恶性肿瘤HIFU治疗后免疫抑制因子变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:在前期研究的基础上,本课题提出高强度聚焦超声(high intensity focused ultrasound,HIFU)治疗恶性肿瘤病人后宿主抗肿瘤免疫功能增强可能与肿瘤局部免疫抑制因子失去活性,肿瘤对宿主免疫功能的直接抑制作用减弱有关这一假设。本研究通过观察HIFU治疗人恶性肿瘤后靶区、转移淋巴结和外周血免疫抑制因子血管内皮生长因子(vascular endothelial growth facter, VEGF) 、转化生长因子-β1 ( transforming growth facter-β1 , TGF-β1 )、转化生长因子-β2 ( transforming growth facter-β2 , TGF-β2)、白细胞介素6 (interleukin 6, IL-6) 和白细胞介素10 ( interleukin 10, IL-10 ) 的变化,了解HIFU治疗对肿瘤细胞合成和分泌免疫抑制因子的影响,探讨HIFU后宿主抗肿瘤免疫功能增强的机制。
    材料与方法:(1)48例经细针穿刺活检证实的女性乳腺癌病人,分为HIFU组(23例)和对照组(25例),两组均接受乳腺癌改良根治术,其中HIFU组于术前1~2周先行HIFU治疗;术中收集每例病人乳腺癌肿瘤局部及同侧腋窝淋巴结;采用SP免疫组织化学染色法对两组病人肿瘤局部及有肿瘤转移的阳性腋窝淋巴结(HIFU组11例,对照组12例)分别进行肿瘤免疫抑制因子VEGF、TGF-β1、TGF-β2、IL-6和IL-10的染色,记录两组病人肿瘤免疫抑制因子的
    
    阳性表达率和计数单位面积內有阳性表达的乳腺癌细胞数,两组计数和计量资料分别采用X2检验和t检验进行统计学处理。(2)应用双抗体夹心ELISA法检测15例恶性肿瘤病人HIFU治疗前后外周血上述免疫抑制因子水平的变化,统计学处理采用自身配对t检验。
    结果:(1)对照组病人肿瘤局部VEGF、TGF-β1、TGF-β2、IL-6和IL-10的阳性率分别为72%、72%、80%、68%和84%; 而HIFU组的阳性率分别为30.4%、56.5%、69.6%、47.8%和60.9%;对照组同时表达上述五个指标的为48%,HIFU组为27.3%。与对照组比较,HIFU组治疗局部乳腺癌细胞VEGF、IL-6和IL-10的阳性率明显下降,有显著性差异(P<0.05)。(2)对照组病人肿瘤局部阳性表达VEGF、TGF-β1、TGF-β2、IL-6和IL-10的乳腺癌细胞数分别为344.5±90.6/mm2、355.7±111.4/mm2、391.5±87.3/mm2、399.1±95.8/mm2和 327.2±140.8/mm2; HIFU组病人肿瘤局部分别为235.9±93.8/mm2、243.7±69.2/mm2、209.8±77.1/mm2、303.1±99.4/mm2和 238.1±79.8/mm2;两组比较,HIFU组治疗局部阳性表达上述免疫抑制因子的乳腺癌细胞数明显减少,差异有显著性 (P<0.05)。(3)HIFU组病人腋窝淋巴结内乳腺癌细胞VEGF、TGF-β1、TGF-β2、IL-6和IL-10的阳性率下降,但两组比较仅TGF-β2的差异有统计学意义 (P<0.05)。(4)对照组病人腋窝淋巴结内表达VEGF、TGF-β1、TGF-β2、IL-6和IL-10的阳性肿瘤细胞数分别为410.6±36.9/mm2、 324.0±43.6/mm2、366.4±130.2/mm2、300.5±60.2/mm2和 328.7±
    
    60.0/mm2;HIFU组分别为315.3±51.4/mm2、243.1±52.0/mm2、 249.1±102.7/mm2、217.9±57.7/mm2和 212.0±49.5/mm2;与对照组比较,HIFU组腋窝淋巴结内表达VEGF、TGF-β1、IL-6和IL-10的阳性肿瘤细胞数明显减少,差异有显著性 (P<0.05)。(5) 15例恶性肿瘤病人HIFU治疗前外周血VEGF、TGF-β1、TGF-β2、IL-6和IL-10水平分别为594.6±354.5 pg/ml、43.1±17.8 ng/ml、27.4±12.1ng/ml、23.0±8.7pg/ml和55.8±22.4 pg/ml;治疗后1周分别为546.1±352.6pg/ml、39.8±19.1ng/ml、24.5±11.1ng/ml、20.6±7.5pg/ml和54.5±23.7pg/ml;治疗后外周血免疫抑制因子水平下降,其中VEGF、TGF-β1和TGF-β2水平明显下降,差异有显著性 (P<0.05)。
    结论:(1)HIFU治疗乳腺癌原发灶后靶区、转移淋巴结内肿瘤免疫抑制因子VEGF、TGF-β1、TGF-β2、IL-6和IL-10的阳性表达明显减少,表明HIFU治疗可以削弱和消除肿瘤局部、区域淋巴结内肿瘤细胞分泌免疫抑制因子的能力,这将有利于肿瘤局部、转移灶内免疫细胞发挥抗肿瘤的活性,改善宿主局部的免疫功能抑制状态。(2) HIFU治疗后恶性肿瘤病人外周血免疫抑制因子VEGF、TGF-β1和TGF-β2水平明显下降,削减了肿瘤对全身抗肿瘤免疫功能的负向调节作用,有助于恢复宿主抗肿瘤免疫平衡,改善病人的预后。
Objective: Based on previous research results, in this study we hypothesized that the enhanced antitumor immunity induced by high intensity focused ultrasound (HIFU) in the treatment of malignancies would correlate with the reduced secretion of tumor-origin immunosuppressive factors, which can directly inhibit host immune function against tumor. The purpose of this study was to investigate the mechanism of the reversal of tumor-induced immunosuppression after HIFU. For assessing the effects of HIFU on immunosuppressive factors in patients with malignancies, vascular endothelial growth factor(VEGF), transforming growth factor-β1(TGF-β1), transforming growth factor-β2(TGF-β2), interleukin 6(IL-6), and interleukin 10 (IL-10) were examined in primary tumor, in metastasis-positive axillary lymph nodes, and in peripheral blood samples before and after HIFU treatment.
    Materials and Methods: (1) A total of 48 women with biopsy-proven
    
    breast cancer were divided into HIFU group (n=23) and control group (n=25). All patients were treated by modified radical mastectomy, while the patients in HIFU group received HIFU treatment 1~2 weeks before surgery. After the operation, the specimens of tumor lesions and axillary lymph nodes were collected in both groups. SP immunohistochemical stain was used to detect the tumor expression of VEGF,TGF-β1,TGF-β2,IL-6, and IL-10 in primary tumor and in metastasis-positive axillary lymph nodes (HIFU, n=11; Control, n=12), respectively. The positive rate was qualitatively assessed in both groups, and the number of immunostained positive tumor cells was counted in a microscopic grid. Statistical significance of the data obtained was analyzed by the Fisher exact test and the Student t test. (2) Using sandwich ELISA technique, serum level of VEGF,TGF-β1,TGF-β2,IL-6, and IL-10 was measured in 15 patients with malignancies before and one week after HIFU treatment. Statistical difference was analyzed by using the Student t test.
    Results: (1) The positive rate of tumor-origin VEGF, TGF-β1, TGF-β2, IL-6, and IL -10 in primary tumor was 72%, 72%, 80%, 68%, and 84% in control group, respectively; while in HIFU group the positive rate was 30.4%, 56.5%, 69.6%, 47.8%, and 60.9%, respectively. The simultaneous positivity of the five immunosuppressive factors was 48% in control group, and 27.3% in HIFU group. The positivities of these
    
    immunosuppressive factors were lower in HIFU group than those in control group, and there were significant differences of VEGF, IL-6, and IL-10 between two groups (P<0.05). (2) The number of positive tumor cells of VEGF, TGF-β1, TGF-β2, IL-6, and IL-10 in primary tumor was 344.5±90.6/mm2, 355.7±111.4/mm2, 391.5±87.3/mm2, 399.1±95.8/mm2, and 327.2±140.8/mm2 in control group, respectively; while in HIFU group the number was 235.9±93.8/mm2, 243.7±69.2/mm2, 209.8±77.1/mm2, 303.1±99.4/mm2, and 238.1±79.8/mm2, respectively. The expressions of these immunosuppressive factors were significantly lower in HIFU group than those in control group (P<0.05). (3) The positive rate of tumor-origin VEGF, TGF-β1, TGF-β2, IL-6, and IL-10 in metastasis-positive axillary lymph nodes was lower in HIFU group than those in control group, and there was a significant difference of TGF-β2 between two groups (P<0.05). (4) The number of positive tumor cells of VEGF, TGF-β1, TGF-β2, IL-6, and IL-10 in metastasis-positive axillary lymph nodes was 410.6±36.9/mm2, 324.0±43.6/mm2, 366.4±130.2/mm2, 300.5±60.2/mm2, and 328.7±60.0/mm2 in control group, respectively; while in HIFU group, the number was 315.3±51.4/mm2, 243.1±52.0/mm2, 249.1±102.7/mm2, 217.9±57.7/mm2, and 212.0±49.5/mm2, respectively. The expressions of these immunosuppressive factors were lower in HIFU group than those in
    
    control group, and there were significant differences of VEGF, TGF-β1, IL-6, and IL-10 between two groups (P<0.05). (5) Fifteen patients with malignant tumors received one-session HIFU treatment. Before HIFU the serum level of VEGF, TGF-β1, TGF-?
引文

    1 汤钊猷主编. 现代肿瘤学(第二版).上海:上海医科大学出版社. 2000:1.
    2 Burnet FM. Immunological surveillance in neoplasia.Transplant Rev,1971;7:3-25.
    3 Feng Wu, Wen-Zhi Chen, Jin Bai, et al. Pathological changes in human malignant carcinoma treated with high-intensity focused ultrasound. Ultrasound in Med & Biol,2001;27(8):1099-1106.
    4 Ter Haar G.High intensity focused ultrasound for the treatment of tumors. Echocardiography,2001;18:317-322.
    5 孔繁兵,伍烽,王智彪等. 高强度聚焦超声治疗早期兔肝脏肿瘤.中华实验外科杂志,2001;18(1):45-46.
    6 曹友德,伍烽,王智彪等. 乳腺癌经高强度聚焦超声治疗后的病理变化. 实用肿瘤杂志,2001;16(3):161-163.
    7 van leenders GJLH, Beerlage HP, Ruijter ET, et al. Histopathological changes associated with high intersity focused ultrasound (HIFU) treatment for localised adenocarcinoma of the prostates. J Clin Pathol,2000;53:391-394.
    8 Keshavarzi A, Vaezy S, Noble ML, et al. Treatment of uterine leiomyosarcoma in a xenograft nude mouse model using high-intensity focused ultrasound: a potential treatment modality for recurrent pelvic disease. Gynecol Oncol,2002;86(3):344-350.
    9 曹友德,陈文直,伍烽等. 高强度聚集超声治疗对乳腺癌细胞生物学行为的影响. 中国超声医学杂志,2002;18(4):285-288.
    10 徐中林,伍烽,王智彪等. 乳腺癌HIFU治疗后局部APC及活化分子的表达. 中国超声医学杂志,2002;18(10Ⅱ):30.
    11 鲁培,伍烽,王智彪等. 乳腺癌HIFU后免疫效应细胞及活化分子表达. 中国超声医学杂志,2002;18(10Ⅱ):42.
    12 杨镇主编. 肿瘤免疫学. 武汉:湖北科学技术出版社. 1998:10.
    13 Folkman J. Angiogenesis and breast cancer. J Clin Oncol,1994;12(3):441-443.
    14 Soker S, Takashima S, Miao HQ, et al. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor.
    
    J Cell,1998;92(6):735-745.
    15 Oyama T, Ran S, Ishida T, et al.Vascular endothelial growth facter affects dendritic cell maturation through the inhibition of nuclear factor-kB activation in hemopoietic progenitor cells. J Immunol,1998;160:1224-1232.
    16 Gabrilovich DI, Chen HL, Girgis KR, et al. Production of vascular endothelial growth facter by human tuors inhibits the functional maturation of dendritic cells. J Nat Med,1996;2:1096-1103.
    17 Wojtowicz-Praga S. Reversal of tumor-induced immunosuppression: A new approach to cancer therapy. J Immunol,1997;20(3):165-177.
    18 Pasche B. Role of TGF-β in cancer. J Cell Physiol,2001;186(2):153-168.
    19 Ellings LR, Nakayama D, Segarini P, et al. Transforming growth factors are the equipotent growth inhibitors of interleukin-1-induced thymocyte proliferation. Cell Imunol,1988;114(1):41-54.
    20 Inge TH, Hoover SK, Susskind BM, et al. Inhibition of tumor-specific cytotoxic T-lymphocyte responses by transforming growth factor beta 1. J Cancer Res,1992;52(6):1386-1392.
    21 Roth MD, Golub SH. Human pulmonary macrophages utilize prostaglandins and transforming growth factor beta 1 to suppress lymphocyte activation. J Leukoc Biol,1993;53(4):366-371.
    22 张毅,陈磐, 张雁云等. 转化生长因子β1对鼠造血祖细胞产生树突状细胞的凋控作用. 中华医学杂志,1999;79(3):178-180.
    23 Kehl JH, Poberts AB, Wakefield LM, et al. Transforming growth factor beta is an important immunomodulatory protein for human B lymphocytes. J Immunol,1986;137(12):3855-3860.
    24 李晓燕,张玲,王芸等. 淫羊藿甙逆转转化生长因子β2免疫抑制作用的抗肿瘤研究. 中国肿瘤生物治疗杂志,2000;7(2):127-130.
    25 Torre Amione G, Beauchamp PD, Koeppen H, et al. A highly immunogenic tumor transfected with a murine transforming growth factor type β1 cDNA escapes
    
    immune surveillance. Proc Natl Sci USA,1990;87:1486-1490.
    26 Toomey D, Condron C, Wu QD, et al. TGF-beta1 is elevated in breast cancer tissue and regulates nitric oxide production from a number of cellular sources during hypoxia re-oxygenation injury. Br J Biomed Sci,2001;58(3):177-183.
    27 Giannelli G, Fransvea E, Marinosci F, et al. Transforming growth factor-beta1 triggers hepatocellular carcinoma invasiveness via alpha3beta1 integrin. Am J Pathol,2002;161(1):183-193.
    28 Picon A, Gold LI, Wang J, et al. A subset of metastatic human colon cancers expresses elevated levels of transforming growth factor beta1. Cancer Epidemiol Biomarkers Prev,1998;7(6):497-504.
    29 Krasagakis K, Tholke D, Farthmann B, et al. Elevated plasma levels of transforming growth factor (TGF)-beta1 and TGF-beta2 in patients with disseminated malignant melanoma. Br J Cancer,1998;77(9):1492-1494.
    30 张劲松,李卫军. 肿瘤免疫抑制与治疗. 国外医学免疫学分册,2001;24(1):50-53.
    31 Goswami S, Gupta A, Sharma Sk. Interleukin-6-mediated autocrine growth promotion in human glioblastoma multiforme cell line U87MG. J Neurochem,1998;71(5):1837-1845.
    32 李敏超,张和生. 白细胞介素10与肺癌免疫. 国外医学肿瘤学分册,2001;28(4):297-300.
    33 Chen Q, Daniel V, Maher DW,et al. Production of IL-10 by melanoma cells: examination of its role in immunosuppression mediated by melanoma. Int J Cancer,1994;56(5):755-760.
    34 Takayama T, Nishioka Y, Lu L, et al. Retroviral delivery of viral interleukin-10 into myeloid dendritic cells markedly inhibits their allostimulatory activity and promotes the induction of T-cell hyporesponsiveness. Transplantation,1998;66(12):1567-1574.
    35 王胜军,姚坤,谢芳艺等. 雷公藤多甙与白介素-10对人外周血树突细胞的影
    
    响.中国药理学报,2001;22(8):721-724.
    36 遇珑,吴易元,惠依群等. 肿瘤患者PBMC及肿瘤标本IL-4及IL-10检测. 中国医学科学院学报,1997;19(3):227-230.
    37 曹雪涛. 肿瘤免疫治疗和基因治疗研究某些新进展—第88届美国肿瘤年会.中国肿瘤生物治疗杂志,1997;4(4):251-254.
    38 Alleva DG, Burger CJ, Elgert KD. Tumor-induced regulation of suppressor macrophage nitric oxide and TNF-alpha production. Role of tumor-derived IL-10, TGF-beta, and prostaglandin E2. J Immunol,1994;153(4):1674-1686.
    39 Maeda H, Kuwahara H, Ichimura Y, et al. TGF-( enhances macrophage ability to produce IL-10 in normal and tumor-bearing mice. J Immunol,1995;155:4926-4932.
    40 王晓冰,李春英,庞恩桥等. 乳腺癌组织中TGF-β1、VEGF、c-erbB-2的表达及其与浸润转移的关系. 实用癌症杂志,2002;17(4):356-358.
    41 Lopez CB, Rao TD, Feiner H, et al. Repression of interleukin-2 mRNA translation in primary human breast carcinoma tumor-infiltrating lymphocytes. Cell Immunol,1998;190(2):141-155.
    42 Iwamoto M, Shinohara H, Miyamoto A, et al. Prognostic value of tumor-infiltrating dendritic cells expressing CD83 in human breast carcinomas. Int J Cancer,2003;104(1):92-97.
    43 谢蜀生. 肿瘤微环境与肿瘤疫苗. 国外医学免疫学分册,1995;19(5):225-228.
    44 楼海舟,陈丽荣,吴金民等. 转化生长因子β2在乳腺癌中的表达及其预后意义.实用肿瘤学杂志,2000;14(3):185-187.
    45 Walker RA, Dearing SJ, Gallacher B. Relationship of transforming growth factor to extracellular matrix and stromal infiltrates in invasive breast carcinoma. Br J Cancer,1994;69(6):1160-1165.
    46 武利存,张维东,刘惠萍等. 乳腺癌腋窝淋巴结转移血管生成的免疫组化研究.中华肿瘤杂志,1999;21(6):433-435.
    47 汤钊猷主编.现代肿瘤学(第二版).上海:上海医科大学出版社.2000:254.
    
    
    48 Markovic S, Ferlan-Marolt V, Hlebanja Z. Spontaneous regression of hepatocellular carcinoma.Am J Gastroenterol,1996;91:392-393.
    49 汤钊猷主编. 现代肿瘤学(第二版).上海:上海医科大学出版社.2000:1397.
    50 Ogawa K, Hirai M, Katsube T, et al.Suppression of cellular immunity by surgical stress. Surgery,2000;127(3):329-336.
    51 Hofer SO, Shrayer D, Reichner JS, et al.Wound-induced tumor progression: a probable role in recurrence after tumor resection.Arch Surg,1998;133:383-389.
    52 王娴,黄建瑾. 化疗对晚期胃癌患者细胞免疫功能的影响. 实用癌症杂志,2001; 16(3):313-314.
    53 Uckum FM, Chorba TL, Cleary PL, et al. Radiation sensitivity of human B-lineage lymphoid precursor cells. Int J Radiat Oncol Biophys,1991;21(6):1553-1560.
    54 王继营,高珊. 晚期肿瘤放疗前后免疫功能改变的初步观察. 肿瘤研究与临床,2000;12(5):313-315.
    55 Rotstein S, Blomgren H, Petrini B, et al. Long term effects on the immune system following local radiation therapy for breast cancer. I. Cellular composition of the peripheral blood lymphocyte population. Int J Radiat Oncol Biol Phys,1985; 11(5):921-925.
    56 Sulitzeanu D. Immunosuppressive factors in human cancer. Adv Cancer Res,1993;60:247-267.
    57 Huang M, Sharma S, Mao JT, et al.Non-small cell lung cancer-derived soluble mediators and prostaglandin E2 enhance peripheral blood lymphocyte IL-10 transcription and protein priduction. Immunol,1996;157(12):5512-5520.
    58 Ivanovic VV, Todorovic-Rakovic N, Demajo M, et al. Elevated plasma levels of transforming growth factor-beta(1) (TGF-beta(1)) in patients with advanced breast cancer: association with disease progression. Eur J Cancer,2002;39(4):454-461.
    59 Salgado R, Junius S, Benoy I, et al. Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int J Cancer,2003;103(5):642-646.
    60 Lissoni P,Malugani F,Bonfanti A,et al. Abnormally enhanced blood
    
    concentrations of vascular endothelial growth factor (VEGF) in metastatic cancer patients and their relation to circulating dendritic cells, IL-12 and endothelin-1. J Biol Regul Homeost Agents,2001;15(2):140-144.
    61 von-Bernstorff W,Voss M,Freichel S,et al. Systemic and local immunosuppression in pancreatic cancer patients. Clin Cancer Res,2001;7(3 Suppl):925s-932s.
    62 Gabrilovich DI, Corak J, Ciernik IF, et al. Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin Cancer Res,1997;3(3):483-490.
    63 Almand B, Resser JR, Lindman B, et al. Clinical significance of defective dendritic cell defferentiation in cancer. Clin Cancer Res,2000;6(5):1755-1766.
    64 O'Hara RJ, Greenman J, MacDonald AW, et al. Advanced colorectal cancer is associated with impaired interleukin 12 and enhanced interleukin 10 production. Clin Cancer Res,1998;4(8):1943-1948.
    65 陈小东,梁启廉,王镇南等. 胃癌患者血清中血管内皮生长因子检测及其临床意义. 广东医学,2002;23(5):514-515.
    66 Maniwa Y, Okada M, Ishii N, et al.Vascular endothelial growth factor increased by pulmonary surgery accelerates the growth of micrometastases in metastatic lung cancer. Chest,1998;114(6):1668-1675.
    67 Salgado R, Junius S, Benoy I, et al. Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int J Cancer,2003;103(5):642-646.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700