低阶煤含氧官能团的赋存状态及其脱除研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高氧含量是低阶煤的结构特点,影响其吸水等性质。本论文采用化学分析与仪器分析相结合的方法对低阶煤中含氧官能团的赋存状态进行了系统的研究,考察了低温热解、溶剂萃取和溶胀热解三种方法脱除褐煤含氧官能团的效果。研究了含氧官能团的脱除对表面性质的影响,建立了吸水性与表面含氧官能团的数学关系,考察了含氧官能团分解过程中气体逸出规律。结果表明:低阶煤中含氧官能团主要存在形态是酸性含氧官能团,化学分析方法可以有效的定量出78%左右的含氧官能团,结合仪器分析方法对非活性醚键的测定,可以很好的解析褐煤中含氧官能团的赋存形态;褐煤的表面性质与含氧官能团之间关系紧密,最高内在水和含氧官能团以及非氧表面之间的关系符合多元一次线性方程:MHC=2.655[-COOH]+2.912[-OH]+0.209[-OCH_3]-3.321S_(non-O)+1.341;溶剂抽提过程主要是溶剂和含氧官能团之间形成氢键取代了含氧官能团之间的氢键,从而使得酚羟基有所减少;溶胀使得煤的大分子网状结构得到拉伸,在热解过程中容易脱除;动力学关系表明,羧基比羰基的活化能要低,羧基容易分解。
The high oxygen content and water content in low rank coals have importantinfluence on clean utilization process. This paper empolyed the back-titration andinstrument methods to analyse the distribution of O-containing functional groups inlignite. Using the low-temperature heat treatment, solvent extraction and swellingpyrolysis, the removal behaviour of O-containing functional groups were examinedunder these processes. And the gas evolution was examined in the low-temperatureheat treatment process. The results showed that the oxygen groups in low rank coal ismainly consists of the acidic O-containing functional groups, and the chemicalmethod can effectively quantify out around78%of the O-containing functionalgroups. Combined with the instrument method for the determination of inactive etherbond, the distribution of O-containing functional groups in low rank coal wasobtained with the combination of methods. The significant relation between thesurface properties of lignite and the content of O-containing functional groups wasfound, and the relation between the high moisture holding capacity and O-containingfunctional groups in accord with a multiple linear equation:MHC=2.655[-COOH]+2.912[-OH]+0.209[-OCH_3]-3.321S_(non-O)+1.341. Solvent extractionprocess mainly formed hydrogen bond between solvent and the O-containingfunctional groups which take the place of the hydrogen bonding between oxygencontaining functional groups, especially decline the content of phenolic hydroxylgroups. The O-containing functional groups can be easyly removed in the process ofswelling-pyrolysis as the result of swelling stretched the coal macromolecularnetwork. Dynamics show that activation energy of carboxyl group is lower thancarbonyl during de-oxygenation.
引文
[1]李恩利,高建国,崔红梅等.我国褐煤提质项目风险分析[J]煤炭经济研究2009,(12):25-26.
    [2]邱介山,郭树才褐煤及其干馏半焦的微孔结构分析[J]高校化学工程学报1990,4(02):173-180.
    [3]屈进州,陶秀祥,刘金艳等.褐煤提质技术研究进展[J]煤炭科学技术2011,39(11):121-125.
    [4]邵俊杰褐煤提质技术现状及我国褐煤提质技术发展趋势初探[J]神华科技2009,7(2):17-22.
    [5]夏浩,刘全润,马名杰褐煤提质技术现状[J]洁净煤技术2010,16(4):56-58.
    [6]徐晓光,赵毅褐煤提质技术的应用现状及前景[J]热力发电2012,41(5):1-3.
    [7]张殿奎,刘臻我国褐煤提质技术发展探讨[J]化学工业2013,31(2-3):1-6.
    [8] Murata S, Hosokawa M, Kidena K, et al. Analysis of oxygen-functional groups in brown coals[J] Fuel Processing Technology2000,67(3):231-243.
    [9] Li C-Z, Sathe C, Kershaw J R, et al. Fates and roles of alkali and alkaline earth metals duringthe pyrolysis of a Victorian brown coal [J] Fuel2000,79(3–4):427-438.
    [10] Li X, Hayashi J,Li C-Z Volatilisation and catalytic effects of alkali and alkaline earth metallicspecies during the pyrolysis and gasification of Victorian brown coal. Part VII. Ramanspectroscopic study on the changes in char structure during the catalytic gasification in air [J]Fuel2006,85(10-11):1509-1517.
    [11] Li X, Hayashi J-i,Li C-Z FT-Raman spectroscopic study of the evolution of char structureduring the pyrolysis of a Victorian brown coal [J] Fuel2006,85(12–13):1700-1707.
    [12] Li X, Wu H, Hayashi J-i, et al. Volatilisation and catalytic effects of alkali and alkaline earthmetallic species during the pyrolysis and gasification of Victorian brown coal. Part VI.Further investigation into the effects of volatile-char interactions [J] Fuel2004,83(10):1273-1279.
    [13] Liu Q, Hu H, Zhou Q, et al. Effect of inorganic matter on reactivity and kinetics of coalpyrolysis [J] Fuel2004,83(6):713-718.
    [14] Schafer H N S Determination of the total acidity of low-rank coals [J] Fuel1970,49(3):271-280.
    [15] Schafer H N S Determination of carboxyl groups in low-rank coals [J] Fuel1984,63(5):723-726.
    [16] Schafer H N S,Wornat M J Determination of carboxyl groups in Yallourn brown coal [J] Fuel1990,69(11):1456-1458.
    [17] Murakami K, Ozaki J-i,Nishiyama Y Effects of surface treatment on cation exchangeproperties of Australian brown coals [J] Fuel Processing Technology1995,43(1):95-110.
    [18] Blom L, Edelhausen L,DW V K Chemical Structure and Properties of Coal. XVIII. OxygenGroups in Coal and Related Products.[J] Fuel1957,36:135-153.
    [19] Liotta R Effect of O-alkylation on the caking properties of coal [J] Fuel1981,60(5):453-454.
    [20] Liotta R Selective alkylation of acidic hydroxyl groups in coal [J] Fuel1979,58(10):724-728.
    [21] Liotta R,Brons G Coal. Kinetics of O-alkylation [J] Journal of the American ChemicalSociety1981,103(7):1735-1742.
    [22] Liotta R, Brons G,Isaacs J Oxidative weathering of Illinois No.6coal [J] Fuel1983,62(7):781-791.
    [23] Solomon P R,Carangelo R M FTIR analaysis of coal.1. Techniques and determination ofhydroxyl concentrations [J] Fuel1982,61(7):663-669.
    [24] Gethner J S Observation of hydroxyl hydrogen in coal by in-situ FT-IR differencespectroscopy [J] Fuel1982,61(12):1273-1276.
    [25] Chen C, Gao J,Yan Y Observation of the type of hydrogen bonds in coal by FTIR [J] Energy&Fuels1998,12(3):446-449.
    [26]舒新前,王祖讷神府煤煤岩组分的结构特征及其差异[J]燃料化学学报1996,24(5):426-433.
    [27]朱学栋,朱子彬,韩崇家煤中含氧官能团的红外光谱定量分析[J]燃料化学学报1999,27(4):335-339.
    [28]郑庆荣,曾凡桂,张世同中变质煤结构演化的FT-IR分析[J]煤炭学报2011,36(3):481-486.
    [29] Riesser B, Starsinic M, Squires E, et al. Determination of aromatic and aliphatic CH groupsin coal by FT-IR:2. Studies of coals and vitrinite concentrates [J] Fuel1984,63(9):1253-1261.
    [30] Sobkowiak M,Painter P Determination of the aliphatic and aromatic CH contents of coals byFT-IR: studies of coal extracts [J] Fuel1992,71(10):1105-1125.
    [31] Geng W, Nakajima T, Takanashi H, et al. Analysis of carboxyl group in coal and coalaromaticity by Fourier transform infrared (FT-IR) spectrometry [J] Fuel2009,88(1):139-144.
    [32]周安宁,陈邦杰镜煤抽提物及残煤的FTIR—PAS研究[J]燃料化学学报1995,23(1):99-103.
    [33]陈茺,李伟煤中氢键类型的研究[J]燃料化学学报1998,26(2):140-144.
    [34] Boehm H Surface oxides on carbon and their analysis: a critical assessment [J] Carbon2002,40(2):145-149.
    [35] Figueiredo J, Pereira M, Freitas M, et al. Modification of the surface chemistry of activatedcarbons [J] carbon1999,37(9):1379-1389.
    [36] Haydar S, Moreno-Castilla C, Ferro-Garc a M, et al. Regularities in thetemperature-programmed desorption spectra of CO2and CO from activated carbons [J]Carbon2000,38(9):1297-1308.
    [37] Zhou J-H, Sui Z-J, Li P, et al. Structural characterization of carbon nanofibers formed fromdifferent carbon-containing gases [J] Carbon2006,44(15):3255-3262.
    [38]张蓬洲,李丽云,叶朝辉用固体高分辨核磁共振研究煤结构Ⅰ.我国一些煤的结构特征[J]燃料化学学报1993,21(3):310-316.
    [39]张蓬洲,李丽云,叶朝辉用固体高分辨核磁共振研究煤结构2[J]燃料化学学报1993,21(3):327-331.
    [40]相建华,曾凡桂,梁虎珍等.兖州煤大分子结构模型构建及其分子模拟[J]燃料化学学报2011,39(7):481-488.
    [41]贾建波,曾凡桂,孙蓓蕾神东2-2煤镜质组大分子结构模型13C-NMR谱的构建与修正[J]燃料化学学报2011,39(9):652-657.
    [42] Solum M S, Pugmire R J,Grant D M Carbon-13solid-state NMR of Argonne-premium coals[J] Energy&Fuels1989,3(2):187-193.
    [43] VanderHart D L,Retcofsky H Estimation of coal aromaticities by proton-decoupled carbon-13magnetic resonance spectra of whole coals [J] Fuel1976,55(3):202-204.
    [44] Yang B, Li L,Ye C Quantitative amendment of high-field13C NMR spectra of coals [J]Chinese science bulletin1997,42(10):807-809.
    [45] Yoshida T, Tokuhashi K, Narita H, et al. Determination of ether oxygen in coals by13CCP/MAS nmr spectrometry and acetylation [J] Fuel1984,63(2):282-284.
    [46]王丽,张蓬洲用固体核磁共振和电子能谱研究我国高硫煤的结构[J]燃料化学学报1996,24(6):539-543.
    [47]陈鹏用XPS研究兖州煤各显微组分中有机硫存在形态[J]燃料化学学报1997,25(3):238-241.
    [48] Perry D L,Grint A Application of XPS to coal characterization [J] Fuel1983,62(9):1024-1033.
    [49] Gong B, Pigram P J,Lamb R N Surface studies of low-temperature oxidation of bituminouscoal vitrain bands using XPS and SIMS [J] Fuel1998,77(9):1081-1087.
    [50]常海洲,王传格,曾凡桂等.不同还原程度煤显微组分组表面结构xps对比分析[J]燃料化学学报2006,34(04):389-394.
    [51] Deshpande G V, Holder G D, Bishop A A, et al. Extraction of coal using supercritical water [J]Fuel1984,63(7):956-960.
    [52] Fujitsuka H, Ashida R,Miura K Upgrading and dewatering of low rank coals through solventtreatment at around350°C and low temperature oxygen reactivity of the treated coals [J] Fuel2013,114(1):16-20.
    [53] Mursito A T, Hirajima T,Sasaki K Upgrading and dewatering of raw tropical peat byhydrothermal treatment [J] Fuel2010,89(3):635-641.
    [54]戴中蜀,郑昀晖,马立红低煤化度煤低温热解脱氧后结构的变化[J]燃料化学学报1999,27(3):256-261.
    [55]戴中蜀,梁玉河,郑昀辉低温热解脱氧方法研究[J]武汉冶金科技大学学报1997,20(02):28-32.
    [56]戴中蜀,郑昀辉低煤化度煤经低温热解后各基团变化的研究[J]煤炭转化1997,20(01):54-58.
    [57] Ogunsola O I Thermal upgrading effect on oxygen distribution in lignite [J] Fuel processingtechnology1993,34(1):73-81.
    [58] Angle C,Berkowitz N Distribution of oxygen forms in Alberta low rank coals [J] Fuel1991,70(7):891-896.
    [59]赵鹏,史士东胜利褐煤中氧在液化预反应中脱除的研究[J]煤炭学报2004,29(2):230-233.
    [60]赵鹏,刘立麟,高占先等.胜利褐煤在液化预反应中氧脱除的初步研究[J]煤炭转化2009,32(3):44-47.
    [61]朱书全褐煤提质技术开发现状及分析[J]洁净煤技术2011,17(1):1-4.
    [62]魏贤勇,高晋生面向21世纪的煤化工[J]华北地质矿产杂志1996,11(1):1-8.
    [63]陈茺,高晋生溶剂抽提与煤的净化[J]煤炭转化1995,18(2):14-20.
    [64]秦志宏,宗志敏,刘建周等.煤岩组分在二硫化碳-N-甲基-2-吡咯烷酮混合溶剂中的可溶性[J]燃料化学学报1997,25(06):70-74.
    [65]秦志宏,宗志敏,刘建周等.煤岩组分在二硫化碳-N-甲基-2-吡咯烷酮混合溶剂中的可溶性[J]燃料化学学报1997,25(6):549-553.
    [66] Iino M, Takanohashi T, Ohkawa T, et al. On the solvent soluble constituents originallyexisting in Zao Zhuang coal [J] Fuel1991,70(10):1236-1237.
    [67] Pajak J, Marzec A,Severin D Compositions of solvent-extracts of a Polish bituminous coal [J]Fuel1985,64(1):64-67.
    [68]李凡,吴东,刘丽晨等.用吡啶抽提法对煤岩显微组分结构变化的研究[J]煤炭转化1992,15(2):65-72.
    [69]王晓华,魏贤勇煤的溶剂萃取研究进展[J]现代化工2003,23(07):19-22.
    [70] Bodzek D,Marzec A Molecular components of coal and coal structure [J] Fuel1981,60(1):47-51.
    [71]陈茺,高晋生,颜湧捷环己酮抽提煤的研究[J]燃料化学学报1997,25(01):61-65.
    [72] Iino M, Takanohashi T, Ohsuga H, et al. Extraction of coals withCS2-N-methyl-2-pyrrolidinone mixed solvent at room temperature: Effect of coal rank andsynergism of the mixed solvent [J] Fuel1988,67(12):1639-1647.
    [73] Miura K, Mae K, Ashida R, et al. Dewatering of coal through solvent extraction [J] Fuel2002,81(11):1417-1422.
    [74] Miura K, Nakagawa H, Ashida R, et al. Production of clean fuels by solvent skimming ofcoal at around350oC [J] Fuel2004,83(6):733-738.
    [75] Miura K, Shimada M, Mae K, et al. Extraction of coal below350oC in flowing non-polarsolvent [J] Fuel2001,80(11):1573-1582.
    [76] Ashida R, Morimoto M, Makino Y, et al. Fractionation of brown coal by sequential hightemperature solvent extraction [J] Fuel2009,88(8):1485-1490.
    [77] Ashida R, Nakgawa K, Oga M, et al. Fractionation of coal by use of high temperature solventextraction technique and characterization of the fractions [J] Fuel2008,87(4):576-582.
    [78] Miura K Mild conversion of coal for producing valuable chemicals [J] Fuel processingtechnology2000,62(2):119-135.
    [79] Li C-Z, Sathe C, Kershaw J, et al. Fates and roles of alkali and alkaline earth metals duringthe pyrolysis of a Victorian brown coal [J] Fuel2000,79(3):427-438.
    [80] Portal J, Pillon P, Jeanson P, et al. Oxygen-containing functional groups in land-derivedhumic acids—I. Evaluation by derivatization methods [J] Organic geochemistry1986,9(6):305-311.
    [81] Kelemen S, Afeworki M, Gorbaty M, et al. Characterization of organically bound oxygenforms in lignites, peats, and pyrolyzed peats by X-ray photoelectron spectroscopy (XPS) andsolid-state13C NMR methods [J] Energy&fuels2002,16(6):1450-1462.
    [82] Koz owski M XPS study of reductively and non-reductively modified coals [J] Fuel2004,83(3):259-265.
    [83] Mao J, Hu W, Schmidt-Rohr K, et al. Quantitative characterization of humic substances bysolid-state carbon-13nuclear magnetic resonance [J] Soil Science Society of America Journal2000,64(3):873-884.
    [84]罗陨飞,李文华,陈亚飞中低变质程度煤显微组分结构的13C-NMR研究[J]燃料化学学报2005,33(05):540-543.
    [85] Hayashi J-i, Takahashi H, Doi S, et al. Reactions in brown coal pyrolysis responsible forheating rate effect on tar yield [J] Energy&fuels2000,14(2):400-408.
    [86] Allardice D J, Clemow L M,Jackson W R Determination of the acid distribution and totalacidity of low-rank coals and coal-derived materials by an improved barium exchangetechnique [J] Fuel2003,82(1):35-40.
    [87]周剑林,王永刚,黄鑫等.低阶煤中含氧官能团分布的研究[J] Journal of FuelChemistry and Technology2013,41(2):134-138.
    [88] Ogunsola O I Distribution of oxygen-containing functional groups in some Nigerian coals [J]Fuel1992,71(7):775-777.
    [89] Schafer H Carboxyl groups and ion exchange in low-rank coals [J] Fuel1970,49(2):197-213.
    [90]孙成功,李保庆,尉迟唯煤的孔结构特征对水煤浆性质的影响[J]燃料化学学报1996,24(5):58-63.
    [91]尉迟唯,李保庆,李文等.煤质因素对水煤浆性质的影响[J]燃料化学学报2007,35(02):146-154.
    [92]尹立群我国褐煤资源及其利用前景[J]煤炭科学技术2004,32(8):12-14.
    [93] Yu J L, Tahmasebi A, Han Y N, et al. A review on water in low rank coals: The existence,interaction with coal structure and effects on coal utilization [J] Fuel Processing Technology2012,106(1):9-20.
    [94] Kaji R, Muranaka Y, Otsuka K, et al. Water absorption by coals: effects of pore structure andsurface oxygen [J] Fuel1986,65(2):288-291.
    [95] Schafer H N S Factors affecting the equilibrium moisture contents of low-rank coals [J] Fuel1972,51(1):4-9.
    [96] Encinar J, Beltran F, Bernalte A, et al. Pyrolysis of two agricultural residues: olive and grapebagasse. Influence of particle size and temperature [J] Biomass and Bioenergy1996,11(5):397-409.
    [97] Wang H, Dlugogorski B Z,Kennedy E M Examination of CO2, CO, and H2O formationduring low-temperature oxidation of a bituminous coal [J] Energy&fuels2002,16(3):586-592.
    [98] Schafer H N S Pyrolysis of brown coals.1. Decomposition of acid groups in coals containingcarboxyl groups in the acid and cation forms [J] Fuel1979,58(9):667-672.
    [99] Zhang S, Min Z, Tay H-L, et al. Effects of volatile–char interactions on the evolution of charstructure during the gasification of Victorian brown coal in steam [J] Fuel2011,90(4):1529-1535.
    [100] Choi H, Thiruppathiraja C, Kim S, et al. Moisture readsorption and low temperatureoxidation characteristics of upgraded low rank coal [J] Fuel Processing Technology2011,92(10):2005-2010.
    [101] Li H, Wei S, Qing C, et al. Discussion on the position of the shear plane [J] Journal ofcolloid and interface science2003,258(1):40-44.
    [102] Yu Y J, Liu J Z, Wang R K, et al. Effect of hydrothermal dewatering on the slurryability ofbrown coals [J] Energy Conversion and Management2012,57:8-12.
    [103]陈茺,高晋生,颜湧捷兖州煤环己酮抽提物的组成、结构及性质研究[J]燃料化学学报1997,25(02):40-43.
    [104]陈红,李建伟,逯俊庆等.微波条件下抽提煤的实验研究[J]西安科技大学学报2008,28(03):414-418.
    [105]樊友微波条件下混合溶剂抽提煤的研究[J]煤2010,19(11):3-5.
    [106]冯杰,王宝俊,叶翠平等.溶剂抽提法研究煤中小分子相结构[J]燃料化学学报2004,32(2):160-164.
    [107]李文军,焦子阳,刘丽丽等.甲醇萃取对大雁褐煤孔隙结构的影响[J]煤炭转化2009,32(04):5-7.
    [108]孙林兵,张丽芳,秦志宏等.煤的CS2/NMP混合溶剂抽提研究进展[J]煤炭转化2002,25(04):1-5.
    [109]王晓华,魏贤勇神府东胜煤CS2萃取物组成分析[J]煤炭转化2003,26(03):32-35.
    [110]王晓华,熊玉春,顾晓华等.几种烟煤CS2萃取物的GC/MS分析[J]燃料化学学报2002,30(01):72-77.
    [111]袁新华,秦志宏,徐红星等.用CS2-NMP混合溶剂抽提法制备洁净煤[J]煤炭转化1999,22(02):53-55.
    [112]张志红,叶翠平,冯杰等.凝胶色谱和紫外光谱法对煤四氢呋喃抽提物的分析[J]分析化学2006,34(02):209-212.
    [113] Ertas D, Kelemen S R,Halsey T C Petroleum expulsion Part1. Theory of kerogen swellingin multicomponent solvents [J] Energy&fuels2006,20(1):295-300.
    [114] Fujiwara M, Ohsuga H, Takanohashi T, et al. Swelling of the extracts and residues fromcarbon disulfide-N-methyl-2-pyrrolidinone mixed solvent extraction [J] Energy&fuels1992,6(6):859-862.
    [115]白金锋,王勇,胡浩权等.溶胀对扎赉诺尔褐煤热解及液化性能的影响[J]煤炭转化2000,23(04):50-54.
    [116]郭靖,马凤云,玛·伊·拜克诺夫等.溶胀对五彩湾煤低压直接液化性能的影响[J]煤炭学报2010,35(7):1182-1187.
    [117]郝丽芳,王永刚,熊楚安等.煤颗粒在溶剂中的溶胀与煤浆黏度的关系[J]煤炭学报2008,33(1):80-84.
    [118]李增华,齐峰,杜长胜等.基于吸氧量的煤低温氧化动力学参数测定[J]采矿与安全工程学报2007,24(2):137-140.
    [119]战婧,王寅,王海晖煤氧化增重现象中的控制反应及其动力学解析[J]化学学报2012,70(8):980-988.
    [120] Bongers G D, Jackson W R,Woskoboenko F Pressurised steam drying of Australianlow-rank coals: Part1. Equilibrium moisture contents [J] Fuel processing technology1998,57(1):41-54.
    [121] Allardice D J The adsorption of oxygen on brown coal char [J] Carbon1966,4(2):255-262.
    [122] Baris K, Kizgut S,Didari V Low-temperature oxidation of some Turkish coals [J] Fuel2012,93:423-432.
    [123] Clemens A H, Matheson T W,Rogers D E Low temperature oxidation studies of dried NewZealand coals [J] Fuel1991,70(2):215-221.
    [124] QI F, LI Z, PAN S, et al. Calculation of Apparent Activation Energy of Coal Oxidation atLow Temperatures by Measuring CO Yield [J]中国矿业大学学报2006,16(1):37-41.
    [125] Wang H, Dlugogorski B,Kennedy E Theoretical analysis of reaction regimes inlow-temperature oxidation of coal [J] Fuel1999,78(9):1073-1081.
    [126] Wang H, Dlugogorski B Z,Kennedy E M Experimental study on low-temperature oxidationof an Australian coal [J] Energy&fuels1999,13(6):1173-1179.
    [127] Wang H, Dlugogorski B Z,Kennedy E M Thermal decomposition of solid oxygenatedcomplexes formed by coal oxidation at low temperatures [J] Fuel2002,81(15):1913-1923.
    [128] Wang H, Dlugogorski B Z,Kennedy E M Coal oxidation at low temperatures: oxygenconsumption, oxidation products, reaction mechanism and kinetic modelling [J] Progress inEnergy and Combustion Science2003,29(6):487-513.
    [129] Wang H, Dlugogorski B Z,Kennedy E M Pathways for production of CO2and CO inlow-temperature oxidation of coal [J] Energy&fuels2003,17(1):150-158.
    [130] Wu F-C, Tseng R-L,Juang R-S Characteristics of Elovich equation used for the analysis ofadsorption kinetics in dye-chitosan systems [J] Chemical Engineering Journal2009,150(2-3):366-373.
    [131] Walker R,Mastalerz M Functional group and individual maceral chemistry of high volatilebituminous coals from southern Indiana: controls on coking [J] International journal of coalgeology2004,58(3):181-191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700