管线钢焊接热影响区针状铁素体的形成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管线钢大线能量焊接时焊接热影响区显微组织的粗化,大大降低了管线钢焊接接头的韧性,这严重制约了管线钢的应用。本文针对X70、X80管线钢在大线能量焊接条件下的焊接热影响区粗晶区的显微组织变化过程,详细地研究了X70、X80管线钢焊接热影响区利用其有益夹杂物诱导针状铁素体形核、细化粗晶区显微组织的行为。
     针对管线钢主要采用多丝大线能量焊接的特点,研究了焊接线能量为29.8 KJ/cm、40.0 KJ/cm和50.3KJ/cm时,X80管线钢焊接热影响区的组织变化行为。结果表明,X80钢采用大线能量埋弧焊时,热影响区的粗晶区晶粒会发生长大,使得焊接热影响区的韧性降低。若能利用钢中的有益夹杂物,诱导针状铁素体形核,就可细化热影响区粗晶区的显微组织,提高韧性。
     采用物理模拟的方法,研究了氧化物冶金钢及其焊接热影响粗晶区的显微组织和有益夹杂物性质在大线能焊接过程中的变化。研究表明,氧化物冶金钢中直径为0.2~0.6μm的有益夹杂物在大线能量焊接热过程中不会失去其诱导针状铁素体形核和感生形核的作用,具有抑制粗晶区晶粒长大的能力。
     采用焊接热模拟的方法,研究了针状铁素体管线钢焊接热影响区的晶粒自细化行为,详细分析了诱导针状铁素体形核夹杂物的大小、分布在焊接热循环过程中的变化规律,揭示了有益夹杂物的性质与显微组织之间的关系,为针状铁素体管线钢焊接工艺参数的优化提供了依据。
Microstructure in welding Heat Affected Zone (HAZ) of pipeline steel, when applied to large heat input welding process, will become much coarse. This leads to greatly decrease in toughness of pipeline steel, which severely restricts its applications. This thesis focused on the transformation of microstructure in HAZ of X70/80 pipeline steel. The behavior that beneficial inclusions inducing acicular ferrite nucleation thus refining microstructure in Coarse Grain Heat Affected Zone (CGHAZ) of X70/80 pipeline steel under large heat input welding conditions was investigated detailedly.
     Due to the fact that welding of pipeline steel is always adopted by multipilewire large heat input welding methods, transformation behavior of microstructure in HAZ of X80 pipeline steel was investigated with the selected heat input parameters 29.8 KJ/cm, 40.0 KJ/cm, and 50.3KJ/cm. It was found that when large heat input automatic submerged-arc welding was applied to X80 pipeline steel, grains in CGHAZ of the steel would grown up which lead to decrease in toughness. If beneficial inclusions in the steel can be utilized to induce acicular ferrite nucleation, microstructure in CGHAZ will be refined and toughness be improved correspondingly.
     Using physical simulation technology, microstructure in oxides metallurgy steel and its CGHAZ as well as the character of beneficial inclusions in the process of large heat input welding process was investigated. Results indicated that the role of beneficial inclusions with a diameter of 0.2~0.6μm that inducing acicular ferrite nucleation and sympathetic nucleation woud not lose. They have the ability of restraining growth of grains in CGHAZ.
     Self refining grain behavior in HAZ of acicular ferrite microstructure pipeline steel was studied systematically by welding themal simulation method. Changes on size and distribution of inclusions which induced acicular ferrite nucleation during the welding thermal circle were analyzed completely. Relations between character of beneficial inclusions and microstructure in HAZ were disclosed. Those results provided a basis for optimizing welding parameters of acicular ferrite microstructure pipeline steel.
引文
[1]黄开文.国外高钢级管线钢的研究与使用情况.焊管,2003,26(3):1-9
    [2]李鹤林.油气输送钢管的发展动向与展望.焊管,2004 ,27(6):1-12
    [3]陈茂爱,唐逸民,楼松年. Ti对低合金高强度钢焊接粗晶热影响区组织及韧性的影响.特殊钢,2001,22(5):5-8
    [4]尹桂全,高甲生,洪永昌等.微量Ti对焊接热影响区奥氏体晶粒长大倾向的影响.上海金属,1998 ,20(1):24-28
    [5]尹桂全,高甲生,洪永昌等.微量Nb对微Ti钢焊接HAZ奥氏体晶粒长大的影响.焊接学报,1998,19(1):13-18
    [6]亓效刚,陈茂爱,陈俊华等. Ti-Nb微合金钢焊接粗晶热影响区组织及韧性.金属成形工艺,2004,22(1):30-33
    [7]黄开文. X80和X100钢级管线钢的合金化原理和生产要点.轧钢,2004,21(6):55-58
    [8] Naoshi Ayukawa, Yoshio Terada, Takuya Hara et al.高强度管线钢及其焊管的性能研究.焊管,2005,28(2):50-60
    [9]田志凌,屈朝霞,杜则裕.细晶钢焊接热影响区晶粒长大及组织转变.材料科学与工艺,2000,8(3):16-20
    [10]熊林玉,杜则裕,陶勇寅等. X80钢管的焊接.油气储运,2003,22(10): 53-56
    [11]熊林玉,杜则裕,董丽红.高强度X80钢管道的焊接.石油工程建设,2004,30(2):31-34
    [12]陈茂爱,唐逸民,楼松年等.冷却时间对Ti微合金钢焊接粗晶区组织及韧性的影响.金属学报,1998,34(3):263-270
    [13]薛小怀,周昀,钱百年等. X80管线钢焊接粗晶区组织与韧性的研究.上海交通大学学报,2003,37(12):1854-1857
    [14]徐学利,辛希贤,石凯等.焊接热循环对X80管线钢粗晶区韧性和组织的影响.焊接学报,2005,26(8):69-72
    [15]陈翠欣,李午申,王庆鹏等. X80管线钢焊接粗晶区韧化因素的研究.材料工程,2005,5:22-26
    [16] D. J. Abson. Non-metallic Inclusions in Ferritic Steel Weld Metals-A Review. Welding in the World, 1989, 9(27): 76-100
    [17] Z. Y. Zhang, R. A. Farrar. Role of Non-metallic Inclusions in Formation of Acicular Ferrite in Low Alloy Weld Metals. Materials Science and Technology, 1996, 12(3): 273-260
    [18] A. O. Kluken, O. Grong. Mechanisms of Inclusion Formation in Al-Ti-Si-Mn Deoxidized Steel Weld Metals. Materials Transactions A, 1989, 20 (8) : 1335-1349
    [19] T. Hong, T. Debroy, S. S. Babu et al. Modeling of Inclusion Growth and Dissolution in the Weld Pool. Metallurgical and Materials Transactions B, 2000, 31(2): 161-169
    [20]余圣甫.华中科技大学博士后研究工作报告,2001,9
    [21] J. Takamura, S. Mizoguchi. Roles of Oxides in Steel Performance. Proceedings of the Sixth International Iron and Steel Congress, 1990, Nagoya, ISIJ: 591-597
    [22] H. GOTO, K. Miyazawa, W. Yamada et al. Effect of Oxygen Content on Size Distribution of Oxides in Steel.ISIJ International, 1995 , 35 (3) : 286-291
    [23] H. GOTO, K. Miyazawa, W. Yamada et al. Effect of Cooling Rate on Composition of Oxides Precipitated during Solidification of Steels. ISIJ International, 1995, 35 (6): 708-714
    [24] M. Wintz, M. Bobadilla, J. Lehmann et al. Experimental Study and Modeling of the Precipitation of No-metallic Inclusions during Solidification of Steel. ISIJ International, 1995, 35 (6): 715-722
    [25] J. Lehmann, P. Rocabois, H.Gaye. Kinetics of Precipitation of Non-metallic Inclusions during Steel Solidification. Journal of Crystal Growth, 1999, 198/199: 838-843
    [26] P. Rocabois, J. Lehmann, H.Gaye et al. Kinetic Model of Non-metallic Inclusions’Precipitation during Steel Solidification. Journal of Non-Crystalline Solids, 2001,282: 61-71
    [27] H. S. Kim, H. G. Lee, K. S. Oh. Evolution of Size, Composition and Morphology of Primary and Secondary Inclusions in Si/Mn and Si/Mn/Ti Deoxidized Steels. ISIJ International, 2002, 42 (12): 1404-1411
    [28] C.H. Chang, H. S. Kim, H. G. Lee et al. Effect of Mg on the Evolution of Non-metallic Inclusions in Mn-Si-Ti deoxidized Steel during Solidification: Experimentsand Thermodynamic Calculations. Ironmaking and Steelmaking, 2005, 32 (3): 251-257
    [29] H. S. Kim, C. H. Chang, H. G. Lee. Evolution of Inclusions and Resultant Microstructural Change with Mg Addition in Mn/Si/Ti deoxidized Steels. Scripta Materialia, 2005, 53: 1253-1258
    [30]傅杰,朱剑,迪林等.微合金钢中TiN的析出规律研究.金属学报,2000,36(8):801-804
    [31]王明林等.含钛低碳钢凝固过程中氧化钛形成的热力学.钢铁研究学报,2004,16(3):40-43
    [32] R. A. Ricks, P. R. Howell, G. S. Barritte. The Nature of Acicular Ferrite in HSLA Steel Weld Metals. Journal of Materials Science ,1982 ,17 (3) : 732-740
    [33] I. Madariaga, I. Gutierrez. Role of the Particle Matrix Interface on the Nucleation of Acicular Ferrite in Medium Carbon Microalloyed Steel. Acta Materialia,1999,47 (3) : 951-960
    [34] J. M. Gregg, H. K. D. H. Bhadeshia. Solid State Nucleation of Acicular Ferrite on Minerals Added to Molten Steel. Acta Materialia, 1997, 45 (2) : 739-748
    [35] A. C. Stephen. Weld Metal Microstructure in Carbon Manganese Deposits. The International Conference on Quality and Reliability in Welding. Hang Zhou, China: 1984: B2021-2026
    [36] S. S. Babu. The Mechanism of Acicular Ferrite in Weld Deposits. Current Opinion in Solid State and Materials Science, 2004 (8): 267-278
    [37] H. H. Jin, J. H. Shim, Y. W. Cho et al. Formation of Intragranular Acicular Ferrite Grains in a Ti-containing Low Carbon Steel. ISIJ International, 2003, 43 (7): 1111-1113
    [38] K. M. Wu, T. Yokomizo, M. Enomoto. Three-dimensional Morphology and Growth Kinetics of Iintragranular Ferrite Idiomorphs Formed in Association with Inclusions in a Fe-C-Mn Alloy. ISIJ international, 2002, 42 (10) : 1144-1149
    [39]卜勇,胡本芙,高桥平一郎等.含钛低合金高强钢焊接热影响区IGF形核机制研究.钢铁,2002,37 (11):48-52
    [40]潘涛,杨志刚,白秉哲等.钢中夹杂物与奥氏体基体因热膨胀系数不同导致的热应力和应变能研究.金属学报,2003,39 (10) :1037-1042
    [41]余圣甫,雷毅,谢明立等. IGF的形核机理.钢铁研究学报,2005,17 (1):47-50
    [42]李新明,郑少波,郑庆等.钢的氧化物冶金技术.上海金属,2005,27(15):55-60
    [43]张德勤.微合金钢焊缝金属中晶内铁素体形成机理的研究.天津大学博士论文,2000,6
    [44]蒋国昌.纯净钢及二次精炼.上海:上海科学技术出版社,1996,10:226
    [45]黄志潜. X80级管线钢在高压大流量输气管道上的应用与发展前景.焊管,2005,28(2):1-10
    [46]郑磊,傅俊岩.高等级管线钢的发展现状.钢铁,2006,41(10):1-10
    [47]李为卫,马秋荣,赵新伟等.预热温度对X80管线钢焊接热影响区组织性能的影响.石油工程建设,2005,31(4):10-13
    [48]陈翠欣,李午申,王庆鹏等.焊接工艺参数对X80管线钢焊接粗晶区低温韧性的影响.压力容器,2005,22(2):5-9
    [49]杨专钊,杨延华,廖淑梅等.国产X80直缝焊接钢管力学性能测试.油气储运,2006,25(3):44-50
    [50]孔君华,郭斌,刘昌明等.高钢级管线钢X80的研制与发展.材料导报,2004,18(4):23-26
    [51]王茂堂,马彦昌,王丽. X80级管线钢、钢管技术条件制订中的关键技术问题.焊管,2005,28(2):15-22
    [52]孔萃敏,蔡庆伍,余伟.控轧控冷工艺对X70管线钢组织的影响.宽厚板,2004,10(2):21-23
    [53]李平全.油气输送管线钢管的选材问题.石油管工程应用基础研究论文集,第一版.北京:石油工业出版社,2001
    [54]王晓香.从2006年微合金钢应用国际研讨会看国际高钢级管线钢的发展动向(一).焊管,2006,29(4):8-16
    [55]赵琳,陈武柱,张旭东. NULCB钢激光焊接接头组织、性能的研究.激光技术,2006,30(4):344-347
    [56]陈茂爱,高进强,杨敏等. TiN粒子在焊接热循环过程中的溶解、粗化及再析出行为.钢铁矾钛,2001,22(4):10-15
    [57] Y. Ito, M. Nakanishi. Study on Charpy Impact Properties of Weld Metals with Submerged Arc Welding. Sumitomo Search, 1976, 15: 42-62
    [58]余圣甫,雷毅,黄安国等.氧化物冶金技术及其应用.材料导报,2004,18(8):50-52
    [59]陈蕴博,张福成,褚作明等.钢铁材料组织超细化处理工艺研究进展.中国工程科学,2003,5(1):74-91
    [60] J.-S. Byun, J.-H. Shim, Y.W. Cho et al. Non-metallic Inclusion and Intragranular nucleation of Ferrite in Ti-killed C-Mn Steel. Acta Materialia, 2003, 51: 1593-1606
    [61] J.-S. Byun, J.-H. Shim, Y.W. Cho et al. Formation of Intragranular Acicular Ferrite Grains in a Ti-containing Low Carbon Steel. ISIJ International, 2003,43 (7) : 1111-1113
    [62]亓效刚,陈茂爱,陈俊华.微合金钢第二相粒子对HAZ区奥氏体晶粒影响.材料科学与工艺,2005,13(4):368-371
    [63]刘吉斌. RPC超细组织钢的焊接物理冶金研究.华中科技大学博士论文,2005
    [64]余圣甫,余阳春,谢明立,李志远.二次热循环对晶内铁素体的影响.焊接学报,2003,24(2):89-92
    [65]陈楚,张月嫦.焊接热模拟技术.北京:机械工业出版社,1985年7月:1-2
    [66]王春明,吴杏芳. X70管线钢微观组织分析.鞍钢技术,2004(5):21-25
    [67] M. Hamada. Control of Strength and Toughness at Heat Affected Zone. Welding in the World, 2004, XLX (5): 1-6
    [68] Z. T. Ma, D. Peisker, D. Janke. Grain Refining of Structural Steels by Dispersion of Fine Oxide Particles. Steel Research, 1999, 70(4/5): 178-182
    [69] I. Madariaga, I. Gutierrez, H. K.D. H. Bhadeshia. Acicular Ferrite Morphologies in Medium Carbon Microalloyed Steel. Metallurgical and Materials Transactions, 2001, 32A (9): 2187-2196
    [70]张文钺.焊接物理冶金.天津:天津大学出版社,1991年8月:3-4
    [71]石德珂,金志浩.材料力学性能.西安:西安交通大学出版社,1998年5月:105-106
    [72]褚作明,陈蕴博,张福成.先进超细化处理技术在钢铁材料中的应用.金属热处理,2004,29(1):17-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700