三江南段兰坪—思茅盆地沉积岩容矿型铅锌成矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“三江”地处青藏高原东、北缘,由并流的怒江、澜沧江、金沙江而得名,地域跨云南西部、西藏东部、四川西部,再向西到青海南部,形状呈弧形带状。兰坪—思茅盆地位于“三江”南段,夹持于西部的澜沧江缝合带和东部的金沙江缝合带之间,向北趋于歼灭,向南呈扫帚状散开,北窄南宽。区内新生代逆冲推覆构造十分发育,碳酸盐岩容矿的铅锌矿床大量产出。前人对这些矿床的成因还存在争议,思茅盆地内发育的碳酸盐岩容矿的铅锌矿床更是少有研究。兰坪—思茅盆地碳酸盐岩容矿铅锌矿床的深入研究对于整个“三江”贱金属成矿带,乃至沉积岩容矿型铅锌矿床成矿理论的丰富和完善都具有重要意义。
     本文通过对兰坪—思茅盆地典型沉积岩容矿型铅锌矿床兰坪盆地白秧坪矿集区各Pb-Zn矿床、金顶Pb-Zn矿床、河西—三山Pb-Zn矿床、菜籽地Pb-Zn矿床、老君山Pb-Zn矿床以及思茅盆地萝卜山Pb-Zn矿床、厂硐Pb-Zn矿床和易田Pb-Zn矿床进行大量野外和系统室内实验测试工作,查明了三江南段碳酸盐岩容矿铅锌矿床基本地质特征,明确了盆地内新生代逆冲推覆构造系统及其伴生的次级构造对铅锌矿床和矿体的控制形式;探究了矿石组构和矿物组合类型;确定了成矿流体性质和成矿物质来源;提出了兰坪—思茅盆地沉积岩容矿型铅锌矿床成因上可归于类MVT型铅锌矿床,并构成三江类MVT型铅锌矿床巨型成矿带的南延部分的观点;建立了兰坪—思茅盆地沉积岩容矿铅锌矿床成矿模型,总结了该类型矿床区域找矿思路和方向。
     兰坪—思茅盆地沉积岩容矿型铅锌矿床为后生矿床,构造控矿作用明显,同逆冲期形成的主逆冲断层及其次生断裂和平推断层、推覆形成的盐丘底辟穹窿构造、新生代区域走滑作用使先存的逆冲断层再张开、区域逆冲后的短暂应力松弛或区域伸展作用形成的张性断裂及相关溶洞垮塌构造,都是重要的控矿构造,此外,由于成矿流体交代围岩作用,个别矿床也出现顺层发育的层状或似层状矿化。赋矿围岩主要为碳酸盐岩和钙质胶结砂岩,矿石组成主要为方铅矿、闪锌矿和方解石三种矿物的各种组合,呈脉状、交代碳酸盐岩或交代角砾胶结物、胶结围岩角砾等矿化样式出现,一些矿床也发育重晶石、天青石、萤石等热液矿物,硫化物除方铅矿和闪锌矿外,也发育少量黄铁矿、黝铜矿、硫砷铅矿等。流体包裹体研究表明,成矿温度范围主体变化于110~210℃,峰值集中在110~150℃之间,盐度范围变化于3.7~24.17wt%(NaCleq),平均为17.28wt%(NaCleq),呈现低温高盐度的盆地卤水特征;热液成矿期单矿物主微量稀土元素研究结果显示成矿流体经历温度渐降的演化过程,总体呈现还原性流体性质和中低温成矿特点。C-O同位素研究表明,碳质主要源自地层碳酸盐岩溶解,部分矿床有沉积有机物脱羟基的贡献,成矿流体主体为盆地卤水,此外也有大气降水的加入。S同位素组成显示硫可能有多个来源,主要来自硫酸盐的热化学还原作用,或者有机质的热分解,部分矿床细菌还原硫作用显著;Sr同位素和Pb同位素示踪结果显示成矿物质全部来自沉积地层或有盆地基底物质贡献,成矿与岩浆作用无关;成矿年代学研究结果显示区域成矿作用发生在41~29Ma,对应于印度-欧亚大陆晚碰撞转换阶段。
     综上建立兰坪—思茅盆地沉积岩容矿型Pb-Zn系列矿床成矿模型:兰坪—思茅盆地沉积岩容矿型Pb-Zn矿床是盆地卤水活动的结果,印度-欧亚大陆碰撞在大陆内部形成富盆地卤水的挤压/走滑盆地,下渗的盆地卤水在深部被加热向上运移,并由盆地两侧隆起向地形低洼处横向排泄,流体运移过程中沿途萃取各沉积地层中的成矿元素,最终在有利成矿部位沉淀就位。
The area of " Three Rivers" named by the flow of Nujiang, Lancang and JinshaRiver, including western Yunnan, eastern Tibet, western Sichuan, and southernQinghai, is located on the eastern and northern margin with a curved shape. Lanping-Simao Basin, located on the southern section of " three rivers" area and held by theJinsha in the west and the Lancang River suture zone in the east, tends to annihilate inthe north and a broom-like spread in the south. The Cenozoic tectonic overthrust iswell developed and lots of carbonate-hosted lead-zinc ore deposites yield out inLanping-Simao basin. The futher study on carbonate-hosted lead-zinc ore depositesyield out in Lanping-Simao basin is of great significance for the entire " three rivers"with base metal mineralization, as well as enriching and improvingsedimentary-rock-hosted lead-zinc ore-type forming theory since the causes of thosedeposits is still controversial and that type of deposite in Simao basin is rarely studiedbefore.
     A lot of extensive fieldwork and systemic laboratory experiments testing andanalysis have been done on these typical sedimentary-rock-hosted lead-zinc depositsincluding each Pb-Zn deposit in Baiyangping ore district, Jinding Pb-Zn deposit,Hexi–Sanshan Pb-Zn deposit, Caizidi Pb-Zn deposit, Laojunshan Pb-Zn deposit inLanping basin and Luoboshan Pb-Zn deposit, Changdong Pb-Zn deposit, Yitian Pb-Zndeposit in Simao Basin to identify the basic geological characteristics ofsedimentary-rock-hosted lead-zinc deposits in southern section of Sanjiang area,clarify the form of control to the lead-zinc deposits and ore bodies by the Cenozoicoverthrust tectonic and its associated secondary structure system in the basin, explorethe fabric and ore mineral assemblages type; determine the property of theore-forming fluids and mineral sources into; propose that the sedimentary-rock-hostedlead-zinc deposits in Lanping-Simao basin can be attributed to the MVT Pb-Zn typedeposits and Simao Basin is the southern extension of the Sanjiang MVT-like orezone, establish the model of MVT-like deposit in Lanping-Simao Basin, summedup the prospecting ideas and indicate the direction of this type of deposit.
     The sedimentary-rock-hosted Pb-Zn deposit in Lanping-Simao basin isepigenetic deposit, significantly controled by structure such as the main thrust faultand its secondary fracture and strike-slip fault formed in a thrust stage, salt domestructure result from napping, reopened preexisting thrust fault during the Cenozoicregional strike-slip stage, tension fracture and karst cave collapse structures formed during transient stress relaxation stage or regional tension after regional thrust, inaddition, layered or quasi-lamellar mineralization appeares in individual depositbecause of the metasomatic interaction between ore fluid and surrounding rock. Thehost rocks are mainly of carbonate rock and calcareous sandstone and The orescontain galena, sphalerite, and calcite alone or their assemblages in terms of replacingcarbonates and cements of breccias, and cementing breccias.Barite, celestite, andfluorite occur in some deposits. In addition to galena and sphalerite, pyrite,tetrahedrite, baumhauerite etc also appears.Fluid inclusion studies indicate that theore-forming temperature ranges from110~210℃with a peak at110~150℃.Salinity ranges from3.7~24.17wt%(NaCleq) with a average of17.28wt%(NaCleq).The ore forming fluid is brine in the basin of low temperature and high salinity. Singlemineral trace and rare earth elements research results of hydrothermal mineralizationperiod show that the evolution process of ore-forming fluid undergoes graduallydecreased temperature.The ore-forming fluid is of reducibility and middle-lowtemperature. C-O isotope studies show that carbon mainly comes from dissolution ofcarbonate rocks in the formation as well as sedimentary organic matterdehydroxylation contribution in some deposits. The ore-forming fluid mainly comesfrom basin brine in addition to precipitation.S isotopic compositions show that sulfurmay have multiple sources. Sulfur mainly comes from thermochemical sulfatereduction effect or organic matter decomposition. Bacteria reduced sulfur contributeobviously to the ore-forming in partial deposits.Sr isotope and Pb isotope tracerstudies show that ore-forming material, has nothing to do with magmatism, totallycomes from sedimentary strata or basin basement. Study on the metallogenicchronology shows regional mineralization occurred in the41~29Ma, correspondingto the transition stage of late India-Eurasia collision.
     A consolidated model of sedimentary-rock-hosted type Pb-Zn metallogenicseries in Lanping-Simao Basin is established: sedimentary-rock-hosted type Pb-Zndeposits in Lanping-Simao Basin are the results of the activities of brine. A strike-slipbasin rich of brine is formed in the interior of the continent becase of the India-Eurasia collision, brine infiltrates into the deep and then heated to uplift, migratingfrom both sides of the basin to lateral low-lying terrain. Fluid migrate along varioussedimentary strata and extract ore-forming elements, precipitating to mineralization infavorable position finally.
引文
Anderson G M.1975. Precipitation of Mississippi Valley-type ores. Economic Geology,70(5):937~942.
    Anderson G M.1983. Some geochemical aspects of sulfide precipitation in carbonate rocks.In: Kisvarsanyi G, Grant S K, Pratt W P and Koenig J W, ed.1983. InternationalConference of MVT Lead–Zinc Deposits. Rolla: University of Missouri-Rolla.61~76.
    Appold M S and Garven G.1999. The hydrology of ore formation in the Southeast MissouriDistrict; numerical models of topography-driven fluid flow during the Ouachita Orogeny.Economic Geology,94(6):913~935.
    Arne D C, Curtis L W and Kissin S A.1991. Internal zonation in a carbonate-hosted Zn-Pb-Agdeposit, Nanisivik, Baffin Island, Canada. Economic Geology,86(4):699~717.
    Barrett T and Anderson G.1982. The solubility of sphalerite and galena in NaCl brines.Economic Geology,77(8):1923~1933.
    Barton P B.1967. Possible role of organic matter in the precipitation of the MississippiValley ores. Econ Geol Monographs,3:371~377.
    Basuki N I and Spooner E T C.2002. A review of fluid inclusion temperatures and salinitiesin Mississippi Valley-type Pb-Zn deposits: Identifying thresholds for metal transport[J]. Exploration and Mining Geology,11(1-4):1~17.
    Bau M and Mê ller P.1992. Rare earth element fractionation in metamorphogenic hydrothermalcalcite, magnesite and siderite. Mineral. Petrol.,45:231~246.
    Beales F W.1975. Precipitation mechanisms for Mississippi Valley-type ore deposits.Economic Geology,70(5):943~948.
    Bjorlykke A and Sangster D F.1981. An overview of sandstone lead deposits and their relationto red~bed copper and carbonated hosted lead~zinc deposits [J]. Econ. Geol.,76:179~213.
    Bradley D C and Leach D L.2003. Tectonic controls of Mississippi Valley-type lead-zincmineralization in orogenic forelands [J]. Mineralium Deposita,38(6):652~667.
    Bradley D C, Leach D L, Symons D Emsbo P, Premo W, Breit G. and Sangster D F.2004. Replyto Discussion on “Tectonic controls of Mississippi Valley-type lead-zincmineralization in orogenic forelands” by Kesler S E, Chesley J T, Christenson J N,Hagni R D, Heijlen W, Kyle J R, Munchez P, Misra K C and vander R V. Mineralium Deposita,39(4):515~519.
    Brannon J C, Podosek F A and McLimans R K.1992. A Permian Rb-Sr age for sphalerite fromthe Upper Mississippi Valley zinc-lead district, southwest Wisconsin. Nature,356:509~511.
    Brannon J C, Susan C C. Cole Frank A P, Virgimia M R, Raymond M C, Malcolm W W and AlisonJ B.1996. Th-Pb and U-Pb dating of ore-stage calcite and Paleozoic fluid flow.Science,271:491~493
    Burke W H, Denison R E, Het Herrington E A, Koepnick R B, Nelson H F and Otto J B.1982.Variation of seawater87Sr/86Sr through Phanerozoic time. Geology,10:516~519.
    Cathles L and Smith A.1983. Thermal constraints on the formation of Mississippi Valley-typelead-zinc deposits and their implications for episodic basin dewatering and depositgenesis. Economic Geology,78(5):983~1002.
    Charles S S and Allen V H.1995. Evaluation of proposed precipitation mechanisms forMississippi Valley-type deposits [J]. Ore Geology Reviews,10:1217.
    Chen Y, Pirajno F and Sui Y.2004. Isotope geochemistry of the Tieluping silver, lead deposit,Henan, China: A case study of orogenic silver-dominated deposits and related tectonicsetting [J]. Mineralium Deposita,39(5):560~575.
    Chesley JT, Halliday AN, Kyser TK and Spry PG.1994. Direct dating of MississippiValley-type mineralization: using of Sm-Nd in fluorite. Economic Geology,89:1192~1199.
    Chi G X and Savard M M.1998. Basin fluid flow models related to Zn-Pb mineralisation inthe southern margin of the Maritime basin, Eastern Canada [J]. Economic Geology,93:896~910.
    Christensen J N, Halliday A N, Kenneth E L, Roderick N R and Stephen E K.1995a. Directdating of sulfides by Rb-Sr: a critical test using the Polaris Mississippi valley-typeZn-Pb deposit. Geochimica et Cosmochimica Acta,59:5191~5197.
    Christensen J N, Halliday A N, Vearncombe J R and Stephen E K.1995b. Testing models oflarge-scale crustal fluid flow using direct dating of sulfides: Rb-Sr evidence forearly dewatering and formation of Mississippi valley-type deposits, Canning Basin,Australia. Economic Geology,90:877~884.
    Chung S L, Lo C H, Lee T Y, Zhang Y Q, Xie Y W, Li X H, Wang K L and Wang P L.1998. Dischronousuplift of the Tibetan Plateau starting from40Ma ago. Nature,349:769~773.
    Clark I D, Fritz P.1997. Environmental isotopes in hydrogeology. New York: Lewis Publishers,1~328.
    Cook NJ,Ciobanu CL,Pring A,Skinner W,Danyushevsky L,ShimizuM,Saini-Eidukat B andMelcher F.2009. Trace and minor elements in sphalerite: A LA-ICP-MS study. Geochimicaet Cosmochimica Acta,73:4761~4791.
    Corbella M, Ayora C and Cardellach E.2004. Hydrothermal mixing, carbonate dissolutionand sulfide precipitation in Mississippi Valley-type deposits. Mineralium Deposita,39(3):344~357.
    Corbella M, Ayora C, Cardellach E and Soler A.2006. Reactive transport modeling andhydrothermal karst genesis: The example of the Rocabruna barite deposit (EasternPyrenees). Chemical Geology,233(1-2):113~125.
    Danyushevsky LV,Robinson P,Gilbert S,Norman M,Large R,McGoldrick P and Shelley JMG.2011. Routine quantitative multi-element analysis of sulphide minerals by laserablation ICP-MS: Standard development and consideration of matrixeffects.Geochemistry: Exploration,Environment,Analysis,11:51~60.
    Deng J, Wang Q F, Li G J, Li C and Wang C M.2013. Tethys tectonic evolution and its bearingon the distribution of important mineral deposits in the Sanjiang region, SW China.Gondwana Research,1~19.
    DePaolo, D.J, B.L and Ingrain.1985. High-resolution stratigraphy with strontium isotopes.Science,227:938~941.
    Doe B R and Zartman R E.1979. Plumbotectonic: the phanerozoic[J]. Geochemistry ofhydrothermal ore deposits,2:22~70.
    Elderfield H and Greaves M J.1981. Negative cerium anomalies in the rare earth elementpatterns of oceanic ferromanganese nodules[J]. Earth and Planetary Science Letters,55(1):163~170.
    Elderfield H.1986. Strontium isotope stratigraphy. Palaeogeography, Palaeoclimatology,Palaeoecology,57:71~90.
    Emsbo P.2000. Gold in sedex deposits. Reviews in Economic Geology,13:427~437.
    Faure G and Powell J L.1972. Strontium isotope geology. New York: Springer Verlag,188p
    Faure G.1986. Principle of Isotope Geology(second edition). New York: John Wiley and Sons,92p.
    Franklin F L.1983. Laboratory tests as a basis for the control of sewage sludge dumpingat sea [J]. Marine pollution bulletin,14(6):217~223.
    Friedman I and O’Neil J R.1977. Compilation of stable isotope fractionation fractionfactors of geochemical interest [A]. In: Fleischer M.(ed.). Data of geochemistry-SixthEdition. Geology Survey Professional Paper,117.
    Garven G and Freeze R A.1984. Theoretical analysis of the role of groundwater flow inthe genesis of strata-bound ore deposits.1. Mathematical and numerical model;2.Quantitative results. American Journal of Science,284:1085~1174.
    Garven G.1985. The role of regional fluid flow in the genesis of the Pine Point deposit,Western Canadian Sedimentary basin [J]. Economic Geology,80:307~324.
    Garven G.1986. A hydrogeological model for the genesis of the giant oil sands depositsof the Western Canada sedimentary basin (abstract)[A]. American Geophysical UnionTransactons67:273.
    Garven G.1995. Continental-scale groundwater flow and geological processes [J]. AnnualReview of Earth and Planetary Sciences,23:89~117.
    Garvern G and Raffensperger J P.1997. Hydrogeology and geochemistry of ore genesis insedimentary basins. In: Barnes H L, ed. Geochemistry of hydrothermal ore deposit. NewYork: Wiley.125~189.
    Ge S and Garven G.1992. Hydromechanical Modeling of Tectonically Driven Groundwater FlowWith Application to the Arkoma Foreland Basin. Journal of Geophysical Research,97(B6):9119~9144.
    Giggenbach W F.1992. Isotopic shifts in waters from geothermal and volcanic systems alongconvergent plate boundaries and their origin. Earth and Planetary Science Letters,113(4):495~510.
    Gize A P and Barnes H.1987. The organic geochemistry of two Mississippi Valley-typelead-zinc deposits. Economic Geology,82(2):457~470.
    Goldfarb RJ, Baker T, Dubé B, Groves D I, Hart C J R and Gosselin P.2005. Distribution,character and genesis of gold deposits in metamorphic terranes. In: Economic geology100th Anniversary volume. Society of Economic Geologists, Littleton, Colorado, USA.407~450.
    Grandia F, Asmerom Y, Getty S, Cardellach E and Canals A.2000. U-Pb dating of MVT ore-stagecalcite: implications for fluid flow in a Mesozoic extensional basin from IberianPeninsua [J]. Jouranl of Geochemical exploration,69-70:377~380.
    Gu X X, Zhang Y M, Dong S Y, Tang J X, Wang C S and Chen J P.2007. Basin fluid mineralizationduring multistage evolution of the Lanping sedimentary basin, southwestern China [J].Acta Geologica Sinica,81(6):984~995.
    Hanor J S.1979. The sedimentary genesis of hydrothermal fluids. Geochemistry ofhydrothermal ore deposits:137~172.
    Hanor J S.1996. Controls on the solubilization of lead and zinc in basinal brines.Carbonate-hosted lead-zinc deposits: Society of Economic Geologists SpecialPublication,4:483~500.
    He L Q, Song Y C, Chen K X, Hou Z Q, Yu F M, Yang Z S, Wei J Q, Li Z and Liu Y C.2009.Thrust-controlled, sediment-hosted, Himalayan Zn-Pb-Cu-Ag deposits in the Lanpingforeland fold belt, eastern margin of Tibetan Plateau. Ore Geology Reviews,36(1-3):106~132.
    Hecht L, Freiberger R, Gilg H A, Grundmann G and Kostitsyn Y A.1999. Rare earth elementand isotope(C, O, Sr) characteristics of hydrothermal carbonates: genetic implicationsfor dolomite-hosted talc mineralization at Gopfersgrun (Fichtelgebrirge, Germany).Chem. Geol.155:115~130.
    Hitzman M W.1999. Extensional faults that localized Irish syndiagenetic Zn-Pb Depositsand their reactivation during Variscan compression. Geological Society, London,Special Publications,155(1):233~245.
    Hoefs J.1997. Stable Isotope Geochemistry. NewYork: Springer,1~208.
    Huston D L, Stevens B, Southgate P N, Muhling P and Wyborn L.2006. Austaralian Zn-Pb-Agore-forming systems: A review and analysis [J]. Econ. Geol.,101:1117~1157.
    Jackson S A.1966. Precipitation of lead-zinc ores in carbonate reservoirs as illustratedby Pine Point ore field, Canada. TIMM B75:278~285.
    Jackson S and Beales F W.1967. An aspect of sedimentary basin evolution; the concentrationof Mississippi Valley-type ores during late stages of diagenesis. Bulletin of CanadianPetroleum Geology,15(4):383~433.
    Kesler S E, Chesley J T and Christensen J N, Hagni R D, Heijlen W, Kyle J R, Munchez P,Misra K C and vander R V.2004. Discussion of “Tectonic controls of MississippiValley-type lead-zinc mineralization in orogenic forelands” by D.C. Bradley and D.L.Leach (2003)[J]. Mineralium Deposita,34:512~514.
    Kesler S E, Martini A M, Appold M S, Walter L M, Huston T J and Furman F C.1996. Na-Cl-Brsystematics of fluid inclusions from Mississippi Valley-type deposits, AppalachianBasin: Constraints on solute origin and migration paths. Geochimica et CosmochimicaActa,60(2):225~233.
    Kesler S E, Vennemann T W, Frederickson C, Breithaupt A, Vazquez R, Furman F C.1997.Hydrogen and oxygen isotope evidence for origin of MVT-forming brines, southernAppalachians. Geochimica et Cosmochimica Acta,61(7):1513~1523.
    Kharaka Y, Maest A, Carothers W, Law L, Lamothe P and Fries T.1987. Geochemistry ofmetal-rich brines from central Mississippi Salt Dome basin, USA. Applied Geochemistry,2(5-6):543~561.
    Large D E.1988. The evaluation of sedimentary basins for massive sulfide mineralization[A]. In: Friedrich, G H and Herzig, P M, eds. Base metal sulfide deposits [C]. TheNetherlands: Springer-verlag.2~11.
    Leach D L and Rowan E L.1986. Genetic link between Ouachita fold belt tectonism and theMississippi Valley-type deposits of the Ozarks [J]. Geology,14:931~935.
    Leach D L and Sangster D F.1993. Mississippi Valley-type lead-zinc deposits [J]. GeologicalAssociation of Canada Special Paper,40:289~314.
    Leach D L, Bradley D, Lewchuck M T, Symons D T A, de Marsily G and Brannon J C.2001a.Mississippi Valley-type lead-zinc deposits through geological time: Implications fromrecent age-dating research. Mineralium Deposita,36(8):711~740.
    Leach D L, Premo W, Lewchuk M, Henry B, LeGoff M, Rouvier H, Macquar J and Thibieroz J.2001b. Evidence for Mississippi Valley-type lead-zinc mineralization in the Cévenneregion, southern France, during Pyrénées orogeny. Mineral Deposits at the Beginningof the21st Century: Balkema, Rotterdam:157~160.
    Leach D L, Sangster D F, Kelley K D, Large R R, Garven G, Allen C R, Gutzmer J and WaltersS.2005. Sediment-hosted lead-zinc deposits:A global perspective [J]. Economic Geology,100:561~607.
    Leach D L, Viets J B, Foley-Ayuso N and Klein D P.1995. Mississippi Valley-type Pb-Zndeposits. Preliminary compilation of descriptive geoenvironmental mineral depositmodels. US Geological Survey Open-File Report:234~243.
    Leach, D.2005. The secular distribution of Mississippi Valley-ype Pb-Zn deposits. In2005Salt Lake City Annual Meeting.
    Leloup P H, Lacassin R and Tapponnier R.1995. Knematics of Tertiary left-lateral shearingat the lithospheric-scale in the Ailao Shan-Red River shear zone (Yunnan, China)[J].Tectonophysics,251:3~84.
    Li Wenbo, Huang Zhilong and Yin Mudan.2007. Isotope geochemistry of the Huize Zn-Pb orefield, Yunnan Province, Sout hwestern China: Implication for the sources of ore fluidand metals. Geochemical Journal,41(1):65~81.
    Li X M and Song Y G.2006. Cenozoic evolution of tectono-fluid and metallogenic processin Lanping Basin, western Yunnan Province, Southwest China: Constraints from apatitefission track data. Chinese Journal of Geochemistry,25(4):398~400.
    Liu Y C, Hou Z Q, Yang Z S, and Tian S H.2010. Geology and C, H and O isotopic geochemistryof Dongmozhazhua Pb-Zn ore deposit, Qinghai, China. Geochimica et Cosmochimica Acta,74(16): A624.
    Liu Z, Zhao X, Wang C, Shun Liu and Haisheng Yi.2003. Magnetostratigraphy of Tertiarysediments from the Hoh Xil Basin: implications for the Cenozoic tectonic history ofthe Tibetan Plateau[J]. Geophysical Journal International,154(2):233~252.
    Lottermoser B G.1992. Rare earth elements and hydrothermal ore formation processes[J].Ore Geology Reviews,7(1):25~41.
    McCrea J M.1950. On the isotopic chemistry of carbonates and a paleotemperature scale.The Journal of Chemical Physics,18:849~857.
    McMechan M and Thompson R.1993. The Canadian Cordilleran fold and thrust belt south of66N and its influence on the Western Interior Basin. Evolution of the Western InteriorBasin: Geological Association of Canada Special Paper,39:73~90.
    Metcalfe I.1996. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys.Australian Journal of Earth Sciences,43(6):605~623.
    Metcalfe I.2002. Permian tectonic framework and palaeogeography of SE Asia. Journal ofAsian Earth Sciences,20(6):551~566
    Michard A.1989. Rare earth element systematics in hydrothermal fluids. Geochimica etCosmochimica Acta,53(3):745~750.
    Misra K C.1999. Understanding mineral deposits[M]. Boston, Ma: Kluwer Academic Publishers.1~845
    Misra K C.2000. Understanding Mineral Deposits [C]. Kluwer Academic Publishers, London.1~845.
    Montanez I P, Banner J L and Olseger D A.1996. Integrated Sr isotope variation and sea-levelhistory of Middle to Upper Cambrian platform carbonates: Implications for the evolutionof Cambrian sea-water87Sr/86Sr. Geology,24(10):917~920.
    Nakai S, Halliday A N, Kesler S E, Jones H D, Kyle J R and Lane T E.1993. Rb-Sr datingof sphalerites from Mississippi valley-type (MVT) ore deposits. Geochimica etCosmochimica Acta,57:417~427.
    Nakai S, Halliday A N, Kesler S F, Jones H D, Kyle J R and Lane T E.1990. Rb-Sr datingof sphalerites from Tennessee and the genesis of Mississippi Valley type ore deposits[J]. Nature,346:354~357.
    Ohmoto H and Rye R O.1979. Isotopes of sulfur and carbon. In: Barnes H L ed. Geochemistryof hydrothermal ore deposits. New York: Wiley-Inter science,509~567.
    Ohmoto H.1972. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits.Economic Geology,67(5):551~578.
    Oliver J.1986. Fluids expelled tectonically from orogenic belts: Their role in hydrocarbonmigration and other geologic phenomena. Geology,14(2):99~102.
    Orr W L.1982. Rate and mechanism of non-microbial sulfate reduction.95th Annual GeologicalSociety of America Meeting, Abstracts with Programs14:580.
    Pannalal S, Symons D and Sangster D.2004. Paleomagnetic dating of Upper Mississippi Valleyzinc–lead mineralisation, WI, USA. Journal of Applied Geophysics,56(2):135~153.
    Paradis S, Hannigan P and Dewing K.2007. Mississippi Valley-type lead-zinc deposits.Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny,the Evolution of Geological Provinces, and Exploration Methods: Geological Associationof Canada, Mineral Deposits Division, Special Publication,5:185~203.
    Person M and Garven G.1994. A sensitivity study of the driving forces on fluid flow duringcontinental-rift basin evolution. Bulletin of the Geological Society of America,106(4):461~475.
    Piepgras D J and Wasserburg G J.1985. Strontium and neodymium isotopes in hot springson the East Pacific Rise and Guaymas Basin[J]. Earth and planetary science letters,72(4):341~356.
    Richter F M, Rowley D B and Depaolo D J.1992. Sr isotope evolution of seawater: The roleof tectonics. Earth and Planetary Science Letters,109:11~23.
    Rollinson H R.1993. Using Geochemical Data: Evaluation, Presentation, Interpretation.New York: John Wiley and Sons,1~352.
    Ruppel S C, James E W, James E. Barrick, Godfrey Nowlan and T. T. Uyeno.1996.High-resolution87Sr/86Sr chemostratigraphy of the Silurian: Implications for eventcorrelation and strontium flux. Geology,24(9):831~834.
    Sangster D F.1990. Mississippi Valley-type and Sedex lead-zinc deposits: A comparativeexamination [J]. Institution of Mining and Metallurgy Transactions, Section B, AppliedEarth Sciences,99:21~42.
    Schneider J, Boni M, Laukamp C, Bechst dt T and Petzel V.2008. Willemite (Zn2SiO4) as apossible Rb–Sr geochronometer for dating nonsulfide Zn–Pb mineralization: Examplesfrom the Otavi Mountainland (Namibia). Ore Geology Reviews,33(2):152~167.
    Selby D, Creaser R, Dewing K and Fowler M.2005. Evaluation of bitumen as a Re-Osgeochronometer for hydrocarbon maturation and migration: A test case from the PolarisMVT deposit, Canada. Earth and Planetary Science Letters,235(1-2):1~15.
    Sheppard S M F.1986. Characterization and isotopic variations in natural waters. Reviewsin Mineralogy and Geochemistry,16(1):165~184.
    Sibson R, Moore J M M and Rankin A.1975. Seismic pumping—a hydrothermal fluid transportmechanism. Journal of the Geological Society,131(6):653~659.
    Spangenberg J, Fontboté L, Sharp Z D and J Hunziker.1996. Carbon and oxygen isotope studyof hydrothermal carbonates in the zinc-lead deposits of the San Vicente district,central Peru: a quantitative modeling on mixing processes and CO2degassing[J].Chemical Geology,133(1):289~315.
    Spirakis C S and Allen V H.1993. Local heat, thermal convection of basinal brines andgenesis of lead-zinc deposits of the Upper Mississippi Valley District. Institutionof Mining and Metallurgy, Transactions, Section B: Applied Earth Science,102:201~202.
    Spurlin M S, Yin A, Horton B K, Zhou J Y and Wang J H.2005. Structural evolution of theYushu-Nangqian region and its relationship to syncollisional igneous activity, east~central Tibet [J]. GSA Bulletin,117:1293~1317.
    Sun S S and McDonough W.1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. Geological Society, London, SpecialPublications,42(1):313~345.
    Sverjensky D A.1981. The origin of a Mississippi Valley-type deposit in the Viburnum Trend,southeast Missouri. Economic Geology,76(7):1848~1872.
    Sverjensky D A.1984. Oil field brines as ore-forming solutions. Economic Geology,79(1):23~37.
    Sverjensky D A.1986. Genesis of Mississippi Valley-type lead-zinc deposits [J]. AnnualReview of Earth and Planetary Sciences,14:177~179.
    Symons D and Stratakos K.2000. Palaeomagnetic dating of dolomitization and MississippiValley-type zinc mineralization in the Mascot-Jefferson City district of easternTennessee: a preliminary analysis. Journal of Geochemical Exploration,69-70:373~376.
    Symons D and Stratakos K.2002. Paleomagnetic dating of Alleghanian orogenesis andmineralisation in the Mascot-Jefferson City zinc district of East Tennessee, USA.Tectonophysics,348(1-3):51~72.
    Symons D T A and Arne D C.2003. Paleomagnetic dating of mineralization in the KapokMVTdeposit, Lennard Shelf, Western Australia. Journal of Geochemical Exploration,78-79:267~272.
    Symons D, Sangster D and Leach D.1996. Paleomagnetic dating of Mississippi Valley-typePb-Zn-Ba deposits. Carbonate-Hosted Lead Deposits: Society of Economic GeologistsSpecial Publication,4:515~526.
    Tao Y, Li C S, Hu R Z, Ripley E M, Du A D, Zhong H.Petrogenesis of the Pt-Pd mineralizedJinbao shan ultramafic intrusion in the Permian Emei shan Large Igneous Province, SWChina [J].Contrib.Miner.Petrol.,2007,53:321~337.
    Tapponnier P, Lacassin R and Leloup P H.1990. The Ailao Shan/Red River metamorphicbelt:Tertiary left-lateral shear between Indochina and South China [J]. Nature,343:431~437.
    Taylor H P.1974. The application of oxygen and hydrogen isotope studies to problems ofhydrothermal alteration and ore deposition. Economic Geology,69(6):843~883.
    Taylor B E.1986. Magmatic volatiles: isotopic variation of C, H, and S. Reviews inMineralogy and Geochemistry,16(1):185~225.
    Veizer J, Holser W T and Wilgus C K.1980. Correlation of13C/12C and34S/32S secular variation.Geochim. Cosmochim. Acta,44:579~588.
    Veizer J.1989. Strontium isotopes in seawater through time. Ann. Rev. Earth Planet.Sciences,17:141~167.
    Verncombe J, Dorling S, Reed A, Cooper R, Hart J, Muhling P, Windrim D and Woad G.1995.Regional and prospect-scale fault controls on Mississippi Valley-type Zn-Pbmineralization at Blendvale, Canning basin, western Australia. Economic Geology,90(1):181~186.
    Viets J G and Leach D L.1990. Genetic implications of regional and temporal trends inore fluid geochemistry of Mississippi Valley-type deposits in the Ozark region.Economic Geology,85(4):842~861.
    Wang C M, Deng J, Emmanuel John M. Carranza, Lai X R.2014. Nature, diversity andtemporal–spatial distributions of sediment-hosted Pb―Zn deposits in China. OreGeology Reviews,56:327~351.
    Wang J H, Yin A., Harrison T M, Grove M, Zhang Y Q and Xie G H.2001. A tectonic modelfor Cenozoic igneous activities in the eastern Indo-Asian collision zone [J]. Earthand Planetary Science Letters,188(1-2):123~133.
    Wilkinson J J. Fluid inclusions in hydrothermal ore deposits[J]. Lithos,2001.55:229~272.
    Xue C J, Zeng R, Liu S W, Chi G X, Qing H R, Chen Y C, Yang J M, and Wang D H.2007. Geologic,fluid inclusion and isotopic characteristics of the Jinding Zn~Pb deposit, westernYunnan, South China: A review [J]. Ore Geology Reviews,31:337~359.
    Yardley B W D.2005. Metal concentrations in crustal fluids and their relationship to oreformation [J]. Economic Geology,100(4):613~632.
    Ye L., Cook N. J., Ciobanu C. L., Cristiana L. Ciobanu, Liu Yuping, Zhang Qian, Liu Tiegeng,Gao Wei, Yang Yulong and Leonid Danyushevskiy.2011. Trace and minor elements insphalerite from base metal deposits in South China: a LA-ICP-MS study. Ore GeologyReview,39:188~217.
    Zhao L, Cheng G, Li S, and S Wang.2000. Thawing and freezing processes of active layerin Wudaoliang region of Tibetan Plateau [J]. Chinese Science Bulletin,45(23):2181~2187.
    Zhu lidong, Wang Chengshan, Zheng Hongbo, Xiang Fang, Yi Haisheng, and Liu Dengzhong.2006.Tectonic and sedimengtary evolution of basins in thenortheast of Qinghai-Tibet Plateauand their implication for the northward growth of the Plateau. PalaeogeographyPalaeoclimatology,241(1):49~60
    白嘉芬,王长怀,纳荣仙.1985.云南金顶铅锌矿床地质特征及成因初探.矿床地质,4(1):1~10
    蔡劲宏,周卫宁,张锦章.1996.江西银山铜铅锌多金属矿床闪锌矿的标型特征[J].桂林工学院学报,(4):370~375.
    曾普胜,侯增谦,高永峰,杜安道.2006.印度-亚洲碰撞带东段喜马拉雅期铜-钼-金矿床Re-Os年龄及成矿作用.地质论评,52(1):72~84.
    曾荣,薛春纪,刘淑文,高永宝,朱和平.2007.云南金顶铅锌矿床成矿流体与流体的稀土元素研究[J].地质与勘探,43(2):55~61.
    曾荣.2007.兰坪盆地流体大规模成矿过程—以金顶和白秧坪矿床为例.长安大学博士学位论文.1~99.
    陈开旭,何龙清,杨振强,魏君奇,杨爱平.2000.云南兰坪三山—白秧坪铜银多金属成矿富集区的碳氧同位素地球化学.华南地质与矿产,4:1~8.
    陈开旭,姚书振,何龙清,杨爱平,杨伟光,黄惠兰.2004.云南兰坪白秧坪银多金属矿集区成矿流体研究[J].地质科技情报,23(2):45~50.
    从柏林,吴根耀,张旗,张儒媛,翟明国,赵大升,张雯华.1993.中国滇西古特提斯构造带岩石大地构造演化.中国科学(B),23(11):1201~1207.
    邓军,王长明,李龚健.2012.三江特提斯叠加成矿作用样式及过程.岩石学报,28(5):1349~1361.
    邓霜岭.2011.云南李子坪铅锌矿段地质特征及成因.四川地质学报,31(3):323~328.
    董方浏,莫宣学,侯增谦,王勇,毕先梅,周肃.2005.云南兰坪盆地喜马拉雅期碱性岩40Ar/39Ar年龄及地质意义[J].岩石矿物学杂志,24:103~109.
    段建中,薛顺荣,钱祥贵.2001.滇西“三江”地区新生代地质构造格局及其演化.云南地质,20(3):243~252.
    范承钧.1982.滇西区域地质特征.云南地质,1(4):323~336.
    范蔚茗.1992.滇西兰坪-思茅地洼盆地及其邻区岩浆岩[J].大地构造与成矿学,16(1):83~84.
    付修根.2005.兰坪陆相盆地演化与金属矿床的形成.地球科学与环境学报,27(2):26~32.
    高炳宇,薛春纪,池国祥,李超,屈文俊,杜安道,李足晓,顾浩.2012.云南金顶超大型铅锌矿床沥青Re-Os法测年及地质意义[J].岩石学报,05:1561~1567.
    龚文君,谭凯旋,李小明,陈建平,董树义.2000.兰坪白秧坪铜银多金属矿床流体地球化学特征及成矿机制探讨,24(2):175~181
    韩吟文,马振东,张宏飞,张本仁,李方林,高山,鲍征于.2003.地球化学,北京:地质出版社,1~369.
    韩照信.1994.秦岭泥盆系铅锌成矿带中闪锌矿的标型特征.西安地质学院学报,16(1):12~17.
    何科昭,何浩生,蔡红飙.1996.滇西造山带的形成与演化.地质论评,42(2):97~106.
    何龙清,陈开旭,魏君奇,余凤鸣.2005.云南白秧坪地区东矿带矿床地质地球化学特征及成因分析.矿床地质,24(1):61~70.
    何龙清,陈开旭,余凤鸣,魏君奇.2004.云南兰坪盆地推覆构造及其控矿作用.地质与勘探,40(4):7~12.
    何明勤,刘家军,李朝阳,李志明,刘玉平.2004.兰坪盆地铅锌铜大型矿集区的流体成矿作用机制—以白秧坪铜钴多金属地区为例[M].北京:地质出版社,1~117.
    侯增谦,潘桂棠,王安建,莫宣学,田世洪,孙晓明,丁林,王二七,高永丰,谢玉玲,曾普胜,秦克章,许继峰,曲晓明,杨志明,杨竹森,费红彩,孟祥金,李振清.2006b.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用[J].矿床地质,25(5):521~543.
    侯增谦,宋玉财,李政,王召林,杨志明,杨竹森,刘英超,田世洪,何龙清,陈开旭,王富春,赵呈祥,薛万文,鲁海峰.2008b.青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型:成矿基本特征与构造控矿模型.矿床地质,27(2):420~441.
    侯增谦,王二七,莫宣学,丁林,潘桂棠,张中杰.2008a.青藏高原碰撞造山与成矿作用[M].北京:地质出版社,1~980.
    侯增谦,莫宣学,杨志明,王安建,潘桂棠,曲晓明,聂凤军.2006a.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型.中国地质.33(22):340~350.
    侯增谦.2010.大陆碰撞成矿论.地质学报,84(1):30~58.
    胡瑞忠,苏文超,戚华文,毕献武.2000.锗的地球化学、赋存状态和成矿作用[J].矿物岩石地球化学通报,04:215~217.
    黄玉凤,曹殿华,王志军,李以科,王安建.2011.云南兰坪盆地北部东缘铅锌矿床喷流沉积成因的厘定——来自矿物学和硫同位素证据.地质力学学报,01(17):91~102
    匡文龙,刘石华,刘继顺,朱自强.2002.西昆仑地区卡兰古密西西比河谷型铅锌矿床成矿地质特征和成矿作用探讨.世界地质,21(4):340~346.
    李峰,黄敦义,甫为民.1995.兰坪-思茅盆地红层铜矿成矿规律.大地构造与成矿学,12:322~335.
    李峰,汝珊珊,吴静.2012.兰坪‐思茅盆地区域构造及铜多金属成矿演化.云南大学学报(自然科学版).(S2):134~142.
    李玫.2004.青藏高原首批1:25万区域地质调查地层工作若干进展点评.地质通报,23(1):24~26.
    李文博,黄智龙,王银喜,陈进,韩润生,许成,管涛,尹牡丹.2004.会泽超大型铅锌矿田方解石Sm-Nd等时线年龄及意义.地质论评,50(2):191~195.
    李文昌,莫宣学.2001.西南“三江”地区新生代构造及其成矿作用.云南地质,20(4):333~346.
    李小明,胡宝清.2001.初论兰坪盆地构造流体与成矿作用的时空格架及可能的成矿模式.大地构造与成矿学,25(2):187~193.
    李兴振,刘文均,王义昭,朱勤文.1999.西南三江地区特提斯构造演化与成矿.北京:地质出版社,1~276.
    李志明,刘家军,秦建中,廖宗廷,何明勤,刘玉平.2005.兰坪盆地白秧坪铜钴银多金属矿床成矿物资来源研究.地质与勘探,1:1~6.
    李志明,刘家军,秦建中,廖宗廷,张长江.2004.滇西兰坪盆地多金属矿床碳、氧、氢同位素组成及其地质意义.吉林大学学报(地球科学版),34:360~366.
    廖崇高.2001.兰坪盆地成矿预测中的多源信息定量分析.矿床地质20(3):292~296.
    廖宗廷,陈跃昆.2005.兰坪—思茅盆地原型的性质及演化.同济大学学报(自然科学版),33(11):1527~1531.
    刘登忠,王国芝,李佑国,朱利东,陶晓风,徐新煌.1999.澜沧江结合带北段同位素地质年代学研究新进展.中国区域地质,18(3):334~335.
    刘家军,何明勤,李志明,刘玉平,李朝阳,张乾,杨伟光,杨爱平.2004.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义.矿床地质,23(1):1~10.
    刘家军,李朝阳,潘家永,刘显凡,张乾,刘玉平.2000.兰坪-思茅盆地砂页岩中铜矿床成矿物质来源研究.地质与勘探,36(4):16~19
    刘建明,刘家军.1997.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式.矿物学报,17(4):448-456.
    刘建明,刘家军,顾雪祥.1997.沉积盆地中的流体活动及其成矿作用.岩石矿物学杂志,16(4):341~352.
    刘铁庚,张乾,叶霖,邵树勋.2004.自然界中ZnS-CdS完全类质同象系列的发现和初步研究[J].中国地质,9(1):40~45.
    刘文强.2012.兰坪盆地东部逆冲推覆构造特征及其控矿作用(硕士论文).昆明:昆明理工大学.1~86
    刘英超,侯增谦,杨竹森,田世洪,宋玉财,杨志明,王召林,李政.2008.密西西比河谷型(MVT)铅锌矿床:认识与进展.矿床地质,27(2):253~264.
    刘英超,杨竹森,侯增谦,田世洪,宋玉财,张洪瑞,于玉帅,薛万文,王富春,张玉宝,康继祖.2011.青海玉树东莫扎抓铅锌矿床围岩蚀变和黄铁矿-闪锌矿矿物学特征及意义.岩石矿物学杂志,30(3):490~506.
    刘英超.2012.青藏高原三江中段碳酸盐岩容矿铅锌矿床成矿特征与成因研究(博士论文).北京:中国地质科学院.1~247
    刘英俊,曹厉明,李兆麟,王鹤年,储同庆,张景英.1984.元素地球化学,北京:科学出版社,1~548.
    刘增乾,李兴振,叶庆同,罗建宁,沈敢富,杨岳清.1993.三江地区构造岩浆带的划分与矿产分布规律.北京:地质出版社,1~243.
    柳贺昌,林文达,滇东北铅锌银矿床规律研究.昆明:云南大学出版社,1999,1~468.
    卢焕章,范宏瑞,倪培,欧光习,沈昆,张文怀.2004.流体包裹体.北京:科学出版社,1~487.
    罗建宁,杜德勋,蕙兰,朱夔玉.1999.西南三江地区沉积地质与成矿[M].北京:地质出版社,1~162.
    罗君烈,杨友华,赵准,陈吉琛,杨荆舟.1994.滇西特提斯的演化及主要金属矿床成矿作用[M].北京:地质出版社,1~340.
    马茁卉.2008.我国铅锌资源现状及发展政策建议.西部资源,2:21~25.
    毛景文,赫英,丁悌平.2002.胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据.矿床地质,21(2):121~128.
    毛景文,李晓峰,李厚民,曲晓明,张长青,薛春纪,王志良,余金杰,张作衡,丰成友,王瑞廷.2005.中国造山带内生金属类型、特点和成矿过程探讨[J].地质学报,79:342~372.
    毛景文,张作衡,王义天,李晓峰,谢桂青,杨富全,余金杰,代军治,张长青,柴凤梅,程彦博,吕林素,袁顺达,刘敏,杨宗喜,向君峰,周珂.国外主要矿床类型、特点及找矿勘查.北京:地质出版社,2012,1~480.
    毛世德.2004.白秧坪地区铜银多金属矿田形成的地球化学机理.程度理工大学学位论文
    莫宣学,路凤香,沈上越,朱勤文,侯增谦.1993.三江特提斯火山作用与成矿[M].北京:地质出版社,1~267.
    牟传龙,王剑,余谦,张立生.1999.兰坪中新生代沉积盆地演化.矿物岩石,19(3):30~36.
    牟传龙,余谦.2004.金顶铅锌矿床相关地质问题及成因探讨.矿物岩石,24(1):48~51.
    潘桂棠,王立全,李兴振,王洁民,徐强.2001.青藏高原区域构造格局及其多岛弧盆系的空间配置.沉积与特提斯地质,21(3):1~26.
    彭建堂,胡瑞忠,邓海琳,苏文超.2001.湘中锡矿山锑矿床Sr同位素地球化学.地球化学,30(3):248~256
    彭兴阶,胡长寿.1993.藏东三江带的大地构造演化.地质通报.(2):140~148.
    钱祥贵,吕伯西.2000.滇西三江地区新生代碱性火山岩岩石学特征及成因.云南地质,19(2):152~170.
    阙梅英,程敦模,张立生,夏文杰,朱创业.1998.兰坪-思茅盆地铜矿床.[M].北京:地质出版社,1~93.
    任耀武.1991.某些矿物标型特征的研究现状.矿产与地质,5(2):127~131.
    宋学信,张景凯.1986.中国各种成因黄铁矿的微量元素特征[J].中国地质科学院矿床地质研究所所刊,2.
    宋玉财,侯增谦,李政,杨天南,刘燕学,杨竹森,田世洪,王晓虎,王光辉,张洪瑞,刘英超,刘长征,李琳业,王贵仁,汪元奎,赵呈祥,刘群.2009.沱沱河茶曲帕查Pb (-Zn)矿:大陆碰撞背景下盆地流体活动的产物[J].矿物学报,29(z1):186~187.
    宋玉财.2009.“三江”沉积岩容矿贱金属矿床:发育特点与成矿模型(博士后出站报告).北京:中国地质科学院,1~118.
    孙景贵,胡受奚,沈昆,姚凤良.2001.胶东金矿区矿田体系中基性—中酸性脉岩的碳氧同位素地球化学研究.岩石矿物学杂志,20(1):47~56.
    覃功炯,朱上庆.1991.金顶铅锌矿床成因模式及找矿预测.云南地质,10(2):145~190.
    谭富文,许效松.1999.云南思茅地区上石炭统沉积特征及其构造背景[J].岩相古地理,19(4):26~34.
    唐菊兴,钟康惠,刘肇昌,李志军,董树义,张丽.2006.藏东缘昌都大型复合盆地喜马拉雅期陆内造山与成矿作用.地质学报,80(9):1364~1376.
    唐永永,毕献武,武丽艳,王雷,邹志超,和利平.2013.金顶铅锌矿黄铁矿Re-Os定年及其地质意义[J].矿物学报,33(3):287~294.
    陶晓风,朱利东,刘登忠,王国芝,李佑国.2002.滇西兰坪盆地的形成及演化.成都理工学院学报,29(5):521~525.
    田洪亮.1997.兰坪白秧坪铜银多金属矿床地质特征[J].云南地质,16(1):105~108.
    田洪亮.1998.兰坪三山多金属矿床地质特征.云南地质,17(2):199~206.
    田世洪,杨竹森,侯增谦,刘英超,高延光,王召林,宋玉财,薛万文,鲁海峰,王富春,苏嫒娜,李真真,王银喜,张玉宝,朱田,俞长捷,于玉帅.2009.玉树地区东莫扎抓和莫海拉亨铅锌矿床Rb-Sr和Sm-Nd等时线年龄及其地质意义[J].矿床地质,(6):747~758.
    万哨凯,夏斌,张玉泉.2005.老君山正长岩锆石SHRIMP定年[J].大地构造与成矿学,29(4):521~526
    王安建,曹殿华,高兰,王高尚,管烨,修群业,刘俊来.2009.论云南兰坪金顶超大型铅锌矿床的成因[J].地质学报,83(1):43~54.
    王二七, Burchfiel B C,季建清.2001.东喜马拉雅构造结新生代地壳缩短量的估算及其地质依据.中国科学(D),31(1):1~9.
    王峰,何明友.2003.云南白秧坪铜银多金属矿床成矿物质来源的铅和硫同位素示踪.沉积与特提斯地质,23(2):82~85.
    王峰.2004.云南白秧坪银多金属矿床形成的地球化学机制.成都理工大学博士学位论文,1~77.
    王光辉,宋玉财,侯增谦,王晓虎,杨竹森,杨天南,刘燕学,江迎飞,潘小菲,张洪瑞.2009.兰坪盆地连城脉状铜矿床辉钼矿Re-Os定年及其地质意义[J].矿床地质,28(4):413~424.
    王京彬,李朝阳.1991.金顶超大型铅锌矿床REE地球化学研究[J].地球化学,19(4):359~365.
    王晓虎,侯增谦,宋玉财,王光辉,张洪瑞,张翀,庄天明,王哲,张天福.2012.兰坪盆地白秧坪铅锌铜银多金属矿床成矿流体及成矿物质来源[J].地球科学(中国地质大学学报),(5):1015~1028.
    王晓虎,侯增谦,宋玉财,杨天南,张洪瑞.2011c.兰坪盆地白秧坪铅锌铜银多金属矿床:成矿年代及区域成矿作用.岩石学报,27(9):2625~2634.
    王晓虎,宋玉财,侯增谦,张洪瑞,刘英超,杨竹森,杨天南,潘小菲,王淑贤,薛传东.2011b.滇西兰坪盆地富隆厂一带铅锌多金属矿床中闪锌矿的微量元素、S-Pb同位素特征及意义.岩石矿物学杂志,30(1):45~59.
    王晓虎,宋玉财,侯增谦,张洪瑞,王哲,庄天明,张翀,张天福.2011a.兰坪盆地北部白秧坪铅锌铜银多金属矿床地质特征.岩石矿物学杂志,30(3):503~514.
    王晓虎.2011.兰坪盆地白秧坪铅锌铜银多金属矿床地质与成因.博士学位论文.北京:中国地质
    科学院,1~168.
    王彦斌,曾普胜,李延河,田世洪.2004.云南金顶和白秧坪矿床He, Ar同位素组成及其意义.矿物岩石,24(4):76~80.
    王银喜,杨杰东,陶仙聪,李惠民.1988.化石、矿物和岩石样品的Sm-Nd同位素实验方法研究及其应用.南京大学学报(自然科学版),21(2):297~308.
    魏君奇.2001.云南河西铜多金属矿S, Pb同位素地球化学.河南地质与矿产,(3):36~39
    温春齐,覃功炯.1995.金顶铅锌矿流体包裹体地球化学特征.矿物岩石,15(4):78~84
    吴根耀,矢野孝雄,谭明清.2004.滇西兰坪盆地五茂林剖面下白垩统景星组沉积相.古地理学报,6(3):380~384.
    吴南平,蒋少涌,廖启林,潘家永,戴宝章.2003.云南兰坪~思茅盆地脉状铜矿床铅、硫同位素地球化学与成矿物质来源研究.岩石学报,19(4):799~807
    吴越.2013.川滇黔地区MVT铅锌矿床大规模成矿作用的时代与机制.博士学位论文.北京:中国地质大学(北京).
    武丽艳,胡瑞忠,彭建堂,毕献武,陈宏伟,王巧云,刘桠颍.2009.湖南柿竹园矿田柴山铅锌矿床的C, O同位素组成及其研究意义[J].地球化学,38(3):242~250.
    修群业,高兰,王安建,刘俊来,曹殿华,范世家,翟云峰.2006.金顶矿床古元锆石SHRIMP年龄的发现及其地质意义.岩石学报,22(4):1040~48
    修群业.2007.云南金顶矿床物源特征及成矿年代探讨.中国地质科学博士学位论文.
    徐启东,李建威.2003.云南兰坪北部多金属矿化区区域流体流动与矿化分带—流体包裹体与稳定同位素依据[J].矿床地质,22(4):365~376.
    徐启东,周炼.2004.云南兰坪北部铜多金属矿化区成矿流体流动与矿化分带-矿石铅同位素和特征元素组成依据[J].矿床地质,23(4):452~461.
    徐晓春,谢巧勤,陆三明,陈天虎,黄震,岳书仓.2005.滇西兰坪盆地西缘铜矿床矿物流体包裹体研究.矿物学报,25(2):170~176.
    徐晓春,岳书仓.1999.粤东锡(钨、铜)多金属矿床的成矿物质来源和成矿作用[J].地质科学,(1):81~92.
    薛春纪,陈毓川,王登红,杨建民,杨伟光,曾荣.2003.滇西北金顶和白秧坪矿床:地质和He,Ne, Xe同位素组成及成矿时代[J].中国科学D辑,33(4):315~322.
    薛春纪,陈毓川,杨建民,王登红,杨伟光,杨清标.2002b.金顶铅锌矿床地质-地球化学[J].矿床地质,21(3):270~277.
    薛春纪,陈毓川,杨健民,王登红,杨伟光,杨清标.2002a.滇西兰坪盆地构造体制和成矿背景分析.矿床地质,21(1):36~44.
    薛春纪,陈毓川.2002.金顶铅锌矿床地质—地球化学.矿床地质,21(3):270~277.
    薛伟.2010.滇西北兰坪盆地白秧坪多金属矿床成矿流体研究.中国地质大学(北京)硕士学位论文
    杨尖絮,尹宏伟,张震,郑绵平.2013.滇西兰坪—思茅盆地成钾地质条件分析[J].大地构造与成矿学,37(4):633~640.
    杨庆坤,郭福生,姜勇彪.2010.沉积岩型铅锌矿床的成因机制及其硫源类型[J].采矿技术,05:91~94.
    杨伟光,喻学惠,李文昌,董方浏,莫宣学.2003.云南白秧坪银多金属矿集区成矿流体特征及成矿机制.现代地质,17:27~33
    杨伟光.2002.云南兰坪白秧坪银铜多金属矿集区成矿作用的地质--地球化学条件和成矿机制.中国地质大学(北京)博士论文.
    姚永,覃功炯.1991.云南金顶铅锌矿床硫,铅稳定同位素地球化学特征及其矿意义.矿产与勘查,2:42~50.
    叶庆同,胡云中,杨岳清.1992.三江地区区域地球化学背景和金银铅锌成矿作用.北京:地质出版社,1~279.
    尹福光,潘桂棠,万方,李兴振,王方国.2006.西南"三江"造山带大地构造相.沉积与特提斯地质,26(4):33~39.
    尹汉辉.1993.滇西地洼构造与成矿[M].长沙市:中南工业大学出版社,1~137.
    云南地质矿产局第三地质大队.1984.云南省兰坪县金顶铅锌矿详细勘察地质报告[R].云南省地质矿产局.
    云南省地质局.1974.1:20万兰坪幅区域地质调查报告[M].1~149.
    云南省有色地质局楚雄勘查院.2010.云南省普洱市萝卜山铅锌矿详查报告[M].1~118.
    云南省有色地质局楚雄勘查院.2010.云南省普洱市厂硐铅锌矿勘查报告[M].1~129
    翟裕生,邓军,汤中立,肖荣阁,宋鸿林,彭润民,孙忠实,王建平,向运川,黄华盛,张正伟,
    杨立强,白云来,陈丛喜,丁式江,王庆飞,胡玲,徐章华,苗来成,苏尚国,李强之,龚羽飞.古陆边缘成矿系统.北京市:地质出版社,2002,1~416.
    张从伟,高东林,马海州,韩文霞.2010.兰坪—思茅盆地钾盐矿床的物质来源探讨[J].盐湖研究,18(4):12~18.
    张尔新.2005.兰坪白秧坪铜银多金属矿集区西矿带矿床成因.云南地质,3:282~289.
    张欢,高振敏,马德云,陶琰,刘鸿.2004.个旧锡矿区鲕状黄铁矿和胶状结构黄铁矿中锡的分布及其成因意义[J].矿物学报,(1):87~91.
    张乾.1993.云南金顶超大型铅锌矿床的铅同位素组成及铅来源探讨[J].地质与勘探,05:21~28.
    张乾.1999.云南金顶超大型铅锌矿床的铅同位素组成及铅来源探讨.地质与勘探,29(5):21~28
    张玉泉,谢应雯.1997.哀牢山-金沙江富碱侵入岩年代学和Nd,Sr同位素特征.中国科学(D辑),27(4):289~293.
    张长青,毛景文,刘峰,李厚民.2005.云南会泽铅锌矿床粘土矿物K-Ar测年及其地质意义.矿床地质,24(3):317~324.
    张长青,余金杰,毛景文,芮宗瑶.2009.密西西比型(MVT)铅锌矿床研究进展[J].矿床地质,(2):195~210.
    张长青.2008.中国川滇黔交界地区密西西比型(MVT)铅锌矿床成矿模型.博士学位论文.北京:中国地质科学院.
    赵海滨.2006.滇西兰坪盆地中北部铜多金属矿床成矿特征及地质条件[D].北京:中国地质大学博士论文.1~123.
    赵海滨.2006.滇西兰坪盆地中北部铜多金属矿床成矿特征及地质条件[D].北京:中国地质大学博士论文.1~123.
    赵兴元.1989b.云南金顶铅锌矿床成因研究[J].地球科学,(5):523~530.
    赵兴元.1989a.云南金顶铅锌矿床稳定同位素地球化学研究[J].地球科学,05:495~502.
    赵准.2007.兰坪金顶铅锌矿—陆相SEDEX型矿床.云南地质,26(1):1~14.
    郑永飞,陈江峰.2000.稳定同位素地球化学.北京:科学出版社:1~316.
    钟大赉.1998.滇川西部古特提斯造山带[M].北京:科学出版社,1~231.
    钟康惠,唐菊兴,刘肇昌,寇林林,董树义,李志军,周慧文.2006.青藏东缘昌都—思茅构造带中新生代陆内裂谷作用.地质学报,80(9):1295~1311.
    周朝宪,魏春生,叶造军.1997.密西西比河谷型铅锌矿床.地质地球化学,1(1):65~76.
    周国宝.2005.中国有色金属矿产资源现状和矿业可持续发展的建议[J].中国金属通报,35:2~5.
    周家喜,黄智龙,高建国,王涛.2012.滇东北茂租大型铅锌矿床成矿物质来源及成矿机制[J].矿物岩石,32(3):62~69.
    周维全,周全立.1992.兰坪铅锌矿床铅和硫同位素组成研究.地球化学,(2):141~148
    朱创业,夏文杰.1997.兰坪—思茅中生代盆地性质及构造演化.成都理工学院学报,24(4):23~30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700