小鼠雌性生殖干细胞的分离、建系及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生殖生物学的传统观点认为,雌性哺乳动物出生后生殖腺内的生殖细胞不能增殖,随着年龄的增加而逐步减少,最终全部消失而失去生育能力。然而, 2004年Johnson等经过测定小鼠不同天数未闭锁卵泡数和闭锁卵泡数,结果发现两者存在不吻合性,即卵泡闭锁的发生率要高于未闭锁卵泡数量的减少率,因此推测卵巢具有增殖活性。本研究通过定位新生和成年小鼠卵巢内增殖的生殖细胞来寻找体内存在生殖干细胞的证据,再利用生物信息学工具预测出生殖细胞标志蛋白MVH含有跨膜结构域可以用于磁珠分选,然后用胶原酶和胰蛋白酶消化卵巢和MVH磁珠分选的方法相结合进行细胞的分离纯化,最后将纯化的细胞在与精原干细胞类似的培养条件下进行体外培养。在该培养条件下,我们成功的建立了细胞系,体外培养传代达60代以上。随后,我们通过RT-PCR、免疫荧光细胞化学、Cobra等方法从mRNA水平、蛋白水平、表观遗传学水平等多个层面上鉴定该细胞的生殖干细胞特征,并且通过细胞的异体卵巢移植使不育小鼠恢复生育能力,从而证实其生殖干细胞的功能。经过体外和体内实验的验证,我们不仅确定了所分离得到的细胞为小鼠雌性生殖干细胞,而且证实所建立的小鼠雌性生殖干细胞系能够在体外长期维持。随后,我们又通过改善纯化步骤和寻找新的标志物进一步提高了小鼠雌性生殖干细胞的分离纯化效率,进而提高建立该细胞系的成功率。小鼠雌性生殖干细胞的发现和成功的体外培养建系打破了生殖生物学的传统观点,开辟了一个新的研究领域;在临床上,对妇科疾病和不育症的治疗可能带来新的突破;在医疗保健上,有可能用于研发延缓更年期和抗衰老的药物;同时也为转基因技术提供了一种新的工具,因此该研究成果有重大的理论和实际意义。
In traditional view of reproductive biology the germ cells in mammal ovaries are considered lack the capacity of mitosis after birth, fertility lost when germ cells in the pool exhaust with the growth of age. However, Johnson and colleagues in 2004 found the discordance in follicle loss versus atresia: the incidence of atretic follicles was higher than the decline of the follicles, by counting the number of non-atretic and atretic follicles in mouse ovaries at different ages, which indicated the capacity of proliferation in mouse ovary. In search of the evidence of germ cell proliferation in neonatal and adult mouse ovaries, our group characterized the proliferating germ cells in vivo, predicted the existence of transmembrane domain of MVH as a sorting marker, and isolated these putative germ line stem cells by double enzymes digestion and subsequent MVH-magnetic beads cell sorting. Cultured with similar condition of spermatogonial stem cells, female germ line stem cell (FGSC) lines were established and have been maintained for more than 60 passages. Subsequently, we characterized these cells on mRNA, protein, epigenetic levels by RT-PCR, fluorescent immunocytochemistry, Cobra assays, and verified their biological function by ovary transplantation assays, finally identified them as germ line stem cells. Furthermore, we enhanced the sorting efficiency by optimizing the purification steps and using different markers. The improvement of purification protocol facilitates the establishment of FGSCs line. The discovery of FGSCs and the establishment of FGSC line modified the traditional doctrine of reproductive biology and opened up a novel field, and brought light for the cure of female infertility and gynecological diseases in clinic as well. Moreover, we developed a new tool for transgenic engineering. Therefore, our discovery has great significance on reproductive biology theory and potential for research and clinic use.
引文
1. Kamel, R., Management of the infertile couple: an evidence-based protocol. Reproductive Biology and Endocrinology, 2010. 8(1): p. 21.
    2. PB., S., Molecular insights into the causes of male infertility. J Biosci. , 2001. (4 Suppl): p. 429-435.
    3. Vlahos, N.F., Economopoulos, K.P., and Creatsas, G., Fertility drugs and ovarian cancer risk: a critical review of the literature. Annals of the New York Academy of Sciences, 2010. 1205(1): p. 214-219.
    4. Traub, M.L. and Santoro, N., Reproductive aging and its consequences for general health. Annals of the New York Academy of Sciences, 2010. 1204(1): p. 179-187.
    5. Peck, J.D., Leviton, A., and Cowan, L.D., A review of the epidemiologic evidence concerning the reproductive health effects of caffeine consumption: A 2000-2009 update. Food and Chemical Toxicology, 2010. 48(10): p. 2549-2576.
    6. Azaizeh, H., Saad, B., Cooper, E., et al., Traditional Arabic and Islamic medicine, a re-emerging health aid. Evidence-based Complementary and Alternative Medicine, 2010. 7(4): p. 419-424.
    7. O'Flynn O'Brien, K.L., Varghese, A.C., and Agarwal, A., The genetic causes of male factor infertility: A review. Journal of Urology, 2010. 184(4): p. 1456-1457.
    8. Samplaski, M.K., Agarwal, A., Sharma, R., et al., New generation of diagnostic tests for infertility: Review of specialized semen tests. International Journal of Urology, 2010. 17(10): p. 839-847.
    9. Richards, J.S. and Pangas, S.A., New insights into ovarian function, in Handbook of Experimental Pharmacology. 2010. p. 3-27.
    10. Mardanpour, P., Guan, K., Nolte, J., et al., Potency of germ cells and its relevance for regenerative medicine. Journal of Anatomy, 2008. 213(1): p. 26-29.
    11. Adams, I.R. and McLaren, A., Sexually dimorphic development of mouse primordial germ cells: switching from oogenesis to spermatogenesis. Development, 2002. 129(5): p. 1155-1164.
    12. Kocer, A., Reichmann, J., Best, D., et al., Germ cell: sex determination in mammals.Molecular Human Reproduction, 2009. 15(4): p. 205-213.
    13. Picton, H.M., Harris, S.E., Muruvi, W., et al., The in vitro growth and maturation of follicles. Reproduction, 2008. 136(6): p. 703-715.
    14. Cinalli, R.M., Rangan, P., and Lehmann, R., Germ Cells Are Forever. Cell, 2008. 132(4): p. 559-562.
    15. Xie, T. and Spradling, A.C., A Niche Maintaining Germ Line Stem Cells in the Drosophila Ovary. Science, 2000. 290(5490): p. 328-330.
    16. Takehiko Ogawa, M.O., Kazuyuki Ohbo, The Niche for Spermatogonial Stem Cells in the Mammalian Testis. International Journal of Hematology, 2005. 82(5): p. 381.
    17. Saitou, M., Barton, S.C., and Surani, M.A., A molecular programme for the specification of germ cell fate in mice. Nature, 2002. 418(6895): p. 293-300.
    18. Ohinata, Y., Payer, B., O'Carroll, D., et al., Blimp1 is a critical determinant of the germ cell lineage in mice. Nature, 2005. 436(7048): p. 207-213.
    19. Pereda, J., Zorn, T., and Soto-Suazo, M., Migration of human and mouse primordial germ cells and colonization of the developing ovary: An ultrastructural and cytochemical study. Microscopy Research and Technique, 2006. 69(6): p. 386-395.
    20. Hughes IA, C.N., Faisal Ahmed S, Ng KL, Cheng A, Lim HN, Hawkins JR., Sexual dimorphism in the neonatal gonad. Acta Paediatr Suppl, 1999. 88(428): p. 23-30.
    21. McLaren, A. and Durcova-Hills, G., Germ cells and pluripotent stem cells in the mouse. Reproduction, Fertility and Development, 2001. 13(8): p. 661-664.
    22. Pepling, M.E., From primordial germ cell to primordial follicle: mammalian female germ cell development. genesis, 2006. 44(12): p. 622-632.
    23.杨增明,孙青原,夏国良,生殖生物学. 2005,北京:科学出版社. : 73-126.
    24. Rooij, D.G. and Kramer, M.P., Spermatogonial stem cell renewal in the rat, mouse and golden hamster. Cell and Tissue Research, 1968. 92(3): p. 400-405.
    25. Rooij, D.G., Stem cell renewal and duration of spermatogonial cycle in the goldhamster. Cell and Tissue Research, 1968. 89(1): p. 133-136.
    26. Ei., W.W.E.u., Leipzig: Engelmann. 1870.
    27. Pearl, R. and Fairchild, T.E., Studies on the physiology of reproduction in the domestic Fowl. XIX. Of the influence of free choice of food matrials on winter egg productionand body weight. American Journal of Epidemiology, 1921. 1(3): p. 253-277.
    28. Zuckerman, S., The number of oocytes in the mature ovary. Recent Prog. Horm. Res, 1951. 6: p. 63-108.
    29. Johnson, J., Canning, J., Kaneko, T., et al., Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature, 2004. 428(6979): p. 145-150.
    30. Generoso, W.M., Stout, S.K., and Huff, S.W., Effects of alkylating chemicals on reproductive capacity of adult female mice. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1971. 13(2): p. 171-184.
    31. Johnson, J., Bagley, J., Skaznik-Wikiel, M., et al., Oocyte Generation in Adult Mammalian Ovaries by Putative Germ Cells in Bone Marrow and Peripheral Blood. Cell, 2005. 122(2): p. 303-315.
    32. Eggan, K., Jurga, S., Gosden, R., et al., Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature, 2006. 441(7097): p. 1109-1114.
    33. Honda, A., Hirose, M., Hara, K., et al., Isolation, characterization, and in vitro and in vivo differentiation of putative thecal stem cells. Proceedings of the National Academy of Sciences, 2007. 104(30): p. 12389-12394.
    34. Zhang, H. and Wang, Z.Z., Mechanisms that mediate stem cell self-renewal and differentiation. Journal of Cellular Biochemistry, 2008. 103(3): p. 709-718.
    35. Morrison, S.J. and Kimble, J., Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, 2006. 441(7097): p. 1068-1074.
    36. Lanza, R., essentails of stem cell biology. 2006: Elsevier.
    37. Brinster, R.L. and Zimmermann, J.W., Spermatogenesis following male germ-cell transplantation. Proceedings of the National Academy of Sciences of the United States of America, 1994. 91(24): p. 11298-11302.
    38. Xi, R. and Xie, T., Stem Cell Self-Renewal Controlled by Chromatin Remodeling Factors. Science, 2005. 310(5753): p. 1487-1489.
    39. Smith, A., A glossary for stem-cell biology. Nature, 2006. 441(7097): p. 1060-1060.
    40. Denker, H.W., Potentiality of embryonic stem cell: An ethical problem even with alternative stem cell sources. Journal of Medical Ethics, 2006. 32(11): p. 665-671.
    41.王亚平,干细胞衰老与疾病. 2009,北京:科学出版社. : 6.
    42. BY J. E. TILL, E.A.M., AND L. SIMINOVITCH, A STOCHASTIC MODEL OF STEM CELL PROLIFERATION, BASED ON THE GROWTH OF SPLEEN COLONY-FORMING CELLS. Proc Natl Acad Sci, 1964.
    43. Evans, M.J. and Kaufman, M.H., Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154-156.
    44. Snyder, E.Y., Deitcher, D.L., Walsh, C., et al., Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell, 1992. 68(1): p. 33-51.
    45. Nagano, M., Avarbock, M.R., Leonida, E.B., et al., Culture of mouse spermatogonial stem cells. Tissue and Cell, 1998. 30(4): p. 389-397.
    46. Takahashi, K. and Yamanaka, S., Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 2006. 126(4): p. 663-676.
    47. Takahashi, K., Tanabe, K., Ohnuki, M., et al., Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell, 2007. 131(5): p. 861-872.
    48. Noguchi, H., Naziruddin, B., Shimoda, M., et al., Induction of Insulin-Producing Cells From Human Pancreatic Progenitor Cells. Transplantation Proceedings. 42(6): p. 2081-2083.
    49. Watt, F.M., Hogan, a.B.L., nbsp, et al., Out of Eden: Stem Cells and Their Niches. Science, 2000. 287(5457): p. 1427-1430.
    50. Gonzalez-Reyes, A., Stem cells, niches and cadherins: a view from Drosophila. J Cell Sci, 2003. 116(6): p. 949-954.
    51. Scadden, D.T., The stem-cell niche as an entity of action. Nature, 2006. 441(7097): p. 1075-1079.
    52. Kubota, H., Avarbock, M.R., and Brinster, R.L., Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(11): p. 6487-6492.
    53. Kurosaki, H., Kazuki, Y., Hiratsuka, M., et al., A comparison study in the proteomic signatures of multipotent germline stem cells, embryonic stem cells, and germline stem cells. Biochemical and Biophysical Research Communications, 2007. 353(2): p.259-267.
    54. Y Fujiwara, T.K., H Kawabata, M Sato, H Fujimoto, M Furusawa, and T Noce, Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc Natl Acad Sci 1994. 91: p. 12258-12262.
    55. Tanaka, S.S., Toyooka, Y., Akasu, R., et al., The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes & Development, 2000. 14(7): p. 841-853.
    56. Kobayashi, T., Kajiura-Kobayashi, H., and Nagahama, Y., Differential expression of vasa homologue gene in the germ cells during oogenesis and spermatogenesis in a teleost fish, tilapia, Oreochromis niloticus. Mechanisms of Development, 2000. 99(1-2): p. 139-142.
    57. Noce, T., Okamoto-Ito, S., and Tsunekawa, N., Vasa Homolog Genes in Mammalian Germ Cell Development. Cell Structure and Function, 2001. 26(3): p. 131-136.
    58. Shibata, N., Tsunekawa, N., Okamoto-Ito, S., et al., Mouse RanBPM is a partner gene to a germline specific RNA helicase, mouse vasa homolog protein. Molecular Reproduction and Development, 2004. 67(1): p. 1-7.
    59. Kuroda, T., Tada, M., Kubota, H., et al., Octamer and Sox Elements Are Required for Transcriptional cis Regulation of Nanog Gene Expression. Mol. Cell. Biol., 2005. 25(6): p. 2475-2485.
    60. Morrison, G.M. and Brickman, J.M., Conserved roles for Oct4 homologues in maintaining multipotency during early vertebrate development. Development, 2006. 133(10): p. 2011-2022.
    61. Pesce, M. and Sch?ler, H.R., Oct-4: Control of totipotency and germline determination. Molecular Reproduction and Development, 2000. 55(4): p. 452-457.
    62. Avilion, A.A., Nicolis, S.K., Pevny, L.H., et al., Multipotent cell lineages in early mouse development depend on SOX2 function. Genes & Development, 2003. 17(1): p. 126-140.
    63. Takanaga, H., Tsuchida-Straeten, N., Nishide, K., et al., Gli2 Is a Novel Regulator of Sox2 Expression in Telencephalic Neuroepithelial Cells. STEM CELLS, 2009. 27(1): p.165-174.
    64. Yamaguchi, S., Kimura, H., Tada, M., et al., Nanog expression in mouse germ cell development. Gene Expression Patterns, 2005. 5(5): p. 639-646.
    65. Chambers, I., Colby, D., Robertson, M., et al., Functional Expression Cloning of Nanog, a Pluripotency Sustaining Factor in Embryonic Stem Cells. Cell, 2003. 113(5): p. 643-655.
    66. Mitsui, K., Tokuzawa, Y., Itoh, H., et al., The Homeoprotein Nanog Is Required for Maintenance of Pluripotency in Mouse Epiblast and ES Cells. Cell, 2003. 113(5): p. 631-642.
    67. Nakagawa, M., Koyanagi, M., Tanabe, K., et al., Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotech, 2008. 26(1): p. 101-106.
    68. Lange, U.C., Adams, D.J., Lee, C., et al., Normal Germ Line Establishment in Mice Carrying a Deletion of the Ifitm/Fragilis Gene Family Cluster. Mol. Cell. Biol., 2008. 28(15): p. 4688-4696.
    69. Lacham-Kaplan, O., In vivo and in vitro differentiation of male germ cells in the mouse. Reproduction, 2004. 128(2): p. 147-152.
    70. Saiti, D. and Lacham-Kaplan, O., Mouse Germ Cell Development in-vivo and in-vitro. Biomarker Insights, 2007. 2007(BMI-2-Lacham-Kaplan-et-al): p. 241.
    71. Payer, B., Saitou, M., Barton, S.C., et al., stella Is a Maternal Effect Gene Required for Normal Early Development in Mice. Current Biology, 2003. 13(23): p. 2110-2117.
    72. Bowles, J., Teasdale, R.P., James, K., et al., Dppa3 is a marker of pluripotency and has a human homologue that is expressed in germ cell tumours. Cytogenetic and Genome Research, 2003. 101(3-4): p. 261-265.
    73. Bortvin, A., Goodheart, M., Liao, M., et al., Dppa3 / Pgc7 / stella is a maternal factor and is not required for germ cell specification in mice. BMC Developmental Biology, 2004. 4(1): p. 2.
    74. Scotland, K.B., Chen, S., Sylvester, R., et al., Analysis of Rex1 (zfp42) function in embryonic stem cell differentiation. Developmental Dynamics, 2009. 238(8): p. 1863-1877.
    75. Lee, M.Y., Lu, A., and Gudas, L.J., Transcriptional regulation of Rex1 (zfp42) in normal prostate epithelial cells and prostate cancer cells. Journal of Cellular Physiology. 224(1): p. 17-27.
    76. Masui, S., Ohtsuka, S., Yagi, R., et al., Rex1/Zfp42 is dispensable for pluripotency in mouse ES cells. BMC Developmental Biology, 2008. 8(1): p. 45.
    77. Kanatsu-Shinohara, M., Ogonuki, N., Iwano, T., et al., Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development, 2005. 132(18): p. 4155-4163.
    78. McKee, B.D., Homologous pairing and chromosome dynamics in meiosis and mitosis. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 2004. 1677(1-3): p. 165-180.
    79. Yuan, L., Liu, J.-G., Zhao, J., et al., The Murine SCP3 Gene Is Required for Synaptonemal Complex Assembly, Chromosome Synapsis, and Male Fertility. Molecular Cell, 2000. 5(1): p. 73-83.
    80. Chuma, S. and Nakatsuji, N., Autonomous Transition into Meiosis of Mouse Fetal Germ Cells in Vitro and Its Inhibition by gp130-Mediated Signaling. Developmental Biology, 2001. 229(2): p. 468-479.
    81. Miyado, K., Yamada, G., Yamada, S., et al., Requirement of CD9 on the egg plasma membrane for fertilization. Science (New York, N.Y.), 2000. 287(5451): p. 321-324.
    82. Cui, L., Johkura, K., Yue, F., et al., Spatial Distribution and Initial Changes of SSEA-1 and Other Cell Adhesion-related Molecules on Mouse Embryonic Stem Cells Before and During Differentiation. J. Histochem. Cytochem., 2004. 52(11): p. 1447-1457.
    83. Kanatsu-Shinohara, M., Toyokuni, S., and Shinohara, T., CD9 Is a Surface Marker on Mouse and Rat Male Germline Stem Cells. Biology of Reproduction, 2004. 70(1): p. 70-75.
    84. Oka, M., Tagoku, K., Russell, T.L., et al., CD9 Is Associated with Leukemia Inhibitory Factor-mediated Maintenance of Embryonic Stem Cells. Mol. Biol. Cell, 2002. 13(4): p. 1274-1281.
    85. Sugimoto, K., Honda, S., Yamamoto, T., et al., Molecular cloning and characterization of a newly identified member of the cadherin family, PB-cadherin. The Journal OfBiological Chemistry, 1996. 271(19): p. 11548-11556.
    86. Wu, J., Zhang, Y., Tian, G.G., et al., Short-type PB-cadherin promotes self-renewal of spermatogonial stem cells via multiple signaling pathways. Cellular Signalling, 2008. 20(6): p. 1052-1060.
    87. Cohen, S.B., Graham, M.E., Lovrecz, G.O., et al., Protein Composition of Catalytically Active Human Telomerase from Immortal Cells. Science, 2007. 315(5820): p. 1850-1853.
    88.翟中和,王喜忠,丁明孝,细胞生物学. 2000,北京:高等教育出版社. : 276.
    89. Blasco, M.A., Lee, H.-W., Hande, M.P., et al., Telomere Shortening and Tumor Formation by Mouse Cells Lacking Telomerase RNA. Cell, 1997. 91(1): p. 25-34.
    90. TToma′s-Loba, A., Flores, I., ndez-Marcos, P.J.F., et al., Telomerase Reverse Transcriptase Delays Aging in Cancer-Resistant Mice. Cell, 2008. 135(4): p. 609-622.
    91. Soprano, D.R., Teets, B.W., Soprano, K.J., et al., Role of Retinoic Acid in the Differentiation of Embryonal Carcinoma and Embryonic Stem Cells, in Vitamins & Hormones. 2007, Academic Press. p. 69-95.
    92. Alonso A, B.B., Steuer B, Fischer J, The F9-EC cell line as a model for the analysis of differentiation. Int J Dev Biol, 1991. 35(4): p. 389-97.
    93. Birger, Y., Shemer, R., Perk, J., et al., The imprinting box of the mouse Igf2r gene. Nature, 1999. 397(6714): p. 84-88.
    94. Nowack, M.K., Shirzadi, R., Dissmeyer, N., et al., Bypassing genomic imprinting allows seed development. Nature, 2007. 447(7142): p. 312-315.
    95. Surani, M.A., Imprinting and the Initiation of Gene Silencing in the Germ Line. Cell, 1998. 93(3): p. 309-312.
    96. Matouk, I.J., DeGroot, N., Mezan, S., et al., The H19 Non-Coding RNA Is Essential for Human Tumor Growth. PLoS ONE, 2007. 2(9): p. e845.
    97. Verhaegh, G.W., Verkleij, L., Vermeulen, S.H.H.M., et al., Polymorphisms in the H19 Gene and the Risk of Bladder Cancer. European Urology, 2008. 54(5): p. 1118-1126.
    98. Lee, J., Inoue, K., Ono, R., et al., Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development, 2002. 129(8): p. 1807-1817.
    99. Davis, T.L., Yang, G.J., McCarrey, J.R., et al., The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Human Molecular Genetics, 2000. 9(19): p. 2885-2894.
    100. Kanatsu-Shinohara, M., Inoue, K., Lee, J., et al., Generation of Pluripotent Stem Cells from Neonatal Mouse Testis. Cell, 2004. 119(7): p. 1001-1012.
    101. Llinas, P., Stura, E.A., Ménez, A., et al., Structural studies of human placental alkaline phosphatase in complex with functional ligands. Journal of Molecular Biology, 2005. 350(3): p. 441-451.
    102. Etches, R.J., Clark, M.E., Zajchowski, L., et al., Manipulation of Blastodermal Cells. Poultry Science, 1997. 76(8): p. 1075-1083.
    103. McLaren, A., Development of primordial germ cells in the mouse. Andrologia, 1992. 24(5): p. 243-247.
    104.童耕雷,实用生物化学与分子生物学词典. 2003,北京:科学出版社. : 451.
    105. Lewin, B., Genes VIII. 2003.
    106. Warren, M.P. and Chua, A., Appropriate use of estrogen replacement therapy in adolescents and young adults with Turner syndrome and hypopituitarism in light of the Women's Health Initiative. Growth Hormone & IGF Research, 2006. 16(Supplement 1): p. 98-102.
    107. Uehara, S., Funato, T., Yaegashi, N., et al., SRY Mutation and Tumor Formation on the Gonads of XY Pure Gonadal Dysgenesis Patients. Cancer Genetics and Cytogenetics, 1999. 113(1): p. 78-84.
    108. Benn, P., Trisomy 16 and trisomy 16 mosaicism: A review. American Journal of Medical Genetics, 1998. 79(2): p. 121-133.
    109. Pathak, S., Cytogenetic research techniques in humans and laboratory animals that can be applied most profitably to livestock. Journal of dairy science, 1979. 62(5): p. 836-843.
    110. Sra, K.K., Babb-Tarbox, M., Aboutalebi, S., et al., Molecular diagnosis of cutaneous diseases. Archives of Dermatology, 2005. 141(2): p. 225-241.
    111. Surani, M.A., Hayashi, K., and Hajkova, P., Genetic and Epigenetic Regulators of Pluripotency. Cell, 2007. 128(4): p. 747-762.
    112. Kim, J., Chu, J., Shen, X., et al., An Extended Transcriptional Network for Pluripotency of Embryonic Stem Cells. Cell, 2008. 132(6): p. 1049-1061.
    113. Henderson, J.K., Draper, J.S., Baillie, H.S., et al., Preimplantation Human Embryos and Embryonic Stem Cells Show Comparable Expression of Stage-Specific Embryonic Antigens. STEM CELLS, 2002. 20(4): p. 329-337.
    114. Aarts, M., Dekker, M., de Vries, S., et al., Generation of a mouse mutant by oligonucleotide-mediated gene modification in ES cells. Nucleic Acids Research. 34(21): p. e147-e147.
    115. Brinster, R.L. and Avarbock, M.R., Germline transmission of donor haplotype following spermatogonial transplantation. Proceedings of the National Academy of Sciences of the United States of America, 1994. 91(24): p. 11303-11307.
    116. Oatley, J.M. and Brinster, R.L., Regulation of Spermatogonial Stem Cell Self-Renewal in Mammals. Annual Review of Cell and Developmental Biology, 2008. 24(1): p. 263-286.
    117. Oatley, J.M., Avarbock, M.R., Telaranta, A.I., et al., Identifying genes important for spermatogonial stem cell self-renewal and survival. Proceedings of the National Academy of Sciences, 2006. 103(25): p. 9524-9529.
    118. Kanatsu-Shinohara, M., Ogonuki, N., Inoue, K., et al., Long-Term Proliferation in Culture and Germline Transmission of Mouse Male Germline Stem Cells. Biology of Reproduction, 2003. 69(2): p. 612-616.
    119. Kanatsu-Shinohara, M., Miki, H., Inoue, K., et al., Long-Term Culture of Mouse Male Germline Stem Cells Under Serum-or Feeder-Free Conditions. Biology of Reproduction, 2005. 72(4): p. 985-991.
    120. Guan, K., Nayernia, K., Maier, L.S., et al., Pluripotency of spermatogonial stem cells from adult mouse testis. Nature, 2006. 440(7088): p. 1199-1203.
    121.裴雪涛,干细胞实验指南. 2006,北京:科学出版社. : 47-51.
    122. Obar, J.J., Khanna, K.M., and Lefran鏾 is, L., Endogenous Naive CD8+ T Cell Precursor Frequency Regulates Primary and Memory Responses to Infection. Immunity, 2008. 28(6): p. 859-869.
    123. Avital, I., Inderbitzin, D., Aoki, T., et al., Isolation, Characterization, andTransplantation of Bone Marrow-Derived Hepatocyte Stem Cells. Biochemical and Biophysical Research Communications, 2001. 288(1): p. 156-164.
    124. Hassan, Z., Nilsson, C., and Hassan, M., Liposomal busulphan: Bioavailability and effect on bone marrow in mice. Bone Marrow Transplantation, 1998. 22(9): p. 913-918.
    125. Boland, I., Vassal, G., Morizet, J., et al., Busulphan is active against neuroblastoma and medulloblastoma xenografts in athymic mice at clinically achievable plasma drug concentrations. British Journal of Cancer, 1999. 79(5-6): p. 787-792.
    126. Bucci, L.R. and Meistrich, M.L., Effects of busulfan on murine spermatogenesis: cytotoxicity, sterility, sperm abnormalities, and dominant lethal mutations. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 1987. 176(2): p. 259-268.
    127. Liu, Q., Yan, H., Dawes, N.J., et al., Insulin-like growth factor II induces DNA synthesis in fetal ventricular myocytes in vitro. Circulation Research, 1996. 79(4): p. 716-726.
    128. Cameron, H.A., Quantitative analysis of in vivo cell proliferation. Current protocols in neuroscience / editorial board, Jacqueline N. Crawley ... [et al.], 2006. Chapter 3.
    129. Tilly, J.L., Commuting the death sentence: how oocytes strive to survive. Nat Rev Mol Cell Biol, 2001. 2(11): p. 838-848.
    130. Baker, T.G. and Scrimgeour, J.B., Development of the gonad in normal and anencephalic human fetuses. Reproduction, 1980. 60(1): p. 193-199.
    131. Ginsburg, M., Snow, M.H.L., and McLaren, A., Primordial germ cells in the mouse embryo during gastrulation. Development, 1990. 110: p. 521 - 528.
    132. De Leon, V., Johnson, A., and Bachvarova, R., Half-lives and relative amounts of stored and polysomal ribosomes and poly(A)+ RNA in mouse oocytes. Developmental Biology, 1983. 98(2): p. 400-408.
    133. Szotek, P.P., Chang, H.L., Brennand, K., et al., Normal ovarian surface epithelial label-retaining cells exhibit stem/progenitor cell characteristics. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(34): p. 12469-12473.
    134. US., R., Isolation and culture of pulmonary endothelial cells. Environ Health Perspect. ,1984(56): p. 103-114.
    135. Freshney, R.I., Culture of Animal Cells: A Manual of Basic Technique, ed. 4th. 2000: John Wiley & Sons.
    136. Hofmann, M.-C., Braydich-Stolle, L., and Dym, M., Isolation of male germ-line stem cells; influence of GDNF. Developmental Biology, 2005. 279(1): p. 114-124.
    137. Zhou, H. and Zhang, Y., Effect of growth factors on in vitro development of caprine preantral follicle oocytes. Animal Reproduction Science, 2005. 90(3-4): p. 265-272.
    138. Wallace, R.A. and Misulovin, Z., Long-term growth and differentiation of Xenopus oocytes in a defined medium. Proceedings of the National Academy of Sciences of the United States of America, 1978. 75(11): p. 5534-5538.
    139. Combelles, C.M.H., Gupta, S., and Agarwal, A., Could oxidative stress influence the in-vitro maturation of oocytes? Reproductive BioMedicine Online, 2009. 18(6): p. 864-880.
    140. Jurema, M.W. and Nogueira, D., In vitro maturation of human oocytes for assisted reproduction. Fertility and Sterility, 2006. 86(5): p. 1277-1291.
    141. Shi, Y.Q., Wang, Q.Z., Liao, S.Y., et al., In vitro propagation of spermatogonial stem cells from KM mice. Frontiers in Bioscience, 2006. 11(SUPPL. 2): p. 2614-2622.
    142. Li, T., Wang, S., Xie, Y., et al., Homologous feeder cells support undifferentiated growth and pluripotency in monkey embryonic stem cells. Stem Cells, 2005. 23(8): p. 1192-1199.
    143. Kanatsu-Shinohara, M., Inoue, K., Ogonuki, N., et al., Leukemia inhibitory factor enhances formation of germ cell colonies in neonatal mouse testis culture. Biology of Reproduction, 2007. 76(1): p. 55-62.
    144. Moniruzzaman, M. and Miyano, T., Growth of Primordial Oocytes in Neonatal and Adult Mammals. The Journal of Reproduction and Development. 56(6): p. 559-566.
    145. Hajkova, P., Erhardt, S., Lane, N., et al., Epigenetic reprogramming in mouse primordial germ cells. Mechanisms of Development, 2002. 117(1-2): p. 15-23.
    146. Shiromizu K, T.S., Mattison DR., Effect of cyclophosphamide on oocyte and follicle number in Sprague-Dawley rats, C57BL/6N and DBA/2N mice. Pediatr Pharmacol 1984. 4(4): p. 213-21.
    147. Burkl, W. and Schiechl, H., The growth of follicles in the rat ovary under the influence of busulphan and endoxan. Cell and Tissue Research, 1978. 186(2): p. 351-359.
    148. Mattison, D.R., Chang, L., Thorgeirsson, S.S., et al., The effects of cyclophosphamide, azathioprine, and 6-mercaptopurine on oocyte and follicle number in C57BL/6N mice. Research Communications in Chemical Pathology and Pharmacology, 1981. 31(1): p. 155-161.
    149. de Rooij, D.G. and Russell, L.D., All you wanted to know about spermatogonia but were afraid to ask. Journal of Andrology, 2000. 21(6): p. 776-798.
    150. Pohlmeier, W.E., Hovey, R.C., and van Eenennaam, A.L., Reproductive abnormalities in mice expressing omega-3 fatty acid desaturase in their mammary glands. Transgenic Research. 20(2): p. 283-292.
    151. Eveleigh, J.R., Jasdrow, H.H., and Gunner, M., The breeding performance of CD1 stud male mice with some comparative data from BALB/c, PSD and PSDI strains. Lab Anim, 1983. 17(3): p. 230-234.
    152. Kurata, H., Lee, H.J., O'Garra, A., et al., Ectopic Expression of Activated Stat6 Induces the Expression of Th2-Specific Cytokines and Transcription Factors in Developing Th1 Cells. Immunity, 1999. 11(6): p. 677-688.
    153. Lois, C., Refaeli, Y., Qin, X.-F., et al., Retroviruses as tools to study the immune system. Current Opinion in Immunology, 2001. 13(4): p. 496-504.
    154. Gon?alves, M.A.F.V., Holkers, M., van Nierop, G.P., et al., Targeted chromosomal insertion of large DNA into the human genome by a fiber-modified high-capacity adenovirus-based vector system. PLoS ONE, 2008. 3(8).
    155. Rubinson, D.A., Dillon, C.P., Kwiatkowski, A.V., et al., A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet, 2003. 33(3): p. 401-406.
    156. Nagano, M., Brinster, C.J., Orwig, K.E., et al., Transgenic mice produced by retroviral transduction of male germ-line stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98(23): p. 13090-13095.
    157. Ryu, B.-Y., Orwig, K.E., Oatley, J.M., et al., Efficient Generation of Transgenic Rats Through the Male Germline Using Lentiviral Transduction and Transplantation ofSpermatogonial Stem Cells. Journal of Andrology, 2007. 28(2): p. 353-360.
    158. Lange, U.C., Saitou, M., Western, P.S., et al., The Fragilis interferon-inducible gene family of transmembrane proteins is associated with germ cell specification in mice. BMC Developmental Biology, 2003. 3(1): p. 1.
    159. Zhang, Y., Yang, Z., Yang, Y., et al., Production of transgenic mice by random recombination of targeted genes in female germline stem cells. Journal of Molecular Cell Biology, 2011. 3(2): p. 132-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700