番茄品种对烟粉虱适生性及其寄生蜂种间竞争的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟粉虱Bemisia tabaci (Gennadius)属同翅目,粉虱科,是热带、亚热带及相邻温带地区的主要害虫之一。烟粉虱是一个复合种,种下包含许多生物型或隐蔽种,其中B型烟粉虱由于其对寄主适应性强,自20世纪90年代中后期侵入我国以来,迅速扩散,现已成为我国蔬菜、园林花卉等经济作物上的主要害虫。虽然选用抗虫品种是持续控制烟粉虱危害的有效措施之一,但是当其爆发危害时,还要采用如化学农药等应急措施进行防治。本文选择了11个番茄品种,研究了B型烟粉虱对它们的选择性及适生性差异,以及番茄品种对烟粉虱两种主要寄生蜂丽蚜小蜂Encarsia formosa浅黄恩蚜小蜂和Encarsia sophia的发育历期、寄生率和种间竞争的影响,并测定了在番茄常用商业品种上五种农药及其添加有机硅对烟粉虱各个龄期的杀伤效果和对丽蚜小蜂和浅黄恩蚜小蜂黑蛹及成蜂的毒力,以期为生产上选育稳定的番茄抗虫性状和有效利用天敌进行生物防治并且在烟粉虱大爆发时合理选择高效安全的农药提供理论依据。结果如下:
     1室内评价了B型烟粉虱对11个番茄品种(903,KT1,KT2,红椭圆,黄椭圆,202,203,207,809,红元帅1,巨红冠)的选择性及番茄品种对烟粉虱发育存活的影响。结果表明:B型烟粉虱成虫对11个番茄品种的取食和产卵选择具有一定差异,较偏好黄椭圆、KT1和202;中等喜好903、红椭圆和红元帅1;不喜好巨红冠、809、207和203。B型烟粉虱在11个番茄品种上的发育历期差异较小,从卵到成虫在KT1上所需时间最长,为21.35±0.55 d,在207上最短,为19.59±0.26 d。不同烟粉虱虫态在同一番茄品种上的存活率以1龄若虫较低,4龄+伪蛹期存活率较高。1龄若虫存活率在203上与巨红冠、红元帅1间存在显著差异;2龄、3龄和4龄+伪蛹在各供试品种上的存活率之间均没有显著差异;从卵到成虫的存活率,在203上的存活率最高,为83.50%;203与红椭圆、KT1、红元帅1、巨红冠、207、809间差异显著,其他品种之间差异不显著。
     2在5个烟粉虱喜好程度不同的番茄品种(黄椭圆,KT1,903,809,203)上,建立了实验种群生命表,并测定了番茄叶片的叶毛密度、pH值和主要营养物质含量。结果发现5个品种中,成虫平均寿命以黄椭圆上的最长,为19 d;903上的最短,为13.82 d;各品种上长短顺序依次为黄椭圆,KT1,809,203,903;平均单雌产卵量大小依次为黄椭圆,KT1,903,809,203;内禀增长率以在黄椭圆上的最高,为0.4706;在203上最低,为0.3435。综合来看,黄椭圆是B型烟粉虱的嗜好品种,最适合其生存和繁殖,也即抗虫性最弱。B型烟粉虱对203的选择性较弱,而且在203上的内禀增长率最低,表明203对于B型烟粉虱的繁殖适合性较低,对烟粉虱的抗虫性较强。而且在影响烟粉虱对寄主植物选择性的各个指标叶毛密度、pH值和营养物质含量中,黄椭圆都较为符合烟粉虱的选择要求。
     3比较研究了丽蚜小蜂E. formosa和浅黄恩蚜小蜂E. sophia在5个番茄品种上的发育历期和寄生率。结果表明:浅黄恩蚜小蜂的发育历期在各品种上都显著短于丽蚜小蜂。不同番茄品种对烟粉虱发育历期有一定的影响。丽蚜小蜂在5个品种上的发育时间由长到短依次为903,809,KT1,黄椭圆,203(15.95 d-14.59d),浅黄恩蚜小蜂在5个品种上的发育时间由长到短依次为903,黄椭圆,KT1,809,203(13.56d-12.00 d)。浅黄恩蚜小蜂在各个品种上的寄生率都低于丽蚜小蜂。丽蚜小蜂在5个品种上的寄生率由高到低依次为903、809、KT1、203、黄椭圆(65.00%-50.42%);浅黄恩蚜小蜂在5个品种上的寄生率由高到低依次为809、203、KT1、903、黄椭圆(53.33%-35.83%)。
     4室内研究了烟粉虱两种寄生蜂的种间竞争及番茄品种对竞争结果的影响。结果发现:单独寄生时E. formosa的寄生数量普遍高于E. sophia;当烟粉虱供2种蜂寄生时(包括同时寄生和先后寄生),寄生总数和E.sophia单独寄生时相比稍有增加,和E. formosa单独寄生时相比并没有明显提高;E. formosa或E. sophia各自的寄生数分别比它们单独寄生时都明显降低。但是寄生蜂引起的烟粉虱总致死数却是供2种蜂寄生时比供1种蜂寄生时高。说明两种蜂存在种间竞争,这种竞争的结果虽然使各种寄生蜂的子代数减少,但不会影响防治效果,有时甚至还会增强控害效果,特别是在黄椭圆上,这种增强作用更为明显。在先后寄生中,第2头雌蜂可以通过取食寄主干扰第1头雌蜂的寄生,其中E. sophia取食致死作用比E. formosa强。不同的番茄品种对于两种寄生蜂的种间竞争有一定的影响,但影响不是很明显。
     5测定了五种药剂及其添加有机硅对烟粉虱成虫、若虫和卵的毒力。结果表明:不同药剂处理烟粉虱卵时,以蚊蝇醚和啶虫脒死亡率较高,啶虫脒添加有机硅后对卵的杀伤力具有增效作用。烟粉虱低龄若虫对药剂敏感性最高,各处理下死亡率均可达到92%以上,有机硅本身对低龄若虫杀伤作用较强。烟粉虱高龄若虫对药剂的敏感性比低龄若虫降低,有机硅对功夫和吡蚜酮毒性增效作用明显;有机硅本身对高龄若虫也有一定的杀伤作用。在成虫的生测中,以啶虫脒杀伤力最强,蚊蝇醚、吡蚜酮次之;有机硅对吡蚜酮增效作用明显。另外,蚊蝇醚可以通过渗透作用影响烟粉虱卵的孵化,极大地降低卵的孵化率。
     6评价了五种药剂及其添加有机硅对丽蚜小蜂和浅黄恩蚜小蜂黑蛹及成蜂的安全性。对丽蚜小蜂黑蛹的毒性以啶虫脒、功夫较高,吡蚜酮、蚊蝇醚较低;对丽蚜小蜂成蜂的毒性以啶虫脒和功夫最高,吡蚜酮最低。对浅黄恩蚜小蜂黑蛹的毒性以吡蚜酮、功夫较强,印楝素、蚊蝇醚较低;对浅黄恩蚜小蜂成蜂的毒性以啶虫脒和功夫较强,吡蚜酮和蚊蝇醚较低。印楝素中添加有机硅后对丽蚜小蜂黑蛹和浅黄恩蚜小蜂黑蛹毒性都明显增强,啶虫脒、功夫、吡蚜酮和蚊蝇醚添加有机硅后,对丽蚜小蜂黑蛹毒性都没有增强,对浅黄恩蚜小蜂黑蛹的毒性有一定增强作用。五种药剂添加有机硅后对丽蚜小蜂成蜂和浅黄恩蚜小蜂成蜂的毒性都没有明显增强作用。
Bemisia tabaci Gennadius (Homoptera:Aleyrodidae) is one of the most serious pests in more than 90 countries and districts in tropical, subtropical regions and adjacent temperate zones. B. tabaci is a genetically diverse group that includes many morphologically indistinguishable populations differing in biological characteristics, but displaying clear geographic distributions called "biotypes". The B-biotype B. tabaci has spread quickly and has shown breakouts in many areas since it invaded China in the early 1990s. The B-biotype destroys crops by phloem feeding, excretion of honeydew, induction of phytotoxic disorders, and transmission of plant viruses. Recently, the B-biotype has become a serious pest to vegetables, ornamentals, and other economic crops in China and it is displacing other indigenous non B-biotype B. tabaci. Application of pest-resistant plant strains will be one of the efficient and sustainable ways for its control, but the chemical control measures still will be necessary, particularly when it breakout. In this thesis, we studied the selectivity and fitness of the pest to 11 tomato varieties, investigated the influences of the varieties on interspecific competition and biological characteristics of pest's parasitoids, Encarsia formosa and Encarsia sophia, and evaluated virulence to B. tabaci and safety to the two parasitoids of pesticides and their mixtures with organosilicon in laboratory. The purposes of the studies are to provide scientific information for application of pest-resistant tomato varieties and natural enemies, and to the utilize pesticides reasonably and efficiently against this pest. The results of the experiments were summarized as follows:
     1 Bemisia tabaci's selectivity to and influence of tomato varieties (Huangtuoyuan, KT1, KT2, Hongtuoyuan, Hongyuanshuai 1, Juhongguan,903,809, 207,203, and 202) on development and survival of the pest were investigated in laboratory. Bemisia tabaci exhibited significantly different selectivity to 11 tomato varieties. The preferred varieties were Huangtuoyuan, KT1 and 202, the less preferred ones were 903, Hongtuoyuan and Hongyuanshuai 1, and the rest fallen in the category of the least preferred varieties. The developmental duration from egg to adult varied from 21.35 days on KT1 to 19.59 days on 207. The lowest survival rate of B. tabaci nymph on the same tomato variety was the 1st instar, and the highest was the 4th instar. The survival rate in the 1st instar in variety 203 was significantly higher than those in varieties Juhongguan and Hongyuanshuai 1. The survival rate from egg to adult was highest in variety 203 (83.50%), significantly higher than those in varieties Hongtuoyuan, KT1, Hongyuanshuai 1, Juhongguan,207 and 809. However, no significant differences had been found in the survival rates for 2nd,3rd,4th and "prepupa" among the tested tomato varieties.
     2 Life tables of B. tabaci laboratory populations on 5 tomato varieties, for which the pest had different preference, were constructed, and leaf hair densities, pH value, contents of major nutrients of the 5 tomato varieties were also measured. The longevity of B. tabaci adults was the longest,19 days, resulted from variety Huangtuoyuan, followed in order by those from KT1,809, and 203, whereas it was the shortest from 903 (13.82 days). The average fecundity of B. tabaci adults on 5 tomato varieties was highest from Huangtuoyuan, followed in order by those from KT1,903,809,203. The intrinsic rate of increase (rm) of Huangtuoyuan, KT1,903, 809 and 203 were 0.4706,0.4289,0.4115,0.3974 and 0.3435, respectively. Experimental results, in generally speaking, suggested that B. tabaci was best adapted and showed the greatest preference for Huangtuoyuan and the lowest fitness on 203 oppositely. There were obviously differences in resistance to B-biotype B. tabaci among tomato varieties. The results of characteristics of plants that affect B. tabaci's selectivity showed that Huangtuoyuan was satisfied to the selective requirement of B. tabaci.
     3 The development duration and parasite rate of two parasitoids, Encarsia formosa and Encarsia sophia, on 5 tomato varieties were compared. The results showed that development duration of E. sophia was significantly shorter than that of E. formosa on all 5 varieties. Tomato varieties could affect development duration of two parasitoids. The sequence of development duration of E. formosa on 5 tomato varieties from long to short was 903,809, KT1, Huangtuoyuan, and 203 (15.95 d-14.59 d), while the sequence for E. sophia was 903, Huangtuoyuan, KT1,809, and 203 (13.56 d-12.00 d). The sequence of parasite rate of E. formosa on 5 tomato varieties from high to low was 903,809, KT1,203, Huangtuoyuan (65.00%-50.42%); and the sequence of parasite rate of E. sophia on 5 tomato varieties from high to low was 809,203, KT1,903, Huangtuoyuan (53.33%-35.83%).
     4 The interspecific competition between two major parasitoids, E. formosa and E. sophia, and influence of tomato varieties on competition outcome were investigated in laboratory. E. formosa parasitized more B. tabaci than E. sophia did when presented alone on any of the tomato varieties investigated. When B. tabaci nymphs were exposed to both wasp species (either in combination simultaneous or one after the other), the number of B. tabaci nymphs parasitized by each individual wasp species, either E. formosa or E. sophia, was significantly decreased compared to when each wasp was presented on its own. The total mortality of B. tabaci was increased when B. tabaci nymphs were exposed to both wasp species compared to only one wasp species. Competition apparently occurred between E. formosa and E. sophia, which reduced parasitoid offspring numbers, but did not affect the biological control efficiency. Control efficiency even enhanced in some cases, particularly on variety HTY. When wasps parasitized one after the other, the second wasp could interfere with reproduction of the first through host feeding. This action was weaker in E. formosa than in E. sophia. The effect of different tomato varieties was not significant. Different tomato varieties had impact on the outcome of competition and biological control efficiency in a certain extent, however, the influence was not significantly.
     5 The toxicity of 5 insecticides and their mixtures with organosilicon on the adult, nymph and egg stages of B. tabaci were measured in laboratory. The results showed that Pyriproxyfen and Acetamiprid were effective to B. tabaci eggs. B. tabaci young nymphs were the most sensitive stage to insecticides; organosilicon itself also had virulence to young nymphs. B. tabaci old nymphs'sensitivity was lower than B. tabaci young nymphs; organosilicon also had virulence to old nymphs. Acetamiprid was the most effective pesticide to B. tabaci adults, followed by Pyriproxyfen, Pymetrozine. With organosilicon, toxicity of Acetamiprid to eggs, toxicity of almost 5 kinds insecticides to young nymphs, toxicity of Kungfu and Pymetrozine to old nymphs, toxicity of Pymetrozine to adults were significantly increased. Pyriproxyfen extremely reduced egg hatching rate through osmosis from the face to the back of leafs, extraordinary affect reproduction of B. tabaci.
     6 The safety of 5 insecticides and their mixtures with organosilicon on pupae and adults of E. formosa and E. sophia, two parasitoids of B. tabaci, were evaluated in laboratory. The highest toxic insecticides to E. formosa pupae were Acetamiprid and Kungfu, whereas the lowest were Pymetrozine and Pyriproxyfen. The high toxic insecticides to E. formosa adults were Acetamiprid and Kungfu, while the lowest toxic one was Pymetrozine in contrary. Pymetrozine and Kungfu were very toxic to E. sophia pupae, while Azadirachtin and Pyriproxyfen were much safer than them. Acetamiprid and Kungfu showed high toxicity to E. sophia adults, meanwhile Pymetrozine and Pyriproxyfen were low toxicity to E. sophia adults.
     The mixture with orgnicsilicon addition, toxicity of Azadirachtin to E. formosa pupae and E. sophia pupae were enhanced significantly. Toxicity of Acetamiprid, Kungfu, Pymetrozine and Pyriproxyfen with orgnicsilicon were not increased to E. formosa pupae, but increased slightly to E. sophia pupae. Orgnicsilicon didn't get any tested pesticides toxicity up to E. formosa adults and E. sophia adults.
引文
[1]Abdallah Y E Y, Ibrahim S I, Elmoniem Abd, Youssef L A. Incidence of some piercing-sucking insects in relation to morphological leaf characters some chemical and nutritional components of some cotton cultivars. Annals of agricultural science,2001,46(2):807-827.
    [2]Ahmed M A. Difference in susceptibility of six cucumber cultivars to infestation by Aphis gossypii, Tetranychus urticae and Bemisia tabaci as correlated to protein and amino acid contents of leaves. Annals of Agricultural Science,1994,32:2189-2194.
    [3]Antony B, Palaniswami M S, Henneberry T J. Encarsia transvena (Hymenoptera:Aphelinidae) development on different Bemisia tabaci Gennadius (Homoptera:Aleyrodidae) instars. Environmental Entomology, 2003,32(3):584-591.
    [4]Anthony N M, Brown J K, Markham P G, Ffrench-Constant R H. Molecular analysis of cyclodiene resistance-associated mutations among populations of the sweetpotato whitefly Bemisia tabaci. Pesticide Biochemistry and Physiology,1995,51(3):220-228.
    [5]Austin A, Dowton M. Hymenoptera:Evolution, Biodiversity, and Biological Control. Victoria, Australia:CSIRO, Collingwood,2000.
    [6]Azab A K, Megahed M M, El-Mirsawi D H. On the biology of Bemisia tabaci (Genn.). Bulletin of the Entomological Society of Egypt,1971,9(55):305-315.
    [7]Baldin E L L, Vendramim J D, Lourencao A L. Resistance of tomato genotypes to the whitefly Bemisia tabaci (Gennadius) biotype B (Hemiptera: Aleyrodidae). Neotropical Entomology,2005,34(3):435-441.
    [8]Bedford B I D. Gemini virus transmission and biological characterization of Bemisia tabaci biotypes from different geographic regions. Annals of Applied Biology,1994,125:311-325.
    [9]Berlinger M J. A yellow sticky trap for whiteflies:Trialeurodes vaporariorum and Bemisia tabaci (Aleyrodidae). Entomologia Experimentalis et Applicata, 1980,27:98-102.
    [10]Berlinger M J. Host plant resistance to Bemisia tabaci. Agriculture, Ecosystems & Environment,1986,17:69-82.
    [11]Berlinger M J, Magal Z, Benzioni A. The importance of pH in food selection by the tobacco whitefly, Bemisia tabaci. Phytoparasitica,1983,11:151-160.
    [12]Bethke J A, Paine T D, Nuessly G S. Comparative biology, morphometrics, and development of two populations of Bemisia tabaci (Homoptera: Aleyrodidae) on cotton and poinsettia. Annals of the Entomological Society of America,1991,84(4):407-411.
    [13]Bi J L, Ballmer G R, Hendrix D L, Henneberry T J, Toscano N C. Effect of cotton nitrogen fertilization on Bemisia argentifolli populations and honeydew production. Entomologia Experimentalis et Applicata,2001,99(1):25-36.
    [14]Birch L C.The intrinsic rate of natural increase in an insect population. Journal of Animal Ecology,1948,17:15-26.
    [15]Bird J. A whitefly-transmitted mosaic of Jatropha gossypifolia. Agricultural Experiment Station University of Puerto Rico,1957,22:1-35.
    [16]Bird T L, Kruger K. Response of the polyphagous whitefly Bemisia tabaci B-biotype (Hemiptera:Aleyrodidae) to crop diversification-influence of multiple sensory stimuli on activity and fecundity. Bulletin of Entomological Research,2006,96(1):15-23.
    [17]Blackmer J L, Byrne D N. Changes in amino acids in cucumis melo in relation to life history traits and flight propensity of Bemisia tabaci. Entomologia Experimentalis et Applicata,1999,93:29-40.
    [18]Bogran C E, Heinz K M, Ciomperlik M A. Interspecific competition among insect parasitoids:field experiments with whiteflies as hosts in cotton. Ecology, 2002,83(3):653-668.
    [19]Briggs C J. Competition among parasitoid species on a stage-structured host and its effect on host suppression. American Naturalist,1993,141(3):372-397.
    [20]Brown J K, Coats S, Bedford I D, Markham P Q Bird J, Frohlich D R. Characterization and distribution of esterase electromorphs in the whitefly Bemisia tabaci (Genn.) (Homoptera:Aleyrodidae). Biochemistry Genet,1995a, 33(7-8):205-214.
    [21]Brown J K, Frohlich D R, Rosell R C. The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annual Review of Entomology,1995b,40:511-534.
    [22]Brown J K, Perring T M, Cooper A D, Bedford I D, Markham P G.Genetic analysis of Bemisia (Hemiptera:Aleyrodidae) populations by isoelectric focusing electrophoresis. Biochemistry Genet,2000,38(1-2):13-25.
    [23]Brown J K. Current status of Bemisia tabaci as a plant pest and virus vector in agroecosystems worldwide. FAO Plant Protection Bulletin,1994,42:1-32.
    [24]Bulter G D, Henneberry T J, Clayton T E. Bemisia tabaci(Homoptera: Aleurodidae):development, oviposition and longevity in relation to temperature. Annals of the Entomological Society of America,1983,23(76): 310-313.
    [25]Byrne D N, Bellows T S, Jr. Whitefly biology. Annual Review of Entomology, 1991,36:431-57.
    [26]Byrne D N, Draeger E A. Effect of plant maturity on oviposition and nymphal mortality of Bemisia tabaci (Homoptera:Aleyrodidae). Environmental Entomology,1989,18(3):429-432.
    [27]Byrne F J, Cahill M, Denholm I, Devonshire A L. A biochemical and toxicological study of the role of insensitive acetylcholinesterase inorganophosphates resistant Bemisia tabaci (Homoptera:Aleyrodidae) from Israel. Bulletin of Entomological Research,1994,84(2):179-184.
    [28]Byrne F J, Devonshire A L. Kinetics of insensitive acetylcholine esterases in organophosphate-resistant tobacco whitefly, Bemisia tabaci (Gennadius) (Homoptera:Aleyrodidae). Pesticide Biochemistry and Physiology,1997, 58(2):119-124.
    [29]Byrne F J, Gorman K J, Cahill M, Denholm I, Devonshire A L. The role of B-type esterases in conferring insecticide resistance in the tobacco whitefly. Bemisia tabaci(Genn). Pest Management Science,2000,56(10):867-874.
    [30]Byrne D N, Miller W B. Carbohydrate and amino acid composition of phloem sap and honeydew produced by Bemisia tabaci. Journal of Insect Physiology, 1990,36:433-439.
    [31]Cahagirone L E. Landmark example in classical biological control. Annual Review of Entomology,1981,26:213-232.
    [32]Cahill M, Byrne F J, Gorman K, Denholm I, Devonshire A L. Pyrethroid and organophosphate resistance in the tobacco whitefly Bemisia tabaci (Homoptera: Aleyrodidae). Bulletin of Entomological Research,1995,85(2):181-187.
    [33]Cahill M, Gorman K, Day S, Denholm I, Elbert A, Nauen R. Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci (Homoptera:Aleyrodidae). Bulletin of Entomological Research,1996a,86: 343-349.
    [34]Cahill M, Jarvis W, Gorman K, Denholm I. Resolution of baseline responses and documentation of resistance to buprofezin in Bemisia tabaci(Homoptera: Aleyrodidae). Bulletin of Entomological Research,1996b, (86):117-122.
    [35]Caltagirone L E. Landmark examples in classical biological control. Annual Review of Entomology,1981,26:213-232.
    [36]Chu C C, Freeman T P, Buckner J S, Henneberry T J, Nelson D R, Natwick E T. Susceptibility of upland cotton cultivars to Bemisia tabaci biotype B (Homoptera:Aleyrodidae) in relation to leaf age and trichome density. Annals of the Entomological Society of America,2001,94(5):743-749.
    [37]Cohen A C, Henneberry T J, Chu C C. Geometric relationships between whitefly feeding behavior and vascular bundle arrangements. Entomologia Experimentalis et Applicata,1996,78:135-142.
    [38]Cohen S, Kern J, Harpaz I, Ben-Joseph R.. Epidemiological studies of t he tomato yellow leaf curl virus (TYLCV) in t he Jordan Valley, Israel. Phytoparasitica,1988,16(3):259-270.
    [39]Collier T R, Hunter M S. Lethal interference competition in the whitefly parasitoids Eretmocerus eremicus and Encarsia sophia. Oecologia,2001,129: 147-154.
    [40]Collier T R, Hunter M S, Kelly S E. Heterospecific ovicide influences the outcome of competition between two endoparasitoids, Encarsia formosa and Encarsia luteola. Ecological Entomology,2007,32(1):70-75.
    [41]Collier T, Kelly S, Hunter M. Egg size, intrinsic competition, and lethal interference in the parasitoids Encarsia pergandiella and Encarsia formosa. Biological Control,2002,23 (3):254-261.
    [42]Costa A S, Russel L M. Failure of Bemisia tabaci to breed on cassava plants in Brazil (Homoptera:Aleyrodidae). Ciencia Cultura (Sao Paulo),1975,27: 388-390.
    [43]Costa H S, Ullman D E, Johnson M W, Tabashnik B E. Squash silverleaf symptoms induced by immature, but not adult, Bemisia tabaci. Phytopathology, 1993,83:763-766.
    [44]Cottage E L A, Gunning R V. International symposium on cholinergic mechanisms-function and dysfunction & 2nd misrahi symposium on neurobiology. Switzerland,2002.
    [45]Csizinszky A A, Schuster D J, Polston J E. Effect of ultraviolet-reflective mulches on tomato yields and on the silverleaf whitefly. HortScience,1999,34: 911-914.
    [46]De Barro P J, Driver F. Use of RAPD PCR to distinguish the B biotype from other biotypes of Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae). Australian Journal of Entomology,1997,36(2):149-152.
    [47]De Barro P J, Driver F, Trueman J W H, Curran J. Phylogenetic relationships of world populations of Bemisia tabaci (Gennadius) using ribosomal ITS1. Molecular Phylogenetics and Evolution,2000,16(1):29-36.
    [48]Denholm I, Cahill M, Byrne F J, Devonshire A L. Progress with documenting and combating insecticide resistance in Bemisia. in Bemisia 1995:taxonomy, biology, damage, control and management (D. Gerling and R T Mayer eds), Intercept:Andover, UK,1996, pp.577-602
    [49]Dennehy T J. Monitoring and management of whitefly resistance to insecticides in Arizona. Proceedings Beltwide Cotton Conferences, Nashville, TN, USA.1996.
    [50]Dennehy T J, Williams L.Management of resistance in Bemisia in Arizona cotton. Pesticide Science,1997,51(3):398-406.
    [51]Dittrich V, Ernst G H, Ruesch O, Uk S. Resistance mechanisms in sweetpotato whitefly (Homoptera:Aleyrodidae) populations from Sudan, Turkey, Guatemala, and Nicaragua. Journal of Economic Entomology,1990,83(5): 1665-1670.
    [52]Dittrich V, Ernst G H. The resistance pattern in whiteflies of Sudanese cotton. Mitteilungen der Deutschen Gesellschaft fur Allgemeine und Angewandte Entomologie,1983,4(1-3):96-97.
    [53]Drost Y C, van Lenteren J C, van Roermund H J W. Life history parameters of different biotypes of Bemisia tabaci (Hemiptera:Aleyrodidae) in relation to temperature and host plant;a selective review. Bulletin of Entomological Research,1998,88:219-229.
    [54]Elbert A, Nauen R. Resistance of Bemisia tabaci (Homoptera:Aleyrodidae) to insecticides in southern Spain with special reference to neonicotinoids. Pest Management Science,2000,56:60-64.
    [55]Elizabeth W D. Improved artificial feeding system for rearing the whitefly Bemisia argentifolii (Homoptera:Aleyrodidae). Florida Entomologist,2000, 83(4):459-468.
    [56]Elsey K D, Farnham M W. Response of Brassica oleracea L. to Bemisia tabaci Gennadius. HortScience,1994,29(7):814-817.
    [57]Enkegaard A. Encarsia formosa parasitizing the poinsettia-strain of the cotton whitefly, Bemisia tabaci on poinsettia:bionomics in relation to temperature. Entomologia Experimentalis et Applicata,1993,69:251-261.
    [58]Farnham M W, Elsey K D. Recognition of Brassica oleraceae L. resisitance against the silverleaf whitefly. HortScience,1995,30(2):343-347.
    [59]Faria M, Wraight S P. Biological control of Bemisia tabaci with fungi. Crop Protection,2001,20:767-778.
    [60]Frohlich D R, Torres-Jerez I, Bedford I D, Markham P G, Brown J K. A phylogeographical analysis of the Bemisia tacaci species complex based on mitochondrial DNA markers. Molecular Ecology,1999,8:1683-1691.
    [61]Gammeel O I. Some aspects of the mating and oviposition behavior of the cotton whitefly Bemisia tabaci (Genn.). Review of Zoology of Africa,1974,88: 784-788.
    [62]Gennadius P. Disease of tobacco plantations in Trikonia:the aleurodid of tobacco. Ellenike Georgia,1889,51-53.
    [63]Gerling D. Natural enemies of whiteflies:predators and parasitoids. In:Gerling, D. (Ed.), Whiteflies:Their Bionomics, Pest Status and Management. Andover, Hants, UK:Intercept Ltd.1990,147-185.
    [64]Gerling D. Studies with whitefly parasites of southern California Encarsia pergandiella Howard (Hymenoptera:Aphelinidae). Canadian Entomologist, 1966,98:707-724.
    [65]Gerling D, Alomar o, Arno J. Biological control of Bemisia tabaci using predators and parasitoids. Crop Protection,2001,20:779-799.
    [66]Gerling D, Horowitz A R. Yellow traps for evaluating t he population levels and dispersal patterns of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Annals of the Entomological Society of America,1984,77: 753-759.
    [67]Gerling D, Horowitz A R, Baumgaerner J. Autecology of Bemisia tabaci. Agriculture, Ecosystems & Environment,1986,17:5-19.
    [68]Gerling D, Spivak D, Vinson S B. Life history and host discrimination of Encarsia deserti (Hymenoptera:Aphelinidae), a parasitoid of Bemisia tabaci (Homoptera:Aleyrodidae). Annals of the Entomological Society of America, 1987,80,224-229.
    [69]Gill R J. A review of the sweetpotato whitefly in Southern Califonia. The Pan-Pacific Entomologist,1992,68:144-152.
    [70]Gill R J. The morphology of whiteflies. Pest Status and Management. UK: Wimborne,1990,13-46.
    [71]Goolsby J A, Ciomperlik M A, Kirk A A, Jones W A, Legaspi B C, Legaspi J C, Ruiz R A, Vacek D C, Wendel L E. Predictive and empirical evaluation for parasitoids of Bemisia tabaci (biotype'B'), based on morphological and molecular systematics. In:A. D. Austin & M. Dowton (eds), Hymenoptera: Evolution, Biodiversity and Biological Control. CSIRO Publishing, Collingwood, Australia,2000, pp.347-358.
    [72]Goolsby J A, DeBarro P J, Kirk A A, et al. Post-release evaluation of biological control of Bemisia tabaci'B'in the USA and the development of predictive tools to guide instroductions for other countries. Biological Control,2005,32: 70-77.
    [73]Harrison B D, Robinson D J. Natural genomic and antigenic variation in whitefly transmitted geminiviruses (Begomoviruses). Annual Review of Phytopathology,1999,37:369-398.
    [74]Headrick D H, Bellows T S, Perring T M. Development and reproduction of a population of Eretmocerus eremicus (Hymenoptera:Aphelinidae) on Bemisia argentifolii (Homoptera:Aleyrodidae). Environmental Entomology,1999, 28(2):300-306.
    [75]Heinz K M, Nelson J M. Interspecific interactions among natural enemies of Bemisia in an inundative biological control program. Biological Control,1996, (6):384-393.
    [76]Hill B G. A morphological comparison between two species of whitefly, Trialeurodes vapeoariorum (West.) and Bemisia tabaci (Genn.) (Homoptrea: Aleyrodidae) which occur on tobacco in the Transvaal. Phytophylacitica,1969, 1:127-146.
    [77]Hoddle M S, van Driesche R G, Sanderson J P. Biology and Use of the Whitefly Parasitoid Encarsia formosa. Annual Review of Entomology,1998, 43:645-669.
    [78]Horowitz A R, Ishaaya I. Managing resistance to insect growth regulators in sweetpotato whitefly (Homoptera:Aleyrodidae). Journal of Economic Entomology,1994,87(4):866-871.
    [79]Horowitz A R, Kontsedalov S, Deholm I, Ishaaya I., Dynamics of insecticide resistance in Bemisia tabaci:a case study with the insect growth regulator pyriproxyfen. Pest Management Science,2002,58(11):1096-1100.
    [80]Horowitz A R, Mendelson Z, Cahill M. Denholm I, Ishaaya I. Managing resistance to the insect growth regulator, pyriproxyfen, in Bemisia tabaci. Pesticide Science,1999,55(3):272-276.
    [81]Howard S R, Allen C C. Phosporus nutrition and leaf age effects on the sweetpotato whitefly (Homoptera:Aleyrodidae) host selection. Population Ecology,1994,23(3):693-698.
    [82]Hung C F, Kao C H. Detoxifying enzymes of selected species with chewing and sucking habits. Journal of Economic Entomology,1990,83(2):361-365.
    [83]Hunter M S, Collier T R, Kelly S E. Does an autoparasitoid disrupt host suppression provided by a primary parasitoid? Ecology,2002,83(5): 1459-1469.
    [84]Hunter M S, Kelly S E. Hyperparasitism by an exotic autoparasitoid: secondary host selection and the window of vulnerability of conspecific and native heterospecific hosts. Entomologia Experimentalis et Applicata,1998, 89(3):249-259.
    [85]Hunter M S, Woolley J B. Evolution and behavioral ecology of heteronomous aphelinid parasitoids. Annual Review of Entomology,2001,46:251-290.
    [86]Husain M, Trehan K N. Final report on the scheme of investigations on the whitefly on cotton in the Punjab. Indian Journal of Agricultural Science, 1940,10:101-109.
    [87]Ilyas M, Puri S N, Rote N B. Effects of some morphophysiologica characters of leaf on incidence of cotton whitefly. Journal of Maharashtra Agricultural University,1991,16 (3):386-388.
    [88]Ishaaya I, Horowitz A R. Novel phenoxy juvenile hormone analog (pyriproxyfen) suppress embryogenesis and adult emergence of sweetpotato whitefly (Homoptera:Aleyrodidae). Journal of Economic Entomology,1992, 85(6):2113-2116.
    [89]Ishaaya I, Horowitz A R. Pyriproxyfen, a novel insect growth regulator for controlling whiteflies:mechanisms and resistance management. Pesticide Science,1995,43:227-232.
    [90]Jackson D M, Famham M W, Simmons A M, van Giessen W A, Elsey K D. Effects of planting pattern of Collards on resistance ton whiteflies (Homoptera: Aleyrodidae) and on parasitoid abundance. Journal of Economic Entomology, 2000,93(4):1227-1236.
    [91]Jervis M A, Kidd N A C. Host feeding strategies in hymenopteran parasitoids. Biological Reviews,1986,61:395-434.
    [92]Jiang Y X, Nombela G, Muniz M. Analysis by DC-EPG of the resistance to Bemisia tabaci on an Mi-tomatoline. Entomologia Experimentalis et Applicata, 2001,99(3):295-302.
    [93]Jing Y., Huang J., Ma R Y, Han J C.Host plant preferences of Bemisia tabaci gennadius. Entomologia Sinica,2003,10(2):109-114.
    [94]Jones W A, Ciomperlik M A. Lethal and sublethal efects of insecticides on two parasitoids attacking Bemisia argentifolii (Homoptera:Aleyrodidae. Biological Control,1998,11:70-76.
    [95]Jones W A, Greenberg S M. Suitability of Bemisia argentifolii (Homoptera: Aleyrodidae) instars for the parasitoid Eretmocerus mundus (Hymenoptera: Aphelinidae). Environmental Entomology,1998,27:1569-1573.
    [96]Kajita H. Geographical distribution and species composition of parasitoids (Hymenoptera:Chalcidoidea) of Trialeurodes Vaporariorum and Bemisia tabaci-complex (Homoptera:Aleyrodidae) in Japan. Applied Entomology and Zoology,2000,35(1):155-162.
    [97]Kakehashi M, Suzuki Y, Iwasa Y. Niche overlap of parasitoids in host-parasitoid host systems:its consequence to single versus multiple introduction controversy in biological control. Journal of Applied Ecology, 1984,21:115-131.
    [98]Kirk A A, Lacey L A, Brown J K, Ciomperlik M A, Goolsby J A, Vacek D C, Wendel L A. Variation in the Bemisia tabaci species complex (Hemiptera: Aleyrodidae) and its natural enemies leading to successful biological control of Bemisia biotype B in the USA. Bulletin of Entomological Research,2000,90: 317-327.
    [99]Knoche M. Organosilicone surfactant performance in agricultural spray application:a review. Weed Research,1994,34 (3):221-239.
    [100]Lambert A L, Mcpherson R M, Espelie K E. Soybean host plant resistance mechanisms that alter abundance of whiteflies (Homoptera:Aleyrodidae). Environmental Entomology,1995,24(6):1381-1386.
    [101]Lambert A L, Mcpherson R M, Herzog G A. Field evaluation of fourteen soybean genotype for resistance to whitefly (Homoptera:Aleyrodidae) infestation. Journal of Economic Entomology,1997,90(2):658-662.
    [102]Li Z H, Lammes F, van Lenteren J C, Husiman P W T, van Vianen A and de Ponti O M B. The parasite-host relationship between Encarsia formosa Gahan (Hymenoptera:Aphelinidae) and Trialeurodes vaporariorum (Westwood) (Homoptera:Aleyrodidae). XXV. Influence of leaf structure on the searching activity of Encarsia formosa. Journal of Applied Entomology,1987,104: 297-304.
    [103]Liu S S, De Barro P J, Xu J, et al. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science,2008,318(5857): 1769-1772.
    [104]Maruthi M N, Muniyappa V, Green S K, et al. Resistance of tomato and sweet-pepper genotypes to Tomato leaf curl Bangalore virus and its vector Bemisia tabaci. International Journal of Pest Management,2003,49(4): 297-303.
    [105]May R M, Hassell M P. The dynamics of multiparasitoidhost interactions. American Naturalist,1981,117(3):234-261.
    [106]McAuslane H J, Webb S E, Elmstrom G W. Resistance in germplasm of Cucurbita pepo to silverleaf, a disorder associated with Bemisia argentifolii (Homoptera:Aleyrodidae). The Florida Entomologist,1996,79(2):206-221.
    [107]Mills N J, Gutierrez A P. Prospective modelling in biological control:An analysis of the dynamics of heteronomous hyperparasitism in a cotton-whitefly-parasitoid system. Journal of Applied Ecology,1996,33(6): 1379-1394.
    [108]Mohanty A K, Basu A N. Effect of host plants and seasonal factors on intraspecific variations in pupal morphology of the whitefly vector, Bemisia tabaci (Genn.) (Homoptera:Aleyrodidae). Journal of Entomological Research, 1986,10(1):19-26.
    [109]Moretti R, Calvitti M. Intrinsic competition between the parasitoids Eretmocerus mundus and Encarsia formosa in Bemisia tabaci. Entomologia Experimentalis et Applicata,2008,129(1):44-53.
    [110]Morin S, Williamson M S, Goodsons J, et al. Mutations in the Bemisia tabaci para sodium channel gene associated with resistance to a pyrethroid plus organophosphate mixture. Insect Biochemistry and Molecular Biology,2002, 32:1781-1791.
    [111]Moshe G, Gerling D. Predatory behavior of Delphastuspusillus in relation to the phenotypic plasticity of Bemisia tabaci nymphs. Entomologia Experimentalis et Applicata,1999,92:239-248.
    [112]Mound L A. Effect of leaf hair on cotton whitefly populations in the Sudan Gezira. The Empire Cotton Growing Review,1965,42:33-40.
    [113]Mound L A. Host-correlated variation in Bemisia tabaci (Gennadius) (Homoptera:Aleyrodidae). Proceedings of the Royal Entomological Society of London. Series A, General Entomology,1963,38:171-180.
    [114]Mound L A. Studies on the olfaction and colour sensitivity of Bemisia tabaci (Gene.) (Homoptera Aleyrodidae). Entomologia Experimentalis et Applicata, 1962,5:99-104.
    [115]Mound L A, Halsey S H. Whitefly of the world. British Museum and John Wiley & Sons, London,1978, pp.340.
    [116]Muigai S G, Bassett M J, Schuster D J, et al. Greenhouse and field screening of wild Lycopersicon germplasm for resistance to the whitefly Bemisia argentifolii. Phytoparasitica,2003,31(1):27-38.
    [117]Muigai S G, Schuster D J, Snyder J C, et al. Mechanisms of resistance in Lycopersicon germplasm to the whitefly Bemisia argentifolii. Phytoparasitica, 2002,30(4):347-360.
    [118]Muniz M., Nombela G http://www.whitefly.org/ResearchHd. htm (Epidemiology:clip-cage),2001,1-2.
    [119]Musa P D, Ren S X. Development and reproduction of Bemisia tabaci (Homoptera:Aleyrodidae) on three bean species. Insect Science,2005,12(1): 25-30.
    [120]Nauen R, Stumpf N, Elbert A. Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Management Science,2002,58:868-875.
    [121]Neal J W, Bentz J A. Evidence for the stage inducing phenotypic plasticity in pupae of the polyphagous whiteflies Trialeurodes vaporariorum and Bemisia argentifolii (Homoptera:Aleyrodidae) and the raison d'etre. The Entomological Society of America,1999,92 (6):774-787.
    [122]Netting J F, Hunter M S. Ovicide in the whitefly parasitoid, Encarsia formosa. Animal Behavior,2000,60:217-226.
    [123]Nguyen R, Brazzel J R, Poucher C. Population density of the citrus blackfly, Aleurocanthus woglumi Ashby (Homoptera:Aleyrodidae) and its parasites in urban Florida in 1979-1981. Environmental Entomology,1983,12:78-884.
    [124]Nombela G, Beitia F, Muniz M. A differential interaction study of Bemisia tabaci Q-biotype on commercial tomato varieties with or without the Mi resistance gene, and comparative host responses with the B-biotype. Entomologia Experimentalis et Applicata,2001,98(3):339-344.
    [125]Noyes J. A Catalogue of the Chalcidoidea. The Netherlands:Compact Disc, ETI,1998.
    [126]Oliveira M R V, Henneberry T J, Anderson P. History, current status, and collaborative research projects for Bemisia tabaci. Crop Protection,2001, 20(9):709-723.
    [127]Osborne L S, Landa Z. Biological control of whiteflies with entomopathogenic fungi. Florida Entomologist,1992,75:456-471.
    [128]Palumbo J C, Horowitz A R, Prabhaker N. Insecticidal control and resistance management for Bemisia tabaci. Crop Protection,2001,20(9):739-765.
    [129]Pedata P A, Giorgini M, Guerrieri E. Interspecific host discrimination and within-host competition between Encarsia formosa and E. pergandiella (Hymenoptera:Aphelinidae), two endoparasitoids of whiteflies (Hemiptera: Aleyrodidae). Bulletin of Entomological Research,2002,92(6):521-528.
    [130]Perring T M. The Bemisia tabaci species complex. Crop Protection,2001,20: 725-737.
    [131]Pilowsky T M, Hohen S. Tolerance to tomato yellow leaf curl virus derived from Lycopersicon peruviaum. Plant Disease,1990,74:248-250.
    [132]Pimm S L, Lawton J H. On feeding on more than one trophic level. Nature, 1978,275:542-544.
    [133]Pollard D C. Feeding habits of the cotton whitefly Bemisia tabaci Genn. (Homoptera:Alyrodidae). Annals of Applied Biology,1955,43:664-671.
    [134]Polston J E, Anderson P K. The emergence of whitefly transmitted geminiviruses in tomato in the western hemisphere. Plant Disease,1997, 81(12):1358-1369.
    [135]Prabhaker A W, Coudriet D L, Meyerdick D E. Insecticide resistance in the sweetpotato whitefly, Bemisia tabaci (Homoptera:Aleyrodidae). Journal of Economic Entomology,1985,78(4):447-451.
    [136]Prabhaker N, Toscano N C, Castle S J, Henneberry T J. Selection for imidacloprid resistance in silverleaf whiteflies from the Imperial Valley and development of a hydroponic bioassay for resistance monitoring. Pesticide Science,1997, (51):419-428.
    [137]Price P W, Bouton C E, Gross P, Mcpheron B A, Thompson J N, Weis A E. Interactions among three tropic level:influence of plants on interactions between insect herbivores and natural enemies. Annual Review of Ecology, Evolution, and Systematics,1980,11:41-65.
    [138]Rao N V, Reddy A S, Ankaiah R, Rao B R, Khasim S M. Incidence of whitefly Bemisia tabaci in relation to leaf characters of upland cotton Gossypium hirsutum L. Indian Journal of Agricultural Sciences,1990,60(9):619-624.
    [139]Ren S X, Wang Z Z, Qiu B L, Xiao Y. The pest status of Bemisia tabaci in China and non-chemical control strategies. Entomologia Sinica,2001,8(3): 279-288.
    [140]Robertson I A D. The whitefly, Bemisia tabaci (Gennadius) as a vector of African cassava mosaic virus at the Kenya coast and ways in which the yield losses in cassava, Manihot esculenta Crantz caused by the virus can be reduced. Insect Science and its Application,1987,8(4-6):797-801.
    [141]Roltsch W J. Establishment of introduced parasitoids of the silverleaf whitefly in the Imperial Valley of CA. In:woods, D. M. (Ed.), Biological Control Program Annual Summary,2001.21.
    [142]Rose M, DeBach P. Citrus whitefly parasites established in California. California Agriculture.1981,36(7&8):21-23.
    [143]Rosen D, Bennett F D, Capinera J L. Pest management in the subtropics: integrated pest management. Intercept:A Florida Perspective,1996:387-411
    [144]Russell L M. Synonyms of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Bulletin of the Brooklyn Entomological Society,1957,52: 122-123.
    [145]Rybicki E P, Pietersen G.Plant virus diseases problems in the developing world. Advances in Virus Research,1999,53:127-175.
    [146]Saikai A K, Muniyappa V. Epidemiology and control of tomato leaf curl virus in southern India. Tropical Agricultural,1989,66(4):350-357.
    [147]Schuster D J, Stansly P A, Polston J E. Expressions of plant damage by Bemisia.1996, pp.153-165. In Gerling D and Mayer R T(eds.), Bemisia,1995: Taxonomy, biology, damage, control and management. Intercept Ltd., Andover, Hants, United Kingdom.
    [148]Segarra-Carmona A E, Bird J, Escudero J. Silvering of Cucurbita moschata (Duchesne Poir) associated with Bemisia tabaci Genn. (Homoptera: Aleyrodidae) in Puerto Rico. Journal of Agriculture of the University of Puerto Rico.1990,74:477-478.
    [149]Soundararajan R P, Baskaran P. Mechanisms of resistance in brinjal(Solanum melongena L) to whitefly Bemisia tabaci (Gennadius). The Madras Agricultural Journal,2001,88(10-12):657-659.
    [150]Sundaramurthy V T. Upsurgennce of the whitefly, Bemisia tabaci Genn. in the cotton ecosystem of India. Outlook On Agriculture,1992,21:109-115.
    [151]Szabo P, van Lenteren J C, Huisman P W T. Development time, survival, and fecundity of Encarsia formosa on Bemisia tabaci and Trialeurodes vapor-ariorum. IOBC/WPRS Bulletin Working Group IPM Glasshouses,1993, 16:173-176.
    [152]Thompson C R, Cornell J A, Sailer R I., Interactions of parasites and a hyperparasite in biological control of citrus blackfly, Aleurocanthus woglumi (Homoptera:Aleyrodidae), in Florida. Environmental Entomology,1987,15: 140-144.
    [153]Toscano N C, Prabhaker N, Castle S J, Henneberry T J. Inter-regional differences in baseline toxicity of Bemisia argentifolli (Homoptera: Aleyrodidae) to two insect growth regulators, buprofezin and pyriproxyfen. Journal of Economic Entomology,2001,94(6):1538-1546.
    [154]van Lenteren J C. A greenhouse without pesticides:fact or fantasy?. Crop Protection,2000,19:375-384.
    [155]van Lenteren J C, Drost Y C, van Roermund H J W, Posthuma-Doodeman C J A M. Aphelinid parasitoids as sustainable biological control agents in greenhouses. Journal of Applied Entomology,1997,121:473-485.
    [156]van Lenteren J C, Noldus L P J. Whitefly-plant relationship:behavioral and ecological aspects//Gerling D. In Whiteflies:Their Bionomics, Pest Status and Management, Intercept, Andover, Hants, UK.1990:47-89.
    [157]van Lenteren J C, Roermund H J W, Sutterlin S. Biological control of greenhouse whitefly (Trialeurodes:vaporariorum) with the parasitoid Encarsia formosa:how does works?. Biological Control,1996,6:1-10.
    [158]van Lenteren J C. Biological and integrated pest control in greenhouse. Annual Review of Entomology,1998,33(2):239-269.
    [159]von Arx R, Baumgartner J, Delucchi V. A model to simulate the population dynamics of Bemisia tabaci Genn. (Stern:Aleyrodidae) on cotton in the Sudan Gezira. Zeitschrift fur Angewandte Entomologie,1983,96:341-361.
    [160]Williams T. Invasion and displacement of experimental populations of a conventional parasitoid by a heteronomous hyperparasitoid. Biocontrol Science and Technology,1996,6:603-618.
    [161]Woets J. List of areas with application of beneficial insects in greenhouse percoutry and per crop in 1981 (inha)/List of research workers in biological control in greenhouse,1982/commercial producers of beneficial insects. In: sting, Nens. Biol. Contr.,1982,5:6-13.
    [162]Wool D, Gerling D, Bellotti A C, Morales F J. Esterase electrophoretic variation in Bemisia tabaci (Genn.) (Homoptera:Aleyrodidae) among host plants and localities in Israel. Journal of Applied Entomology-Journal Information,1993,115:185-196.
    [363]Wool D, Greenberg S. Esterase activity in whiteflies(Bemisia tabaci) in Israel in relation to insecticide resistance. Entomologia Experimental is et Applicata, 1990,57(3):251-258.
    [164]Xu R M. The occurrence and distribution of Bemisia in China. In "Bemisia 1995:Taxonomy, Biology, Damage, Control and Management" (Gerling, D. Mayer R T eds).Intercept, Andover. UK,1996, pp.125-131.
    [165]Yokomi R K, Hoelmer K A, Osborne L S. Relationships Between the Sweetpotato Whitefly and the Squash Silverleaf Disorder. Phytopathology, 1990,80:895-900.
    [166]Zheng L, Cui H Y, Song K, et al. Mass production and control effeicency of natural enemies in vegetable crops. Proceedings of the 15 International Plant Protection Congress (Abstracts). Beijing:Foreign Languages Press,2004.113
    [167]Zwolfer H. The structure and effect of parasite complexes attacking phytophagous host insects. In "Dynamics of Populations:Proceedings of the Advanced Study Institute on'Dynamics and Numbers in Populations' Oosterbeck 1970" (P. J. denBoer and G. R. Gradwell, Eds.),1971, pp.405-418. Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands.
    [168]柴伟纲,谌江华,孙梅梅,陈若霞.5种有机硅助剂对锐劲特的增效作用研究.浙江农业科学,2009,2:377-378.
    [169]陈连根.烟粉虱在园林植物上危害及其形态变异.上海农学院学报.1997,15(3):186-189.
    [170]陈倩,刘玉升,朱国仁,肖利峰.不同寄主植物对B型烟粉虱生长发育的影响.山东农业大学学报(自然科学版),2003,34(4):479-481.
    [171]程洪坤,田毓起,魏炳传等.丽蚜小蜂商品化生产技术.生物防治通报,1989,5(4):178-181.
    [172]程洪坤,谢明,丘卫亮.引进丽蚜小蜂防治温室白粉虱.中国生物防治(包建中,古德祥主编).山西科学技术出版社,1996.
    [173]邓锋杰,曹顺生,温远庆.农药用有机硅表面活性剂的研究进展.化学研究与应用,2002,14(6):723-724.
    [174]邓业成,徐汉虹,雷玲.烟粉虱的化学防治及抗药性.农药,2004,43(1):10-15.
    [175]杜予州,孙伟,张莉,周福才,张学好,徐东进.B型烟粉虱对不同豇豆品种的选择及适生性研究.中国农业科学,2006,39(12):2498-2504.
    [176]冯兴兰,杨宇红,谢丙炎,杨翠荣.警惕烟粉虱大爆发导致新的蔬菜病毒病流行.中国蔬菜,2001,(2):34-35.
    [177]高建昌,杜永臣,王孝宣,国艳梅.番茄抗虫育种研究进展.中国蔬菜,2007,(3):38-42.
    [178]何玉仙,杨秀娟,翁启勇.农田烟粉虱寄主植物调查初报.华东昆虫学报,2003,12(2):16-20.
    [179]黄建,郑琼华,傅建炜,黄蓬英,古德祥.粉虱寄生蜂种类的调查与鉴定.华东昆虫学报,2000,9(2):29-33.
    [180]姬秀枝,张青文,刘小侠,杨麦生.烟粉虱对不同黄瓜品种的选择性.植物保护,2005,31(4):62-64.
    [181]蒋金炜,高素霞,王强雨,陈新.郑州地区烟粉虱寄主植物种类及发生动态.河南农业大学学报,2006,40(3):258-260.
    [182]金党琴,祝树德.寄主植物对烟粉虱实验种群的影响.植物检疫,2005,19(2):73-76.
    [183]纠敏,周雪平,刘树生.烟粉虱传播双生病毒研究进展.昆虫学报,2006.49(3):513-520.
    [184]柯俊成,陈秋男,王重雄.烟粉虱种群(Bemisia tabaci species complex)分类学综述.台湾昆虫,2002,22:307-341.
    [185]李凤荪.中国经济昆虫(中册).湖南农学院丛刊第1号,1953,pp.666.
    [186]李国清,慕莉莉.拟寄生蜂搜索产卵过程中对寄主的竞争.生态学报,2006,26(4):1261-1269.
    [187]缪玉刚,赵钢,杨福丽.有机硅助剂在农药使用中的节水省药研究.当代生态农业,2009,1:53-56.
    [188]林克剑,吴孔明,魏洪义,郭予元.寄主植物对B型烟粉虱生长发育和种群增殖的影响.生态学报,2003,23(5):870-877.
    [189]林莉,任顺祥.变叶木品种对B型烟粉虱发育和繁殖的影响.华南农业大学学报,2005,26(2):39-42.
    [190]林凌伟,王永才,董国堃等.莲子草-B型烟粉虱的一种重要杂草寄主.植物保护,2005,31(1):43
    [191]刘树生,张友军,罗晨,万方浩.烟粉虱.见:万方浩,郑小波,郭建英,主编.重要农林外来入侵物种的生物学与控制.北京:科学出版社.2005,69-128.
    [192]罗晨,郭晓军,岳梅,向玉勇,张芝利.寄主植物对B型烟粉虱形态学和生物学特性的影响.生物多样性,2006,14(4):333-339.
    [193]罗晨,张君民,石宝才,张帆,张芝利.北京地区烟粉虱Bemisia tabaci (Gennadius)调查初报.北京农业科学(增刊),2000a,18:42-47.
    [194]罗晨,张芝利.烟粉虱Bemisia tabaci (Gennadius)研究概述.北京农业科学(增刊),2000b,18:4-13.
    [195]罗晨,张芝利.烟粉虱的发生与防治.植保技术与推广,2002,22(3):35-39.
    [196]罗宏伟,黄建,王竹红.甘薯品种对烟粉虱实验种群的影响.闽西职业大学学报,2004,4:101-104.
    [197]罗志义,章伟年,干国培.棉田烟粉虱种群动态及杀虫剂的影响.昆虫学 报,1989,32(3):293-299.
    [198]马继盛,李正跃.烟草昆虫学.北京:中国农业出版社.2003.
    [199]马文儒.植物的叶表层与昆虫的行为.生物学通报,1993,28(10):12-13.
    [200]孟祥锋,何俊华,刘树生,陈学新.烟粉虱的寄生蜂及其应用.中国生物防治,2006,22(3):174-179.
    [201]庞保平,程家安.植物体表与昆虫的关系.生物学杂志,1998,17(4):52-58.
    [202]庞淑婷,王树芹,郭玉玲,施祖华.不同番茄品种对B型烟粉虱适应性的影响.浙江大学学报:农业与生命科学版,2008,34(4):423-430.
    [203]庞雄飞,梁广文.害虫种群系统的控制.广州:广东科技出版社,1995.
    [204]钦俊德.昆虫与植物关系的研究进展和前景.动物学报,1995,41(1):12-19.
    [205]邱宝利,任顺祥,林莉,Musa P D.不同寄主植物对烟粉虱发育和繁殖的影响.生态学报,2003,23(6):1206-1211.
    [206]邱宝利,任顺祥,林莉.广东省烟粉虱蚜小蜂种类及种群动态调查初报.昆虫知识,2004,41(4):333-335.
    [207]邱宝利,任顺祥,孙同兴,林莉,邝灼彬.广州地区烟粉虱寄主植物调查初报.华南农业大学学报,2001,22(4):43-47.
    [208]邱宝利,任顺祥.利用黄板监测烟粉虱及其寄生蜂的种群动态.昆虫知识,2006,43(1):53-56.
    [209]任惠芳.丽蚜小蜂防治温室白粉虱的研究简报.植物保护,1981,7(5):4-6.
    [210]任顺祥,黄振,姚松林.烟粉虱捕食性天敌研究进展.昆虫天敌,2004,26(1):34-41.
    [211]沈斌斌,任顺祥.黄板诱杀及其对烟粉虱种群的影响.华南农业大学学报,2003,24(4):40-43.
    [212]唐才尧,夏继中,施保国.农用有机硅助剂对防除小麦田杂草药效的影响试验.现代农业科技,2009,13:154-154.
    [213]唐启义,冯明光.DPS数据处理系统.北京:科学出版社,2007.
    [214]王利华,吴益东.与拟除虫菊酯抗性相关的烟粉虱钠通道基因突变及其检测.昆虫学报,2004,47(4):449-453.
    [215]王玉波,何晓庆,郑书宏,朱国仁,吴青君,徐宝云.不同农药对丽蚜小蜂的安全性评价.中国蔬菜,2006,8:21-22.
    [216]吴青君,徐宝云,朱国仁,张友军.B型烟粉虱对不同蔬菜品种趋性的评价.昆虫知识,2004,41(2):152-154.
    [217]向玉勇,李子忠,张帆,罗晨.烟粉虱和温室粉虱的研究进展.山地农业生物学报,2004,23(4):352-359.
    [218]肖利峰.外来入侵生物-B型烟粉虱对噻虫嗪抗药性研究.山东农业大学硕士学位论文.2004.
    [219]徐冉,张礼凤,王彩洁,王金龙.抗烟粉虱大豆种质资源筛选和抗性机制初探.植物遗传资源学报,2005,6(1):56-58.
    [220]徐维红,谷希树,刘佰明,胡学雄,白义川,李洪安.常用杀虫剂对粉虱天敌-丽蚜小蜂的致死效应.华北农学报,2008,23(2):188-190.
    [221]徐维红,朱国仁,李桂兰,吴青君,张友军.七种寄主植物对烟粉虱生长发育、存活和增殖的影响.植物保护学报,2003,30(1):107-108.
    [222]阎凤鸣,李大建.粉虱分类的基本概况和我国常见种的识别.北京农业科学,2000(增),20-30.
    [223]阎凤鸣.非形态特征在粉虱分类中的运用.昆虫分类学报,2001,23(2):107-112.
    [224]阎凤鸣.粉虱的形态变异.北京农学院学报.1991,6(1):68-71.
    [225]杨学茹,黄艳琴,谢庆兰.农药助剂用有机硅表面活性剂.有机硅材料.2002,16(2):25-29.
    [226]杨中侠,马春森,王小奇,龙厚茹,刘晓英,杨修.烟粉虱对四种蔬菜寄主的选择性.昆虫学报,2004,47(5):612-617.
    [227]臧连生,刘树生,刘银泉,阮永明,万方浩.B型烟粉虱与浙江非B型烟粉虱的竞争.生物多样性,2005a,13:181-187.
    [228]臧连生,刘银泉,刘树生.一种适合粉虱实验观察的新型微虫笼.昆虫知识,2005b,42:329-331.
    [229]臧连生,江彤,徐婧,刘树生,张友军.烟粉虱B型及二个非B型种群的SCAR分子标记.农业生物技术学报,2006,14(2):208-212.
    [230]张广学,王林瑶.棉虫图册.北京:科学出版社.1972.
    [231]张桂芬,傅守三.丽蚜小蜂(Encarsia formosa Gahan)的个体发育.河北农业大学学报,1989,12(2):50-55.
    [232]张继红,王琛柱.棉铃虫幼虫对氨基酸、糖类和棉花次生物质的选择性.植物保护,2001,27(1):3-5.
    [233]张金良,袁志强,杨建国,陆淑兰,刘春来,于德水.有机硅助剂丝润防治B型烟粉虱成虫试验结果初报.北京农业,2007,2:9-10.
    [234]张丽萍,张文吉,张贵云,刘珍,王强,阎会平.山西烟粉虱寄主植物及其被害程度调查.植物保护,2005,31(1):24-27.
    [235]张世泽,郭建英,万方浩,张帆.丽蚜小蜂两个品系寄生行为及对不同寄主植物上烟粉虱的选择性.生态学报,2005,25(10):2595-2600.
    [236]张世泽.丽蚜小蜂Encarsia formosa生态学及其对烟粉虱Bemisia tabaci控制效能的研究.西北农林大学硕士学位论文,2003.
    [237]张学坤,周玉,魏毅,赵鸣.在不同农作物上烟粉虱的成虫数量调查.江西棉花,2003,25(6):38-39.
    [238]张永军,梁革梅,倪云霞,吴孔明,郭予元.粉虱成虫对不同寄主植物的选择性.植物保护,2003,29(2):20-22.
    [239]张芝利.我国烟粉虱的发生危害和防治对策.植物保护,2001,27(2):25-31.
    [240]赵建周,朱国仁.国外温室害虫生物防治的研究与应用.金盾出版社,北京,1990.
    [241]赵建周.害虫对吡虫啉抗性的研究进展.植物保护,1998,24(6):40-41.
    [242]周长青.浅黄恩蚜小蜂Encarsia sophia (Girault & Dodd)的生物学特性研究.西南大学硕士学位论文,2008.
    [243]周福才,杜予州,孙伟,于淦军,龚伟荣,陆自强,任顺祥.江苏省烟粉虱寄主植物调查及其危害评价.扬州大学学报(农业与生命科学版),2003,24(1):71-75.
    [244]周福才,任顺祥,杜予州,周桂生,沈媛.转Bt基因棉和常规棉对烟粉虱生长发育和繁殖的影响.植物保护学报,2006,33(3):230-234.
    [245]周尧.中国粉虱名录.中国昆虫学.1949,3(4):1-18.
    [246]朱国仁.丽蚜小蜂防治温室白粉虱的应用技术.农业实用新技术(卢恕良主编).中国科学技术出版社,北京,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700