强震下高层建筑反应模拟方法研究及其平台开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市化进程的加快,高层建筑抗震成为城市防灾减灾领域的一个研究重点。震害资料表明,在强震作用下,部分高层建筑严重受损或倒塌,直接导致了巨大的人员伤亡,财产损失。为了保证强震作用下高层建筑结构安全,必须加强强震下结构抗震性能的研究,而建立起一个合理有效的强地震作用下高层建筑反应模拟方法是实现这个目标的必由之路。然而目前高层建筑在强震下的模拟方法在很多方面还存在问题,如剪力墙非线性分析模型不成熟;多维应力状态下的材料本构有待进一步认识;强非线性在计算中容易迭代不收敛而中止导致不能得到计算结果等。为了搭建一套可行的高层建筑模拟方法及分析平台,本文展开了如下研究:
     1、为了提高纤维单元模拟的效率,通过采用基于力插值梁柱单元,使用一个单元就可模拟梁、柱构件,这将大大减少单元数量及自由度数量,尤其对于高层建筑。提出了在基于力插值梁柱单元中采用固定端部求积节点的积分方法,在不影响精度的前提下采用更少的单元积分点以提高效率。通过实例分析和“整体框架拟静力倒塌试验分析竞赛”算例分析,表明了固定端部求积节点的积分方法在较少的积分节点下能保证较高的精度,提高了效率。
     2、提出了考虑截面剪切变形的修正基于力插值纤维单元(MFBFE),其截面不再是平截面,而是曲面,用于模拟剪力墙的地震反应非线性分析。算例分析结果表明,分析结果与试验结果吻合较好,成功预测了构件的初始刚度、屈服力、极限力、卸载刚度、残余位移、延性和能量耗散。通过“E-Defense四层RC&PT结构盲测竞赛”算例分析,表明了MFBFE单元模拟框架剪力墙结构地震反应分析有较高的精度。
     3、对隐式方法和显式方法进行了对比分析。实例分析表明,从计算精度来讲,隐式方法和显式方法都能得到较好的精度。从计算效率来讲,对于自由度较少的小型结构,隐式方法计算效率远远高于显式方法;对于自由度庞大的大型结构,显式方法计算效率高于隐式方法。建议处理自由度多的高层建筑弹塑性分析时,采用显式分析方法。
     4、基于tcl/tk语言开发了跨平台交互式图形用户界面软件ViPSe(aVisualInteraction Program for structural engineering analysis),它采用交互式的图形建模、调用OpenSees计算以及结果图形显示模式,因此可以实时动态的显示分析过程和结构反应。同时,它是一种跨平台的软件,可以在任何X86构架的计算机系统上直接运行。ViPSea大大提高了工作效率,为高层建筑非线性实时分析提供一个全新的平台。
     5、采用VipSea程序对汶川地震中破坏严重的都江堰市电信大楼进行逐步增量时程分析(IDA)。IDA分析结果显示底层和9层是薄弱层,而底层由于各指标基本都为最大值,因此将首先出现破坏,这与震害调查结果基本相符。
Along with the acceleration of China’s urbanization process, aseismicdesign of high-rise building becomes the research focus in the field of urbandisaster prevention and mitigation. The earthquake damage data indicates thatthe some of the high-rise building may collapse or severely damaged in strongearthquakes, which would directly result in huge casualties and property losses.In order to enhance the reliability and the safety of the high-rise building, wemust establish a reasonable and effective capacity design of these buildings, andthe research on seismic response simulation of high-rise building is the only wayto achieve this goal. However, the current methods of seismic responsesimulation is not perfect in many ways, such as the shear wall nonlinear analysismodel is immature; the dimensional stress state needs further understanding; thenonlinear iteration is not likely converge which would lead to calculationsuspension without a result, etc. In order to build a practical high-rise buildingsimulation method and analysis platform, the research in this thesis are asfollow:
     1.In order to improve a reliable and computationally efficient beam-columnfinite element model for the analysis of high-rise building during strongearthquake, force-based beam-column elements is used which will greatlyreduce the amount of degrees of freedom. Further more, integration methodfixing integration point at the ends of the element is proposed in this paper andimplemented into OpenSees program. The case study shows that the result ofGauss-Radau integration (an integration point at only one end of the element)and Gauss-Lobatto integration (two integration points at both ends of theelement) are more accurate than the result of Newton-Cotes (also twointegration points at both ends of the element), but they all perform better thanthe result of Gauss-Legendre. The force-based beam-column element withintegration method fixing integration point at the end is thus recommended forthe nonlinear analysis of frame structures.
     2.Force-based fiber element is the most commonly used for the nonlinearanalysis of reinforced concrete structures, it ignores section shear deformation,and assumes the section is plane. However for shear wall structures, the sectionis much wider than beam and column, thus plane section assumption and section shear deformation ignorance will cause greater error. Based on this background,a modified force-based fiber element (MFBFE) which consider section sheardeformation is proposed in this paper. The cross section is no longer planesection but curved surface in modified force-based fiber element. In the presentpaper, the MFBFE elements is first formulated and then implemented in a finiteelement program OpenSees. Numerical analysis for low-cyclic loading test of agroup of nine shear wall specimens based on MFBFE element. Analytical resultsshow that the MFBFE element is capable of accurately predicting the entirehysteretic loops of these shear walls, including the initial stiffness, yield strength,ultimate strength, unloading stiffness, residual displacement, ductility andenergy dissipation. And the trend analysis under variable axial compression ratio,variable aspect ratios and variable concrete strength, variable longitudinalreinforcement ratio, variable constraint zone length, variable stirrup ratio showsthat the MFBFE element has broader applicability.
     3.The implicit method and explicit method is researched. Numericalanalytical results shows that both implicit and explicit methods have goodprecision. For small structure with few degrees of freedom, implicit method ismuch more efficiency than explicit method, but explicit method is much moreefficiency than implicit method for large structure with large degree of freedom.It is recommended explicit analysis method is used for the nonlinear analysisof high-rise building with large degree of freedom.
     4.A finite element program called ViPSea (Visual Interaction Program forstructural engineering analysis) is developed based on on TCL/tk language. It isan interactive graphical modeling and displaying, invoke the OpenSees solver tocalculate, so it can real-time dynamic display the structure responseanalysis.Further more, it is a cross-platform software. ViPSea provides a newplatform for nonlinear analysis of high-rise building.
     5.Nonlinear seismic response analysis on a high-rise building withdamaged heavily in Wenchuan Earthquake in Dujiangyan is done using ViPSea.Analysis results show that the maximum value of inter-story drift appears atthe first floor, and the damage is serious, which agrees well with the damageinvestigation results.
引文
[1]杜轲,孙景江,许卫晓.纤维模型中单元、截面及纤维划分问题研究[J].地震工程与工程振动,2012,32(10):39-46.
    [2]杜轲.常用三维结构弹塑性分析软件的应用与比较[D].哈尔滨:中国地震局工程力学研究所硕士学位论文,2010.
    [3]韩小雷,陈学伟,林生逸,何伟球,郑宜,吴培烽,毛贵牛.基于纤维模型的超高层钢筋混凝土结构非线性时程分析[J].建筑结构,2010,(02):13-16.
    [4]韩小雷,郑宜,季静,黄艺燕.美国基于性能的高层建筑结构抗震设计规范[J].地震工程与工程振动,2008,01:64-70.
    [5]李鸿晶,王通.结构地震反应分析的逐步微分积分方法[J].力学学报,2011,43(2):430-435.
    [6]梁兴文,董振平,王应生,邓明科.汶川地震中离震中较远地区的高层建筑的震害[J].地震工程与工程振动,2009,29(01):24-31.
    [7]林旭川,陆新征,缪志伟,叶列平,郁银泉,申林.基于分层壳单元的RC核心筒结构有限元分析和工程应用[J].土木工程学报,2009,42(3):51-56
    [8]刘祥庆,刘晶波.基于纤维模型的拱形断面地铁车站结构非线性地震反应时程分析[J].工程力学,2008,(10):150-157.
    [9]陆新征,马玉虎,唐代远,叶列平,韩强.汶川地震典型RC框架结构抗倒塌加固效果分析[J].建筑科学与工程学报,2011,28(02):21-27.
    [10]陆新征,叶列平,缪志伟等.建筑抗震弹塑性分析--原理、模型与在ABAQUS,MSC.MARC和SAP2000上的实践[M].北京:中国建筑工业出版社,2009.
    [11]陆新征,叶列平.基于IDA分析的结构抗地震倒塌能力研究[J].工程抗震与加固改造,2010,32(01):13-18.
    [12]陆新征,张炎圣,江见鲸.基于纤维模型的钢筋混凝土框架结构爆破倒塌破坏模拟[J].爆破,2007,(02):1-6.
    [13]孟春光,吕西林.柔度法纤维模型在方钢管混凝土柱滞回仿真中的应用[J].地震工程与工程振动,2009,(04):62-69.
    [14]欧进萍,侯钢领,吴斌.概率Pushover分析方法及其在结构体系抗震可靠度评估中干的应用[J].建筑结构学报,2001,22(6):81-86.
    [15]潘志宏,李爱群,孙义刚.基于纤维模型的外包钢加固混凝土框架结构静力弹塑性分析[J].沈阳建筑大学学报(自然科学版),2010,(01):68-74.
    [16]潘志宏,李爱群.基于纤维模型的外粘型钢加固混凝土柱静力非线性分析[J].东南大学学报(自然科学版),2009,(03):552-556.
    [17]苏幼坡,张玉敏,王绍杰,徐建新.从汶川地震看提高建筑结构抗倒塌能力的必要性和可行性[J].土木工程学报,2009,v.4205:25-32.
    [18]孙景江,江近仁.高层建筑抗震墙非线性分析的扩展铁木辛哥分层梁单元[J].地震工程与工程振动,2001,22(2):78-83.
    [19]孙景江.钢筋混凝土剪力墙非线性分析模型综述分析[J].世界地震工程,1994,(1):43-46.
    [20]覃力.高层建筑集群化发展趋势探析[J].城市建筑,2009,(10):29-31.
    [21]覃力.高层建筑设计的一种倾向——大规模高层建筑的集群化和城市化[J].中外建筑,2003,05:10-12.
    [22]汪梦甫,周锡元.高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究[J].土木工程学报,2003,11:44-49.
    [23]伍永飞,周德源.纤维模型在平面框架非线性静力分析中的应用[J].东南大学学报(自然科学版),2005,(S1):129-132.
    [24]熊仲明,史庆轩,王社良,霍晓鹏.钢筋混凝土框架-剪力墙模型结构试验的滞回反应和耗能分析[J].建筑结构学报,2006,04:89-95.
    [25]《现代应用数学手册》编委会.现代应用数学手册:计算与数值分析卷[M].北京:清华大学出版社,2005.
    [26]易伟建,何庆锋,肖岩.钢筋混凝土框架结构抗倒塌性能的试验研究[J].建筑结构学报,2007,05:104-109+117.
    [27]尹保江,黄世敏,薛彦涛,葛学礼,曾德民,荣维生,姚秋来,于文,申世元.汶川5.12地震框架-剪力墙结构震害调查与反思[J].工程抗震与加固改造,2008,(04):37-40.
    [28]章红梅,吕西林,鲁亮等.边缘约束构件对钢筋混凝土剪力墙抗震性能的影响[J].地震工程与工程振动2007,27(01):92-98.
    [29]章红梅,吕西林,杨雪平等.边缘构件配箍对钢筋混凝土剪力墙抗震性能的影响[J].结构工程师.2008,24(05):100-104.
    [30]中国建筑科学研究院(JGJ101-96)建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1996.
    [31]中国建筑学会抗震防灾分会建筑结构抗倒塌专业委员会.钢筋混凝土整体框架拟静力倒塌试验分析竞赛[Z]. htto://www.collapse-prevention.net/show.asp?ID=10&adID=2.2011-7-19.
    [32]中国建筑学会抗震防灾分会建筑结构抗倒塌专业委员会.框架拟静力倒塌试验分析竞赛获奖名单[Z]. http://www.collapse-prevention.net/show.asp?ID=20&adID=1.2011-11-22.
    [33]中华人民共和国行业标准《高层建筑混凝土结构技术规程》(JGJ3-2010)[S].北京:中国建筑工业出版社.2002.
    [34]禚一,李忠献.钢筋混凝土纤维梁柱单元实用模拟平台[J].工程力学.2011,(4):110-116.
    [35] ACI318. Building Code Requirements for Structural Concrete (ACI318-08) andCommentary [R], American Concrete Institute, Farmington Hills, MI,2008.
    [36] AISC. Steel Plate Shear Walls [M], Steel Design Guide20, R. Sabelli and M. Bruneau,American Institute of Steel Construction, Inc,2006.
    [37] AISC341. Seismic Provisions for Structural Steel Buildings [R], American Institute ofSteel Construction, Chicago, IL,2010.
    [38] AISC360. Specification for Structural Steel Buildings [R], American Institute of SteelConstruction, Chicago, IL,2010.
    [39] Alfonso Vulcano, Vitelmo V. Bertero. Analytial Models for Predicting the LateralPesponse of RC Shear Walls: Evaluation of Their Reliability[R].EERC Report87-19,Earthquake Engineering Research Center, University of California, Berkeley.1984.
    [40] Amer M. Elsouri, Mohamed H. Harajli. Seismic Repair and Strengthening of LapSplices in RC Columns: Carbon Fiber–Reinforced Polymer versus Steel Confinement[J]. Journal of Composites for Construction,2011,15(5):721-729.
    [41] Angelo Caratelli, Alberto Meda, Zila Rinaldi, et al. Structural behaviour of precasttunnel segments in fiber reinforced concrete [J]. Tunnelling and Underground SpaceTechnology,2011,26(2):284-291.
    [42] ASCE41. Seismic Rehabilitation of Existing Buildings (ASCE/SEI41/06plusSupplement1)[R], American Society of Civil Engineers, Reston, VA,2007:416.
    [43] ASCE7. Minimum Design Loads for Buildings and Other Structures (ASCE/SEI7-10)
    [R], American Society of Civil Engineers, Reston, VA,2010.
    [44] ATC72. ATC-72-1: Interim Guidelines on Modeling and Acceptance Criteria forSeismic Design and Analysis of Tall Buildings [R], ATC-72-1, Applied TechnologyCouncil, Redwood City, California,2010.
    [45] Atkinson, G.M., and D.M. Boore. Empirical ground motion relations for subductionearthquakes and their application to Cascadia and other regions [J], Bulletin of theSeismological Society of America,2003,93,1703-1729.
    [46] Atkinson, G.M., and D.M. Boore. Erratum to Atkinson and Boore [J], Bulletin of theSeismological Society of America,2008,98,2567-2569.
    [47] Bellman RE, Casti J. Differential quadrature and long-term intergration [J]. Journal ofMathematical Analysis and Applications.1971,34:235-238
    [48] Bert CW, Malik M. Differential quadrature method in computational mechanics [J].Applied Mechanics Reviews,1996,49(1):1-28
    [49] Blakely R W G,Park R.Prestressed concrete sections with cyclic flexure[J].Journal ofthe Structural Division,ASCE.1973,99(8):1717—1742.
    [50] Boore, D.M., and G.M. Atkinson. Ground motion prediction equations for the averagehorizontal component of PGA, PGV, and5%-damped PSA at spectral periods between0.01and10.0s [J], Earthquake Spectra,2008,24(1),99-138.
    [51] Camata G., Spacone E., Zarnic R.. Experimental and Nonlinear Finite Element Studiesof RC Beams Strengthened with FRP Plates [J]. Composites,2007,1(2):277-288.
    [52] CEB: RC Elements under Cyclic Loading-State of the Art Report[R].ThomasTelford.1996.
    [53] Chopra A K, Goel R K, Chintanapakdee C. Evaluation of a modified MPA procedureassuming higher modes as elastic to estimate seismic demands [J]. Earthquake Spectra,2004,20(3):757-778.
    [54] Chopra A K, Goel R K. A modal pushover analysis procedure for estimating seismicdemands for buildings [J]. Earthquake Engineering&Structural Dynamics,2002,31(3):561-582;
    [55] Chopra A K, Goel R K. A modal pushover analysis procedure to estimate seismicdemands for unsymmetric-plan buildings [J]. Earthquake Engineering&StructuralDynamics,2004,33(8):903-927.
    [56] Clough, R. and Benuska, L. Nonlinear Earthquake Behavior of Tall Buildings [J].Journal of Mechanical Engineering, ASCE,93(EM3), pp.29-146.
    [57] Design of Structures for Earthquake Resistance. Part1: General Rules, SeismicActions and Rules for Buildings [R], EN1998-1. European Committee forStandardisation: Brussels,2004.
    [58] Dol ek M, Fajfar P. Simplified non-linear seismic analysis of infilled concrete frames[J]. Earthquake Engineering and Structural Dynamics2005;34(1):49–66.
    [59] Englekirk Robert.E. Seismic Design of Reinforced and Precast Concrete Buildings [R].John Wiley&Sons, New York, NY,2003.
    [60] Englekirk, Robert E. and Llovet, Dani. Cyclic Tests of Cast-in-Place High StrengthBeam-Column Joints [R], Carpenters/Contractors Cooperation Committee, Inc., HighStrength Concrete Research, Los Angeles, CA,2000.
    [61] Erduran E, Kunnath SK. Enhanced displacement coefficient method for degradingmulti-degree-of-freedom systems [J].Earthquake Spectra.2010,26(2):311–326.
    [62] ETABS Nonlinear Version9.2.0. Extended3D Analysis of Building Structures [R],Computers and Structures, Inc. Berkeley, CA,2008.
    [63] Fajfar P, Gaspersic P. The N2method for the seismic damage analysis of RC buildings[J]. Earthquake Engineering&Structural Dynamics,1996,25(1):31-46
    [64] Filippou F C,Issa,A.Nonlinear Analysis of Reinforced Concrete Frame under CyclicLoad Reversals [R].EERC report88/12,Earthquake Engineering Research Center, Uni-versity of California,Berkeley.
    [65] Filippou, F. C., Popov, E. P., Bertero, V. V. Effects of Bond Deterioration on HystereticBehavior of Reinforced Concrete Joints [R]. Report EERC83-19, EarthquakeEngineering Research Center, University of California, Berkeley.
    [66] Frank McKenna and Gregory L. Fenves. Introducing a new element into OpenSees[R].PEER, University of California, Berkeley,2000.
    [67] Freeman S A, Nicoletti J P, Tyrell J V. Evaluation of existing buildings for seismic risk-A case study of Puget Sound Naval Shipyard [R]. Bremerton, Washington, Proc.1stU.S. National Conf. Earthquake Engng., EERI, Berkeley,1975:113-122
    [68] Fung TC. Solving initial value problems by differential quadraure method-Part1:first-order equations [J]. International Journal for Numerical Methods in Engineering,2001,50:1411-1427
    [69] Fung TC. Solving initial value problems by differential quadraure method-Part2:second-and higher-order equations [J]. International Journal for Numerical Methods inEngineering,2001,50:1429-1454
    [70] Geoffrey W. Rodgers, John B. Mander, J. Geoffrey Chase. Modeling cyclic loadingbehavior of jointed precast concrete connections including effects of friction, tendonyielding and dampers [J]. Earthquake Engineering and Structural Dynamics,2012,41(15):2215-2233.
    [71] Giberson, M. F., The response of nonlinear multistory structures subjected toearthquake excitation [D], California Institute of Technology, Pasadena, Calif,1967.
    [72] Gulec C.K., Whittaker A.S., Stojadinovic B. Shear strength of squat rectangularreinforced concrete walls [R], ACI Struct.2008,105(4):488-497.
    [73] Han SW, Chopra AK. Approximate incremental dynamic analysis using the modalpushover analysis procedure [J].Earthquake Engineering and Structural Dynamics2006;35(15):1853–1873.
    [74] Hidalgo P.A., Ledezma C., Jordan R. Seismic behavior of squat reinforced concreteshear walls [J], Earthquake Spectra,2002,18(2):287-308.
    [75] Hilber, H.M, Hughes, T.J.R and Talor, R.L. Improved Numerical Dissipation for TimeIntegration Algorithms in Structural Dynamics [J]. Earthquake Engineering andStructural Dynamics,5:282-292,1977.
    [76] http://skyscraperpage.com/cities/[OL].
    [77] http://www.emporis.com/city/shanghai-china[OL].
    [78] Hugo Rodrigues, António Arêde, Humberto Varum, Aníbal G. Costa. Experimentalevaluation of rectangular reinforced concrete column behaviour under biaxial cyclicloading [J]. EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS,2013,42(2):239-259.
    [79] ICC (International Code Council). International Building Code[S], International CodeCouncil, Falls Church, VA,2006.
    [80] Iztok Peru, Robert Klinc, Matev Dolenc, Matja Dol ek. A web-based methodologyfor the prediction of approximate IDA curves [J]. Earthquake Engineering andStructural Dynamics,2013,42(1):43-60.
    [81] Jeong S-H, Elnashai AS. Probabilistic fragility analysis parameterized by fundamentalresponse quantities [J]. Engineering Structures2007;29(6):1238–1251.
    [82] Kaba, S. and Mahin, S.A. Refined Modeling of Reinforced Concrete Columns forSeismic Analysis [R]. EERC Report84-03, Earthquake Engineering Research Center,University of California, Berkeley.1984
    [83] Kabeyasawa T., Shiohara T., Otani S., Aoyama H. Analysis of the full-scale seven storyreinforced concrete test structure: Test PSD3[C], Proc.3rd JTCC, US-Japan Cooperati-ve Earthquake Research Program. Tsukuba, Japan: BRI,1982.
    [84] Kent D C, Park R. Flexural members with confined concrete [J]. Journal of the Stuc-tural Division, ASCE,1971,97(7):1969-1990.
    [85] Laura Eads, Eduardo Miranda, Helmut Krawinkler, Dimitrios G. Lignos. An efficientmethod for estimating the collapse risk of structures in seismic regions [J]. EarthquakeEngineering and Structural Dynamics,2013,42(1):25-41.
    [86] Limkatanyu S., Spacone. Frame Element with Lateral Deformable Supports:Formulations and Numerical Validations [J]. Computers and Structures,2006,8(4):942-954.
    [87] Los Angeles Tall Building Design Council [D]. An Alternative Procedure for SeismicAnalysis and Design of Tall Buildings Located in the Los Angeles Region, LosAngeles, CA,2008.
    [88] M. Abramowitz and C. A. Stegun, editors. Handbook of Mathematical Functions withFormulas, Graphs, and Mathematical Tables [M]. Dover, New York, NY,9th edition,1972.
    [89] M. H. Scott and O. M. Hamutcuoglu. Numerically consistent regularization of force-based frame elements [J]. International Journal for Numerical Methods in Engineering,2008,76(10):1612–1631.
    [90] Mander, J.B., Priestley, M.J.N. and Park, R. Theoretical Stress-Strain Model for Confi-ned Concrete [J].ASCE Journal of Structural Engineering,1988,114(8),1804-1826.
    [91] Mari, A. and Scordelis, A. Nonlinear Geometric Material and Time Dependent Analys-is of Three Dimensional Reinforced and Prestressed Concrete Frames [R]. SESM Rep-ort82-12, Department of Civil Engineering, University of California, Berkeley.
    [92] Massone L. M.; Orakcal K.; and Wallace J. W.. Shear-Flexure Interaction for StructuralWalls [R]; SP-236, ACI Special Publication-Deformation Capacity and Shear Strengthof Reinforced Concrete Members Under Cyclic Loading,2006:127-150.
    [93] Massone L.M. Orakcal K., Wallace J.W. Shear-Flexure Interaction for Structural Walls[R], SP-236, ACI,2006.
    [94] Massone L.M., Orakcal K., Wallace J.W. Modeling of squat structural walls controlledby shear [R], ACI Struct.J.2009,106(5)646-655.
    [95] Massone L.M., Wallace J.W. Load-deformation responses of slender reinforcedconcrete walls [R], ACI Struct.2004,101(1)103-113.
    [96] Massone L.M., Wallace J.W. Load-deformation responses of slender reinforcedconcrete walls [R], ACI Struct.J.,2004,101(1)103-113.
    [97] Massone, L. M.. RC Wall Shear-Flexure Interaction: Analytical and ExperimentalResponses [D], Los Angeles: University of California,2006.
    [98] Massone, L. M., Orakcal, K., Wallace, J. W.. Shear-Flexure Interaction for StructuralWalls [R]; SP-236, ACI Special Publication–Deformation Capacity and Shear Strengthof Reinforced Concrete Members Under Cyclic Loading, editors: Adolfo Matamoros&Kenneth Elwood, p.127-150.
    [99] Massone, L. M..RC Wall Shear–Flexure Interaction: Analytical and ExperimentalResponses [D]. University of California, Los Angeles,2006.
    [100] Mazzoni S, McKenna F, Scott MH, et al. Open system for earthquake engineeringsimulation user command-language manual[Z]. http://opensees.berkeley.edu,2006.
    [101] Menegotto M., Pinto P. E. Method of Analysis for Cyclically Loaded R.C. PlaneFrames Including Changes in Geometry and Non-elastic Behavior of Elements underCombined Normal Force and Bending. Lisbon[R]. International Association forBridge and Structural Engineering,1973.
    [102] Mercan O., Ricles J.M. Stability and accuracy analysis of outer loop dynamics inreal-time pseudodynamic testing of sdof systems[R]. Earthq. Eng. Struct. Dyn.2007,36(11):1523-1543.
    [103] Miranda E. Inelastic displacement ratios for structures on firm sites [J]. Journal ofStructural Engineering.2000,126(10):1150–1159.
    [104] Mo, Y.L., Wang, S.J. Seismic Behavior of RC Columns with Various Tie Configurati-ons [J]. Journal of Structural Engineering, ASCE,2000,126:1122-1130.
    [105] Mohd Hisham Mohd Yassin. Nonlinear Analysis of Prestressed Concrete Structuresunder Monotonic and Cycling Loads [D]. PhD dissertation, University of California,Berkeley,1994.
    [106] Naish, David, Fry, Andy, Klemencic, Ron and Wallace, John. Testing and Modeling ofdiagonally Reinforced Concrete Coupling Beams [J]. Paper submitted to ACIstructural journal, Los Angeles, CA,2009.
    [107] NEES. quakesummit2012[Z]. http://nees.org/quakesummit2012/program.2012-7-8.
    [108]Newmark NM. A method of computation for structural dynamics [J]. Journal of theEngineering Mechanics Division, ASCE,1959,85:67-94
    [109] Orakcal, Kutay and Wallace, John W. Flexural Modeling of Reinforced ConcreteWalls–Experimental Verification [R], ACI Structural Journal, V.103, No.2,2006.
    [110] Orakcal, Kutay, Wallace, John W. and Conte, Joel P. Flexural Modeling of ReinforcedConcrete Walls Model Attributesg [R], ACI Structural Journal, V101, No.5,2004.
    [111] Paulay, T., and M.J.N. Priestley. Seismic Design of Reinforced Concrete and MasonryBuildings [R]. John Wiley&Sons, New York, NY,1992.
    [112] PEER. E-Defense Four-Story RC&PT Buildings Blind Prediction Contest2011[Z].http://peer.berkeley.edu/prediction_contest_2011.2011-11-4.
    [113] Rose B., Shing B., Spacone E., Willam K. A Reinforced Concrete Model forAnalyzing Flexural and Shear Behavior of R/C Beam-Columns [J]. American Societyof Civil Engineers,2001:158-174.
    [114] Scott B D, Park R, Priestley M J N. Stress-strain Behavior of concrete Confined byOverlapping Hoops at Low and High Strain Rates [J]. ACI Journal Proceedings,1982,79(1):13-27.
    [115] Scott M H, Fenves G L. Plastic Hinge Integration Methods for Force-Based Beam-C-olumn Elements [J]. Journal of Structural Engineering, ASCE,2006,132(2):244-252.
    [116] Silvia Mazzoni, Frank McKenna, Michael H. Scott, Gregory L. Fenves.OpenSeesUsers Manual[R]. PEER, University of California, Berkeley.2004.
    [117] Spacone, E., Ciampi, V., Filippou, F. C. Mixed formulation of nonlinear beam finiteelement [J]. Computers and Structures,1996,58:71–83.
    [118] Special Publication-Deformation Capacity and Shear Strength of Reinforced ConcreteMembers under Cyclic Loading [R]. ACI Struct. J., pp.127-150.
    [119] T.T.C. Hsu, Y.L. Mo. Unified Theory of Concrete Structures[M], A John Wiley andSons, Ltd,2010
    [120] Takuya Nagae, John Wallace.etc. Design and Instrumentation of the2010E-DefenseFour-Story Reinforced Concrete and Post-Tensioned Concrete Buildings [R].PEERReport104, Pacific Earthquake Engineering Research Center, University of California,Berkeley,2011.
    [121] Taucer F F, Spacone E, Filippou F C. A fiber beam-column element for seismicresponse analysis of reinforced concrete structure[R].EERC report91/17, EarthquakeEngineering Research Center, University of California, Berkeley,1991.
    [122] Vamvatsikos D, Cornell CA. Direct estimation of the seismic demand and capacity ofoscillators with multi-linearstatic pushovers through IDA [J]. Earthquake Engineeringand Structural Dynamics2006;35(9):1097–1117.
    [123] Vamvatsikos D, Cornell CA. Incremental dynamic analysis [J]. Earthquake Engineer-ing and Structural Dynamics2002;31(3):491–514.
    [124] VulcanoA, Bertero V V, Colotti V. Analytical. Modeling of RC Structural Walls [C].Procs9th WCEE, Tokyo-Kyoto,1988(6):41-46.
    [125] Wilson EL, Farhoomand I, Bathe KJ. Nonlinear dynamic analysis of complexstructures [J]. Earthquake Engineering and Structural Dynamics,1973,1:241-252
    [126] Y.L. Mo, J. Zhong, T.T.C. Hsu, Seismic simulation of RC wall-type structures, Engin-eering Structures [J].2008,30(11),3167-3175.
    [127] Zeris, C.A. and Mahin, S.A. Analysis of Reinforced Concrete Beam-Columns underUniaxial Excitation [J]. Journal of Structural Engineering, ASCE,1988,4(114):804-820.
    [128]Zeris, C.A. and Mahin, S.A. Behavior of Reinforced Concrete Structures Subjected toBiaxial Excitation [J]. Journal of Structural Engineering, ASCE,1991,9(117):2657-2673.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700