用户名: 密码: 验证码:
镁合金拉拔工艺及组织性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文设计了一种可加热控温的封闭的镁合金拉拔装置和拉拔模具,采用挤压和拉拔两种工艺成形了φ4.0mm×0.25mm的WE43镁合金细薄管;探讨了拉拔管材的壁厚变化特点;完成了对不同工艺参数条件下拉拔力的实测,分析了拉拔工艺参数对拉拔力的影响;并探讨了热处理对挤压WE43镁合金性能和组织的影响,以及变形量对WE43镁合金拉拔棒材的性能和组织的影响,分析了拉拔镁合金的变形机制。
     实验结果表明,本课题设计的拉拔装置和拉拔模具能够实现镁合金棒材和管材的拉拔。采用挤压、拉拔、机械加工以及热处理等一系列工艺成形出的φ4.0mm×0.25mm细薄镁合金管材壁厚均匀,组织性能良好,表面光洁度好。此细薄镁合金管的力学性能可达到:σ_b>200MPa,δ>15%。
     多道次拉拔和减小道次加工率能够减小管材在拉拔过程中所受的环向压应力,有效地阻止细薄管材在拉拔过程中增壁的倾向,也可以促进管材壁厚均匀化;T_4处理也可以减小管材壁厚的增长。
     拉拔管材的延伸系数越大,所需的拉拔力越大;管材拉拔力随着拉拔速度的增加呈现先降低后增长的趋势,当v=0.25mm/s时拉拔力达到最小值,实现了拉拔速度的优化。本课题所设计的管材拉拔工艺切实可行,各道次的安全系数K均大于1,保证了棒材和管材拉拔过程中没有试样断裂现象。
     固溶处理能够明显改善挤压WE43镁合金的组织和性能,极大地减小了管材拉拔过程中发生折叠的几率。经过525℃×8h的固溶处理,合金具备良好的室温综合力学性能,组织中的稀土相呈细小颗粒状均匀分布于α-基体中。
     多道次拉拔使得WE43镁合金棒材的抗拉强度逐渐变大,伸长率逐渐减小。孪晶形核是拉拔镁合金的形核方式之一,有利于再结晶过程的进行和镁合金晶粒的细化。当变形程度达到84.2%时,晶粒由23μm减小到8μm以下。
In this paper,a kind of closed drawing device,with capacity of heating and temperature-controlling,and drawing die are designed.Extruding and drawing are used to form thin-walled WE43 magnesium alloy tubes ofΦ4.0mm×0.25mm and alternation rules of wall thickness of the tubes are discussed;drawing forces under different processing parameters are measured and effect of drawing processing parameter on drawing force is analyzed;effect of heat treatment on properties and structure of extruded WE43 magnesium is discussed,and impact of deformation degree on properties and structure of drawed WE43 magnesium alloy,as well as its deformation mechanics,is researched.
     The results show that drawing processing of magnesium alloy bars and tubes can be realized in the presence of drawing device and dies designed.Thin-walled magnesium alloy tubes ofΦ4.0mm×0.25mm formed through a series of crafts of extruding,drawing, machining and heat treatment have homogeneous wall thickness,good performance and structure and surface quality.Mechanical properties of the tubes can reach:σ_b>200MPa,δ>15%.
     Multi-pass drawing and decreasing elongation coefficient can reduce circumferential compressive stresses which tubes bears during drawing,prevent effectively increasing tendency of wall thickness,and are also favorable to homogeneous wall-thickness;T4 heat treatment can also prevent the increasing tendency of wall thickness.
     The bigger the Elongation coefficient,the bigger the drawing force needed;drawing force first decline and then increase with the increasing of drawing velocity.When v equals to 0.25mm/s,drawing force is lowest,making that optimization of drawing velocity is realized.Drawing processing of tubes designed is feasible,and assurance coefficient K of all passes is much greater than 1,making sure that no breaking occurs during drawing.
     Solution treatment can improve structure and properties of extruded WE43 magnesium alloy,and reduce probability of tubes overlapping during drawing.Through solution treatment of 525℃×8h,this alloy have excellent comprehensive properties in room temperature,rare-earth phases chang into fine particles and distribute homogeneously inα-matrix.
     Multi-pass drawing makes tensile strength of WE43 magnesium alloy increase and elongation decrease.Twin nucleation is main nucleation way of drawed magnesium alloy, and is favorable to recrystallization and refinement of magnesium alloy grains.When deformation degree is up to 84.2%,grain size reduces from 23μm to below 8μm.
引文
[1]陈庆福.管材属性对血管支架行为及支架制造性能影响.材料科学与工艺,2005,13(2):1-2.
    [2]Villermaux F,Tabrizian M,Yahia L,et.al.Corrosion resistance improvement of NiTi osteosynthesis staples by plasma polymerized tetrafluoroethylene coating.Biome Mater Eng,1996,6(4):241.
    [3]Saris NEL.An update on physiological,clinical and analytical aspects.Clin Chim Acta,2000,29(4):1-26.
    [4]Vormann J.Nutrition and metabolism.Mol Aspects Med,2003,24(6):27-37.
    [5]Vormann J.Bonding to hydroxyapatite.Key Eng Mater,2004,14(6):254-256.
    [6]Yamasaki Y,Yoshida Y,Okazaki M,et.al.Action of FG-MgCO_3 Ap-collagen composite in promoting bone formation.Biomaterials,2003,24(2):13-20.
    [7]Schranz D,Zartner P,Michel-Behnke I.Bioabsorble metal stents for percutaneous treatment of critical recoarctation of the aora in a newborn.Catheterization and Cardiovascular Intervention,2006,67(5):671-673.
    [8]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002.
    [9]郭学峰,魏建峰,张忠明.镁合金与超高强度镁合金.铸造技术,2002,23(3):133-136.
    [10]高仑.镁合金成形技术的开发与应用.轻合金加上技术,2004,32(3):5-12.
    [11]达健,谢刚,戴水平.低密度汽车镁材料.中国有色金属学报,1997,7(1):390-393.
    [12]余琨,黎文献,王日初.变形镁合金的研究、开发及应用.中国有色金属学报,2003,2:277-288.
    [13]马图哈K H著.丁道云等译.材料科学与技术从书—非铁合金的结构与性能.北京:科学出版社,1999.
    [14]萨维茨基著.张宝琦,孙志巨,刘志富译.稀土金属学.莫斯科:莫斯科科学出版社,1975.
    [15]刘光华.稀土固体物理学.北京:机械工业出版社,1997.
    [16]范才河,陈刚,严红革.稀土在镁及镁合金中的作用.材料导报,2005,19(3):61-63.
    [17]郭旭涛,李培杰,刘树勋等.稀土耐热镁合金发展现状及展望.铸造,2002,51(2):68-71.
    [18]赵志远.铸造稀土镁合金在我国航空工业中的应用.材料工程,1993;(7):8-10.
    [19]杨遇春,金红.稀土有色金属材料及其发展前景.材料工程,1993,(6):45-48.
    [20]Rokhlin L L.Magnesium alloys containing rare earth metals.Paris:Taylor and Francis,2003.
    [21]Masalski T B,William W.Binary alloy phase diagrams.Second Edition.Scot.Jr,1990,(5):45-47.
    [22]Drits M E,Rokhlin L L.Izv Vyss Uchebn Zaved.Tsvetn Metall,1997,1(7):168-171.
    [23]李亚国.Mg-Zn-Zr-Y系镁合金X射线衍射分析.中国稀土学报,1992,10(4):360.
    [24]Sviderskaya Z A,Padezhnova E M.Izv Akad Nauk SSSR.Met,1968,6(5):183-190.
    [25]李永祚,鲁立奇.富钇混合稀土和热处理对Mg-Zn-Zr系镁合金组织及相结构的影响.中国稀土学报,1991,9(1):61.
    [26]Drits M E,Sviderskaya Z A,Rokhlin L L.in Metallurgiya Metallovedenie i Fiziko-Khimicheskie Metody Issledovaniya.Russian Academy of Science Publishers,1982,12(4):143-151.
    [27]Rokhlin L L.Nauk SSSR.Tekh.Nauk.Met.Toplivo,1962,2(7):26-130.
    [28]刘子利,丁文江,袁广银.镁铝基耐热铸造镁合金的进展.机械工程材料,2001,25(11):1-4.
    [29]Polmear I J.Research on Structure of Mg-Ce and Mg-Nd Alloy.Mater Sci Techn,1994,10(8):1.
    [30]Luo A,Pekguieryuz M.Effect of La Ce Misch Metal on AZ91 Magnesium Alloy.J Mater Sci Techn,1994,4(29):52-59.
    [31]Li Y.Effect of Y Element on Structure of AZ91 Magnesium Alloy.Mater Sci Techn,1996,3(8):651.
    [32]周海涛,马春江,尉撤红等.元素Ce对AZ61镁合金组织第二相的影响.高技术通讯,2003,12(1):53.
    [33]Wei Liu-ying.Refining Action of Effect of Rare Earth on Microstructure of Magnesium Alloy.Sweden Chalmers University of Technology Coteborg,1990,5(3):72-76.
    [34]Zhang Shi-chang,Wei Bo-kang,Cai Qi-zhou.Effect of Y element on Structure of Casted AZ91Alloy.Transaction of Nonferrous Metals Society of China,2003,2(1):83.
    [35]余琨.含稀土镁合金的研究与开发.特种铸造及有色合金,2001,4(1):41-43.
    [36]SrivatsanT S,LI Wei,Chang C F.The tensile behaviour of rapidly solidified magnesium alloys.Journal of Materials Science,1995,11(30):1832-1838.
    [37]师昌绪,李恒德.加速我国金属镁工业发展的建议.材料导报,2001,7(4):5-6.
    [38]Ogawa N,Shiomi M,Osakada K.Forming limit of magnesium alloy at elevated temperature for precision forging.International Journal of Machine Tools and Manufacture,2002,42(7):607-614.
    [39]张士宏,许沂,王忠堂.镁合金成形加工技术.世界科技研究与发展.2001,23(6):18-21.
    [40]陈振华.变形镁合金.北京:化学工业出版社,2005.
    [41]Schumann S,Friedrich H.Current and future use of magnesium in the automobile industry.Materials Science Forum,2003,51(9):419-422.
    [42]Shan D B,Xu W C,Lu Y.Study on Precision Forging Technology for a Complex-shaped Light Alloy Forging.Journal of Materials Processing Technology,2004,151(1-3):289.
    [43]Lapovok R Ye,Barnett M R,Davies C H J.Construction of Extrusion Limit Diagram for AZ31Magnesium Alloy.FE Simulation.Journal of Materials Processing Technology,2004,146(3):408.
    [44]Perez-Prado M T,del Valle J A,Contreras J M.Microstructural evolution during large strain hot rolling of an AM60 Mg -alloy.Scripta Materialia,2004,50(5):661-665.
    [45]Perez-Prado M T,del Valle J A,Ruano O A.Effect of sheet thickness on the micro-structure evolution of an Mg AZ61 alloy during large strain hot rolling.Scripta Materialia,2004,50(5):667.
    [46]Galiyev A,Kaibyshev R.Superplasticity in a magnesium alloy subjected to isothermal rolling.Scripta Materialia,2004,16(51):89.
    [47]王渠东,丁文江.镁合金及其成形技术的国内外动态与发展.世界科技研究与发展,2004,26(3):39-46.
    [48]Erickson Steve,Soper John.Magnesium stands on its own.Machine Design,1995,67(18):99.
    [49]黄乃瑜,罗吉荣.第九届国际铸造博览会(GIFA'99)综述.特种铸造及有色合金,1995,12(5):45-52.
    [50]张高会,张平则,潘俊德.镁及镁合金的研究现状与进展.世界科技研究与进展,2003.25(1):72-78.
    [51]Hu H.Squeeze of magnesium alloys and their composites.J Mater Sei,1998,33:1579-1589
    [52]Yim CD,Shin K S.Semi-solid Processing of Magnesium Alloys.Materials Transactions,2003,44(4):558-561.
    [53]刘金海,李国禄.镁合金成型工艺及应用研究进展.特种铸造及有色合金,2001,4(8):20-22.
    [54]张梅琳,朱世根,丁浩等.镁合金加工技术的现状与发展.东华大学学报,2005,31(6):135-136.
    [55]Liang D.The effect of growth velocity on primary spacing of Al_3Fe debdrites in hypereutectic Al-Fe alloys.Journal of Crystal Growth,1994,13(5):516-564.
    [56]Yong K P.The dendrite arm spacing of Aluminum-Copper alloys solidified under steady-stateeonditions.Metallungieal Transaction,1925,6A:197-205.
    [57]Matsubara K,Miyahara Y,Horita Z,et al.Developing superplastieity in a magnesium alloy through a combination of extrusion and ECAP.Acta Materialia,2003,51(7):3073-3084.
    [58]Allen R V,East D R,JohnsonT J,et al.Magnesium alloy produced by twin roll casting.TMS Annual Meeting,2001(2):75-79.
    [59]王忠堂,张士宏,许沂.镁合金管材挤压工艺及力能参数实验研究.沈阳工业学院学报,2001,20(4):66-69.
    [60]王忠堂,张士宏,莫立华.镁合金管材挤压工艺及组织性能研究.锻压机械,2002,1(7):60-62.
    [61]张青来,卢晨,丁文江.分流挤压镁合金管材工艺研究.轻合金加工技术,2003,31(10):28.
    [62]李良福.热挤压镁合金管的新工艺.钢管,2001,30(6):52.
    [63]王迪瓒.热挤压工艺对镁合金组织性能的影响.洪都科技,1997,3(9):27.
    [64]黄光胜,汪凌云,范永革.AZ31B挤压工艺研究.金属成形工艺,2002,20(5):11.
    [65]于翔,丁培道,彭健.挤压变形对MB15镁合金及组织性能的影响.金属成形工艺,2004,22(1):41.
    [66]于宝义,包春玲,宋鸿武.AZ91D镁合金挤压成形管材的组织性能研究.热加工工艺,2005,8(2):30.
    [67]Jager P,Lukac V.Tensile properties of hot rolled AZ31 Mg alloy sheets at elevated temperature.Journal of Alloys and Compounes,2004,37(8):184-187.
    [68]ZHOU Haitao,WANG Qudong,WEI Yinhong,et al.Flow stress and microstractural evolution in as rolled AZ91 alloy during hot deformation.Transactions of Nonferrous Metals Society of China,2003,13(6):1265-1269.
    [69]Mohri T,Mabuchi M,Nakamura M,et al.Microstrutural evolution and superplasticity of rolled Mg_(29)Al_(21)Zn.Materials Science and Engineering,2000,A290:139-144.
    [70]Hosokawa,Chino Yasumasa,Shimojima,et al.Mechanical properties and blow forming of rolled AZ31 Mg alloy.Materials Transactions,2003,44(4):484-489.
    [71]TienChan Chang,JianYi Wang,ChiaMing O,et al.Grain refining of magnesium alloy AZ31 Mg rolling.Journal of Materials Processing Technology,2003,140(3):588-591.
    [72]马怀宪.金属塑性加工学一挤压、拉拔与冷轧管.北京:冶金工业出版社,1980.
    [73]李正波.盘管拉伸设备发展现状简述.铜加工,1991,12(1):3.
    [74]Takahashi H,Oishi Y,Wakamatsu K,et.al.Tensile properties and bending formability of drawn magnesium alloy pipes.Materials Science Forum,2003,34(5):419-422.
    [75]#12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700