images in China [C]. Proceedings of the Third International Winds Workshop, Ascona,10-12 June 1996, EUMETSAT Publication, EUM P18:45-52.
    [68]Xu Jianmin, Zhang Qisong, et al. Recent works aimed at operational FY2C AMVS [C], Proceedings of the 7th International Winds, Helsinki, Finland,14-17 June,2004.
    [69]Xu Jianmin, Zhang Qisong, Zhang Xiaohu, Wang Sujuan, Lu Feng. Status of operational AMVs from FY-2C [C]. Proceedings of the 8th International Winds Workshop, Beijing, China,24-28 April,2006.
    [70]Zhang Qisong, Xu Jianmin, Zhang Xiaohu et al. Status of operational amvs from FY-2 satellites [C].10th International Winds Workshop, Tokyo, Japan, 22-26 February,2010.
    [71]Zhang Xiaohu, Xu Jianmin. Two applications of improvements for AMVs of NSMC/CMA- renavigation based on full earth disk image & calibration of radiation transfer using NWP data [C]. Submitted to the 10th International Winds Workshop, Tokyo, Japan,22-26 Feb.,2010.
    [72]EUMETSAT [C]. Proceeding of 10th international winds workshop,22-26 February 2010, Tokyo, Japan.
    [73]Ryo OYAMA. Recent upgrades of and activities for atmospheric motion vectors at JMA/MSC [C]. Proc.10th International Winds Workshop, Tokyo, Japan,22-26 February,2010.
    [74]Oyama, R., R. Borde, J. Schmetz and T. Kurino. Development of height assignment directly linked to feature tracking at JMA [C]. Proceedings of 9th IWW,2008, Annapolis, U.S.A.
    [75]Borde, R. and R. Oyama. Direct link between feature tracking and height assignment of operational Atmospheric Motion Vectors [C]. Proceedings of 9th IWW,2008, Annapolis, U.S.A.
    [76]Sohn, E. and R. Borde. The impact of window size on AMV [C]. Proceedings of 9th IWW,2008, Annapolis, U.S.A..
    [77]Oyama, R. Upgrade of Atmospheric Motion Vector derivation algorithms at JMA/MSC [R]. MSC technical note,2010:54.
    [78]www.eumetsat.int.
    [79]Kenneth Holmlund, Leopold van de Berg et al. Current status of eumetsat operational winds [C]. Proceedings of 10th International Winds Workshop, Tokyo, Japan,22-26 February,2010.
    [80]Genkova I. Bormann and P. Bauer. Atmospheric Motion Vectors at ECMWF: operational status and research activities [C]. Proceedings of 10th International Winds Workshop, Tokyo, Japan,22-26 February,2010.
    [81]Dew G. and J. Ackermann,2010:AVHRR Polar Winds Derivation at EUMETSAT:Current Status and Future Developments [C]. Proceedings of 10th International Winds Workshop, Tokyo, Japan,22-26 February,2010.
    [82]Forsythe, M. and R. Saunders Third Analysis of the Data Displayed on the NWP SAF AMV Monitoring Website [R]. NWP SAF Technical Report 22,2008:1-50.
    [83]Jaime Daniels. Wayne Bresky. A new nested tracking approach for reducing the slow speed bias associated with Atmospheric Motion Vectors (AMVS) [C]. Proceedings of 10th International Winds Workshop, Tokyo, Japan,22-26 February,2010.
    [1]陈渭民.卫星气象学[M].气象出版社,北京:123-125.
    [2]Peixoto J P, Oort A H. Physics of Climate [M]. AIP New York,1992:520.
    [3]延昊,矫梅艳,王建林,等.热红外通道沙尘识别及敏感性分析[J].应用气象学报,2005,16(2):238-242.
    [4]Chesters D, Uccellini L W and Robinson W D. Low-level water vapor fields from the VISSR atmospheric sounder "split window" channels [J]. Journal of Climate and Applied Meteorology,1983,22(5):725-743.
    [5]Bhaskar J. Choudhury, Timothy J. Dorman and Ann Y. Hsu. Modeled and observed relations between the AVHRR split window temperature difference and atmospheric precipitable water over land surfaces [J]. Remote Sens. Environ, 1995,51(2):281-290.
    [6]章澄昌,周文贤.大气气溶胶教程[M].气象出版社,北京:1995:288-296.
    [7]Kaplan L D. Inference of atmospheric structure from remote radiation measurement [J]. Journal of the Optical Society of America,1959,49(10):1004-1012.
    [9]曾庆存.大气红外遥测原理[M].北京:科学出版社,1974.
    [9]DENNIS CHESTERS, LOUIS W.UCCELLINI. Low-level Water Vapor Fields form the VISSR Atmospheric Sounder "Split Window" Channels [J]. Journal of Climate and Applied Meteorology,1983:725-743.
    [10]Eck T F, Holben B N. AVHRR split window temperature dif ferences and total precipitable water over land surfaces [J]. International Jounal of Remote Sensing,1994,15(3):567-582.
    [11]Bhaskar J. Choudhury, Nicolo E. DiGirolamo. Quantifying the Effect of Emissivity on the Relations between AVHRR Split Window Temperature Difference and Atmospheric Precipitable Water over Land Surfaces [J]. Remote Sens. Environ,1995,54(3):313-323.
    [12]C. Ottle, S. Outalha, C. Francois and S. Le Maguer. Estimation of Total Atmospheric Water Vapor Content from Split Window Radiance Measurements [J]. Remote Sens. Environ,1997,61:410-418.
    [13]尹宏,宋礼庭.空间光辐射[M].中国科学技术出版社,北京:2000:406-453.
    [14]尹宏.大气辐射学基础.北京:气象出版社,1993.
    [15]延昊,矫梅艳,王建林,等.热红外通道沙尘识别及敏感性分析[J].应用气象学报,2005,16(2):238-242.
    [1]吴北婴,等.大气辐射传输实用算法[M].北京:气象出版社,1998:52-65.
    [2]董言治,周晓东.大气红外辐射模型与实用算法的研究进展[J].激光与红外,2003,33(6):412-416.
    [3]J. A. Sobrino, N. Raissouni, Zhao-Liang Li. A Comparative Study of Land Surface Emissivity Retrieval from NOAA Data [J]. Remote Sens. Environ.2001, 75(2):256-266.
    [4]Labed J, Stoll M P. Spatial variability of land surface emissivity in the thermal infrared band:spectral signature and effective surface temperature [J]. Remote Sens. Environ.1991,38:1-17.
    [5]Humes K S, Kustas W P, Moran M S, et al. Variability of emissivity and surface temperature over a sparsely vegetated surface [J]. Water Resources Res.1994, 30:1299-1310.
    [6]覃志豪,李文娟,徐斌等.陆地卫星TM6波段范围内地表比辐射率的估计[J].国土资源遥感.2004,3(61):28-41.
    [7]Rastello M L, Premoli A, Bonicatto G. IEEE Transactions on Instrumentation and Measurement [J].1996,45(1):22.
    [8]张勇,李元,戎志国.FY-2E与FY-2C红外分裂窗通道光谱响应差异的对比分析[J].光谱学与光谱分析.2010,30(6):1634-1637.
    [9]盛裴轩,毛节泰,李建国,等.大气物理学.北京大学出版社,北京:68-69.
    [10]Michael D. King, Yoram J. Kaufman, et al. Remote Sensing of Cloud, Aerosol, and Water Vapor Properties from the Moderate Resolution Imaging Spectrometer (MODIS) [J]. IEEE Trans On Geo And Remote Sensing.1992,30(1):2-27.
    [11]何立明,王华,阎广建等.气溶胶光学厚度与水平气象视距相互转换的经验公式及其应用[J].遥感学报.2003,7(5):372-378.
    [12]Zhang J H. Mao J T and Wang M H. Analysis of the aerosol extinction characteristics in different areas of China [J]. Advances in Atmospheric Sciences,2002,19(1):136-152.
    [13]李成才,毛节泰,刘汉启,等.利用MODIS研究中国东部地区气溶胶光学厚度的分布和季节变化特征[J].科学通报,2003,48(19):2094-2100.
    [14]宗雪梅,邱金桓,王晋才.近10年中国16个台站大气气溶胶光学厚度变化特征[J].气候与环境研究,2005,10(2):202-208.
    [15]陆渝蓉,高国栋.我国大气中平均水汽含量与水分平衡的特征[J].气象学报,1984,42(3):301-310.
    [16]陈添宇,李照荣,陈乾,等.用GMS5卫星反演水汽场分析中国西北地区大气水汽分布的气候特征[J].大气科学,2005,29(6):865-871.
    [1]许健民,张文建,杨军,等.风云二号卫星业务产品与卫星数据格式实用手册[M].北京:气象出版社,2008:1-10,67-71.
    [2]http://ladsweb.nascom.nasa.gov
    [3]Holben B N, Vermote E, Kaufman Y J, et al. Aerosols retrieval over land from AVHRR data application for atmospheric correction [J]. IEEE Trans. Geosci, Remote Sene,1992,30 (2):212-222.
    [4]Kaufman Y J, Wakl A, Remer L A, et al. The MODIS 2.1 μm channel correlation with visible reflectance for use in remote sensing of aerosol [J]. IEEE Trans. Geosci. Remote Sens,1997,35(1):1-13.
    [5]KaufmanY J, Sendra. Algorithm for automatic atmospheric correction to visibale and near IR satellite imagery [J]. Int. J. Remote sens,1988,9(6):1357-1381.
    [1]官莉.EOS/MODIS简介.气象教育与科技[J].2003,25(3):7-11.
    [2]刘玉洁,杨忠.MODIS遥感信息处理原理与算法[M].北京:科学出版社,2001.
    [3]MODIS/AIRS Data Application Training Couse [M].南京:南京信息工程大学中美合作遥感试验室,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700