脉冲高强度聚焦超声联合微泡非热损伤组织的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的高强度聚焦超声(high intensity focused ultrasound,HIFU)是一种新兴的非侵入性局部治疗技术。HIFU治疗肿瘤的机制除了热机制外,还有机械机制和空化机制。非热机制(机械机制和空化机制)在HIFU治疗中的作用一方面认为应尽量对空化现象进行抑制,另一方面认为空化有助于热损伤和监控。目前对HIFU形成损伤的机制中仍很难确切描述热机制、空化机制和机械机制在组织损伤中相对独立作用。单纯的非热损伤(机械机制和空化机制)在HIFU治疗中的研究和应用较少。
     实验首先进行脉冲高强度聚焦超声(pulsed high intensity focused ultrasound,PHIFU)辐照离体牛肝组织,探讨形成非热损伤的辐照参数。然后在此辐照参数下进一步研究PHIFU联合超声微泡造影剂(ultrasound contrast agent ,UCA)非热损伤活体肿瘤组织的可行性及非热损伤的生物学行为,为HIFU治疗肿瘤提供新方法和基础理论支持,进一步推进HIFU技术在肿瘤治疗中的应用。
     材料和方法参数设置时维持总能量恒定,按不同工作周期1%、5%、15%、25%、50%、75%和100%分成7组,在B超图像监控下将热电偶测温探针插入牛肝,并使针尖位于PHIFU焦点,然后进行定点辐照。观察各辐照参数下焦域温度、灰度和组织学改变。
     采用肿瘤组织块开腹包埋接种方法,建立兔肝VX2移植瘤动物模型。将36只荷瘤兔随机分为假照组、PHIFU组和PHIFU+UCA组。用第一部分实验筛选出的辐照参数(超声频率0.87 MHz、焦距150 mm、声功率150 W、脉冲重复频率100 Hz、工作周期15%)对兔肝VX2移植瘤进行PHIFU辐照。治疗后1天取材观察肿瘤组织学改变、超微结构改变,应用末端脱氧核苷酸转移酶(TdT)介导脱氧核苷酸(dUTP)缺口末端标记技术(in situ deoxynucleotityl transferase-mediated dUTP nick end labeling,TUNEL)检测细胞凋亡和用免疫组化法检测细胞增殖核抗原(proliferating cell nuclear antigen,PCNA),并用凋亡指数(apoptosis index, PI)和增殖指数(proliferating index, AI)比较细胞凋亡和增殖情况。
     结果PHIFU辐照离体牛肝时,工作周期25%、50%、75%和100%组平均温升分别为63.4±9.2℃、65.0±11.5℃、66.6±9.9℃、79.6±10.6℃,最高温度大于85℃且有明显的凝固性坏死。1%、5%和15%组平均温升分别29.2±1.9℃、30.0±2.8℃、31.0±2.4℃,最高温度不高于56℃且无肉眼可见的凝固性坏死形成。在25%、50%、75%、100%组,PHIFU损伤后形成的凝固性坏死区光镜下主要表现为胞浆颜色变淡,部分核仁消失、细胞核固缩、染色质边集且随工作周期延长而增加。15%组光镜下细胞间裂隙增宽,肝细胞胞浆内见大量大小不等空泡,而1%组、5%组无明显改变,核仁清晰。
     PHIFU辐照兔肝VX2移植瘤后,假照组、PHIFU组和PHIFU+UCA组经2,3,5-氯化三苯基四氮唑(2,3,5-triphenyl tetrazolium chloride ,TTC)染色后,肉眼可见肿瘤组织被均匀红染,表明各组均无肉眼可见的凝固性坏死形成。光镜下PHIFU组见肿瘤细胞胞浆嗜伊红染色浅,细胞肿胀,胞浆疏松,胞浆内大量空泡,少量细胞核固缩、染色质边集;PHIFU+UCA组见胞浆内大量大小不等空泡,可见染色质边集和细胞核固缩。电镜下见PHIFU组瘤细胞胞浆内大量线粒体肿胀和内质网扩张,PHIFU+UCA组部分细胞核固缩和染色质边集,两组肿瘤组织内均见凋亡小体及细胞胞浆内大小不等空泡。TUNEL法检测发现,假照组发现少量阳性染色的肿瘤细胞,PHIFU组和PHIFU+UCA组见较多细胞核棕褐色染色的阳性细胞。PCNA检测结果表明,假照组靶区组织见大量着色部位在肿瘤细胞核的阳性细胞,而PHIFU组和PHIFU+UCA组阳性染色细胞少。PHIFU组和PHIFU+UCA组肿瘤组织的AI比假照组高,而PI阳性表达率比假照组低。PHIFU+UCA组AI比PHIFU组高,但PHIFU+UCA组PI比PHIFU组低。
     结论1.脉冲工作周期长在PHIFU辐照时可形成热凝固性坏死,而脉冲工作周期短可通过非热效应损伤组织。2.一定工作周期的PHIFU(超声频率0.87 MHz、焦距150 mm、声功率150 W、脉冲重复频率100 Hz、工作周期15%)可通过非热效应损伤肿瘤,表现为胞浆内大小不等空泡和促进肿瘤细胞凋亡及抑制其增殖。3.微泡造影剂可增强超声对组织的非热效应损伤。4.可通过控制PHIFU的工作周期实现非热损伤,为HIFU治疗肿瘤提供了一种新的治疗思路。
Background and objective
     High Intensity Focused Ultrasound (HIFU) is a promising new technique that provides the possibility of producing tissue destruction selectively and noninvasively. Biological effects of HIFU include thermal effect, mechanical effect and cavitational effect. Non-thermal effects (mechanical effect and cavitational effect) play roles that some people believe we should restraint cavitational effects as possiblely, the others think cavitation can assist thermal damage and monitoring. It’s true that we are able to produce predictable tissue lesion, however, individual contribution of each effect is poorly defined. Non-thermal effects (mechanical effect and cavitational effect) were rarely studied and applied.
     In the first stage of this study, we exposed ox liver to Pulsed High Intensity Focused Ultrasound (PHIFU) in vitro so as to screen out parameter set that produce non-thermal effects. In the second stage PHIFU with the screened non-thermal parameter sets was then combined with Ultrasound Contrast Agent (UCA)to investigate the possibility and the biological effects of tumor tissue in vivo by non-thermal effects. The study aims to give theory support and a new method of enhancing HIFU efficiency clinically.
     Methods
     First stage (non-thermal parameter set screening stage): There were 7 parameter sets which were grouped based on different duty cycles: 1%, 5%,15%, 25%, 50%,75% and 100% .Total energy was held constant for each parameter set, a thermal needle (temperature sensor) was inserted into the liver tissue under guidance of B-mode ultrasound, and move HIFU focal point to the hyperechoic region, and then temperature、gray scale and histological changes of the irradiated point were observed.
     Second stage: A VX2 liver tumor model was established in 36 rabbits. The rabbits were divided randomly and averagely into three groups: sham PHIFU group, PHIFU group and PHIFU+UCA group. Both PHIFU group and PHIFU+UCA group were given PHIFU exposure of non-thermal parameters screened out in the first stage of our study (ultrasound frequency 0.87 MHz, total acustic power 150 W, focal length 150 mm, pulse repetition frequency 100 Hz, and duty cycle 15%). One day after PHIFU exposure, the liver tumors were sectioned and observed. histo-pathological and ultra-structural changes were examined. Proliferating cell nuclear antigen (PCNA) expression was detected by immunohistochemical staining, and apoptosis was observed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL). Observed with light microscope, apoptosis index (AI) and proliferating index (PI) were recorded and calculated.
     Results
     First stage: The mean values of temperature difference after PHIFU irradiation were 63.4±9.2℃, 65.0±11.5℃, 66.6±9.9℃and 79.6±10.6℃for group 25%, 50%, 75% and 100%, respectively. In these four groups, the highest temperature was over 85℃and obvious coagulated necrosis was found. In contrast, for group 1%, 5% and 15%, the mean values were 29.2±1.9℃, 30.0±2.8℃, and 31.0±2.4℃, respectively, and the highest temperature was 56℃or even lower. In addition, no necrosis could be seen with naked eye. In group25%、50%、75%、and 100%, we observed blanched cytoplasm, nucleole disappearance、karyopyknosis and chromatin margination and increased with duty cycle prolongation.In group 15% light microscopic observation found that intercellular space was widened and many vacuoles of different sizes were found in the cytoplasm. But no significant changes were found in group 1% and 5%.
     Second stage: After PHIFU exposure, we found grossly that liver tumors of all the three groups were uniformly stained red by Triphenyl tetrazolium chloride (TTC) staining, suggesting that none of the animals had coagulated necrotic changes. In group PHIFU, histopathological examination demonstrated that eosinophilic staining is weak in the cytoplasm of tumour cells; we observed cellular swelling, cytoplasm looseness, cytoplasm vacuoles, and in a few tumor cells we found karyopyknosis and chromatin margination. In group PHIFU+UCA, light microscope displayed presence of abundant vacuoles of different sizes in the cytoplasm; we also found chromatin margination and karyopyknosis. Under transmission electron microscope (TEM), we discovered mitochondrion swelling and endocytoplasmic reticulum expanding in PHIFU group; while in PHIFU+UCA group, we observed condensation of the nuclear chromatin with margination. Both PHIFU group and PHIFU+UCA group had apoptotic body and cytoplasm vacuoles. TUNEL method detect few positive staining tumor cells in the sham PHIFU group, but in the PHIFU group and PHIFU+UCA group we found a lot of brow-colored positive apoptotic cells. PCNA detection showed more brow-colored positive cells in the sham PHIFU group than in the PHIFU group and PHIFU+UCA group. AI of the tumor cells in the PHIFU group and PHIFU+UCA group was higher than that of the tumor cells in the sham-HIFU group, while PI expression of the tumor cells in the PHIFU group and PHIFU+UCA group was lower than that of the tumor cells in the sham-HIFU group (P<0.05). AI of the tumor cells in the PHIFU+UCA group was higher than that of the tumor cells in the PHIFU group, while PI expression of the tumor cells in the PHIFU+UCA group was lower than that of the tumor cells in the PHIFU group(P<0.05).
     Conclusions: 1. Long duty cycle PHIFU induces tissue necrosis mainly by thermal effects, while short duty cycle may damage tissues by nonthermal effect. 2. Tumor tissue in vivo was destroyed mainly by nonthermal effects under the following HIFU parameters (ultrasonic frequency 0.87 MHz, focal length 150 mm, acustic power 150 W, pulse repetition frequency 100 Hz, duty cycle 15%). 3. UCA may enhance nonthermal damage of PHIFU. 4. We regulated duty cycle of PHIFU to nonthermal damage and provided a new method to therapy.
引文
[1] Gignoux BM, Scoazec JY, Curiel L. High intensity focused ultrasonic destruction of hepatic parenchyma[J]. Ann Chir.2003,128(1):18-25.
    [2] Prat F, Centarti M, Sibille A, et al. Extracorporeal high-intensity focused ultrasound for VX2 liver tumors in the rabbit[J]. Hepatology.1995,21(3):832-836.
    [3] Yi J, Li N, Jiang LS, et al. The study of clinical application of high intensity focused ultrasound in non-invasive therapy for liver cancer[J]. Sichuan Da Xue Xue Bao Yi Xue Ban.2005,36(3):426-8.
    [4] Wu F, Wang Z, Chen W, et al.Pathological study of extracorporeally ablated hepatocellular carcinoma with high-intensity focused ultrasound [J]. Zhonghua Zhong Liu Za Zhi. 2001,23(3):237-9.
    [5] Wu F, Wang ZB, Chen WZ, et al. Extracorporeal high intensity focused ultrasound ablation in the treatment of patients with large hepatocellular carcinoma[J]. Ann Surg Oncol.2004,11(12):1061-1069.
    [6] Wu F, Wang ZB, Chen WZ, et al.Advanced hepatocellular carcinoma: treatment with high-intensity focused ultrasound ablation combined with transcatheter arterial embolization[J]. Radiology. 2005,235(2):659-67.
    [7] Ter Haar G.U.Ultrasound focal beam surgery[J].Ultrasound Med Biol. 1995, 21(9): 1089 -1100.
    [8] Rabkin BA, Zderic V. Hyperecho in ultrasound images of HIFU therapy: involvement of cavitation[J]. Ultrasound Med Biol. 2005,31(7):947-956.
    [9] 冯若、王智彪. 实用超声治疗学[M]. 科学技术文献出版社; 2002 :23-25
    [10] 周颦,王怀碧,付敏,等.高强度聚焦超声对离体肿瘤细胞的急性生物学效应[J].临床超声医学杂志.1999,1(3):162-164.
    [11] Clarke RL,ter Haar GR. Temperature rise recorded during lesionformation by high intensity focused ultrasound[J].Ultrasound Med Biol.1997,23(2):299-306.
    [12] 顾慧琼,向理科,王智彪. 高强度聚焦超声治疗兔胫骨移植性鳞状细胞癌中的空化现象[J]. 天津医药.2005,33(6):363-365.
    [13] Poliachik SL, Chandler WL, Mourad PD, et al. Activation, aggregation and adhesion of platelets exposed to high-intensity focused ultrasound. Ultrasound Med Biol.2001,27(11):1567-1576.
    [14] Tu J, Matula TJ, Brayman AA, Crum LA,et al .Inertial cavitation dose produced in ex vivo rabbit ear arteries with Optison by 1-MHz pulsed ultrasound. Ultrasound Med Biol. 2006 ,32(2):281-288.
    [15] Roberts WW, Hall TL, Ives K,et al. Pulsed cavitational ultrasound: a noninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney[J]. J Urol. 2006 ,175(2):734-738.
    [16] Timothy H, Kathleen K, J Brain F, et al. Temporal trends in the rabbit kidney after cavitational tissue ablation[C] .In: Proceedings of 6nd International Symposium on Therapeutic Ultrasound, (2006) Oxford UK , pp 30
    [17] Gramiak R, Shah PM. Echocardiography of the aortic root [J]. Invest Radiol. 1968,3(5):356-366.
    [18] 刘丽萍, 肖子文,肖雁冰,等. 超声造影剂增强疗效结合超声高强度聚焦治疗的实时影像监控研究[J]. 中国超声医学杂志.2006,22(1):11-13.
    [19] 肖雁冰,肖子文,刘丽萍,等. HIFU 联合 HL-1 损伤正常兔肝脏组织的体内实验研究[J]. 中国超声医学杂志.2005,21(2):96-99.
    [20] 肖子文,刘丽萍,肖雁冰,等.HIFU 联合氟碳乳剂损伤兔肝脏的实验研究[J]. 中国超声医学杂志.2005,21(3):168-171.
    [21] 计晓娟,李锦青,邹建中,等.超声造影剂对高强度聚集超声治疗兔肝 VX2 肿瘤的影响[J]. 中华超声影像学杂志.2006,16(7):532-534.
    [22] Kaneko Y, Maruyama T, Takegami K, et al. Use of a microbubble agent to increase the effects of high intensity focused ultrasound on liver tissue[J]. Eur Radiol.2005,15(7):1415-1420.
    [23] Hanajiri K, Maruyama T, Kaneko Y, et al. Microbubble-induced increase in ablation of liver tumors by high-intensity focused ultrasound[J]. Hepatol Res.2006,36(4):308-314.
    [24] Tran BC, Seo J, Hall TL, et al. Microbubble-enhanced cavitation for noninvasive ultrasound surgery[J]. IEEE Trans Ultrason Ferroelectr Freq Control.2003,50(10):1296-130
    [1] Kathleen K, Timothy H, Jessica P, et al. Isolation of Cavitational and Thermal Effects of Focused Ultrasound: Roles of Intensity and Duty Cycle in the Creation of Morphologically Distinct Lesions[C]. In: Proceedings of 6nd International Symposium on Therapeutic Ultrasound, (2006) Oxford UK, pp 27.
    [2] Hacker A, Kohrmann KU, Knoll T, et al. High-intensity focused ultrasound for ex vivo kidney tissue ablation: influence of generator power and pulse duration[J]. J Endourol.2004,18(9):917-924.
    [3] Kohrmann KU, Michel MS, Steidler A, et al. Control parameters for high-intensity focused ultrasound (HIFU) for tissue ablation in the ex-vivo kidney[J]. Aktuelle Urol.2002,33(1):58-63.
    [4] 沙卫红 李瑜元,聂玉强,等. 高强度聚焦超声定位损伤离体牛肝的量效学研究[J]. 临床超声医学杂志.2004,1:1-3.
    [5] Xu Z, Ludomirsky A, Eun L. et al. Controlled ultrasoundissue erosion [J]. IEEE Trans Ultrason Ferroelectr Freq Control .2004,51(6):726-736.
    [6] Parsons, J. E., Cain, C. A., Fowlkes, J. B. Characterizing pulsed ultrasound therapy for production of cavitationally-induced lesions[C].2004,pp:178. In: 4th International Symposium on Therapeutic Ultrasound, Kyoto, Japan.
    [7] Clarke RL,ter Haar GR.Temperature rise recorded during lesionformation by high intensity focused ultrasound[J].Ultrasound Med Biol.1997,23(2):299—306.
    [8] 顾慧琼,向理科,王智彪. 高强度聚焦超声治疗兔胫骨移植性鳞状细胞癌中的空化现象[J].天津医药.2005,33(6):363-365.
    [9] H.G. Flynn, Charles C. Church, et al. A mechanism for the generation of cavitation maxima by pulsed ultrasound[J].J A coust Soc Am.1984,76 (2): 505–512.
    [10] Roberts WW, Hall TL, Ives K,et al. Pulsed cavitational ultrasound: a noninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney [J]. J Urol. 2006,175(2):734-738.
    [11] Zhen X, Timothy H, J Brian F et al. Measurement of Tissue Particle sizes Generated from Mechanical Tissue Fractionation by Pulsed Cavitational Ultrasound Therapy: Histotripsy[C]. In: Proceedings of 6nd International Symposium onTherapeutic Ultrasound, (2006), Oxford UK , pp 122
    [12] Timothy H, Kathleen K, J Brain F, et al. Temporal trends in the rabbit kidney after cavitational tissue ablation[C]. In: Proceedings of 6nd International Symposium on Therapeutic Ultrasound, (2006), Oxford UK , pp 30.
    [13] 李发琪,张 樯,杜永洪,等.高强度聚焦超声治疗剂量对组织温升影响的研究[J]. 生物医学工程学杂志.2003,20(3):466-471.
    [14] Bihrle R, Foster RS,Sanghvi NT, et a1.High intensity foc used ultrasound for the treatment of benign prostatic hyperplasia:early united stated clinical experience[J].J Urol,1994,151(5): 1271-1275.
    [15] Chen WS, Lafon C, Matula TJ, et a1. Mechanisms of lesion formation in high intensity focused ultrasound therapy. 2nd international symposium on therapeutic ultrasound. Seattle, Washington, USA, (2002), pp 30.
    [1] 杜联芳,张青萍,刘望彭. 诊断超声与大鼠角膜细胞凋亡[J]. 中国超声医学杂志.2000,16(9):645-647.
    [2] Swistel AL, Bading JR, Raaf JH, et al. Intraarterial versus intra venous adriamycin in the rabbit Vx - 2 tumor system [J]. Cancer.1984,53(6):1397 – 14041.
    [3] Eda I, Soga H, Ueoka M, et al . The suppression of postoperative liver metastasis caused by the contimuous intraportal infusion of angiogenesis inhibitor FR - 118487 in a rabbit colon cancer model [J] .Surg Today .1998,28(3):273 – 278.
    [4] Prat F, Centarti M, Sibille A, et al. Extracorporea high intensity focused ultrasound for VX2 liver tumors in the rabbit [J]. Hepatology.1995, 21(3):832 – 836.
    [5] Kigure T, Harada T, Yuri Y, et al . Ultrasound guided microwave thermotherapy on a VX- 2 carcinoma implanted in rabbit kidney [J].Ultrasound Med Boil. 1995,21(5) :649 – 655.
    [6] Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis [J]. Cell.1996,86(5):353-364.
    [7] Morgon J, Pake H. Metastases: mechanisms, pathways and cascades [J]. AJR.1995,164(8):1075-1082.
    [8] Mandic R, Dunne AA, Eikelkamp N, et al. Expression of MMP-3, MMP-13,TIMP-2 and TIMP-3 in the VX2 carcinoma of the New Zealand white rabbit[J].Anticancer Res.2002(6A):3281-3284.
    [9] Matsumual T, Moriyau F, Kono Y, et al. Contrast-enhanced power Doppler imaging of the liver-preliminary animal study [J]. Nippon rinsho.1998, 56(4):985-989.
    [10] 常淑芳 顾美礼.氯化三苯基四氮唑染色在高强度超声生物学焦域观测中的应用[J]. 中国超声医学杂志. 2000,16( 9):641-644.
    [11] 计晓娟,李锦青,邹建中,等. 超声造影剂对高强度聚集超声治疗兔肝 VX2肿瘤的影响[J].中华超声影像学杂志.2006,15(7):532-534.
    [12] 顾慧琼,向理科,王智彪. 高强度聚焦超声治疗兔胫骨移植性鳞状细胞癌中的空化现象[J]. 天津医药.2005,33(6):363-365.
    [13] 孔凡斌,白晋,伍峰,等.术中高强度超声治疗兔肝脏肿瘤的病理学研究.实用肿瘤杂志.2001,16(3):164-166.
    [14] 计晓娟,李锦青,邹建中,等. 超声造影剂联合高强度聚焦超声损伤兔肝 VX2移植瘤的可行性研究[J].中国医学影像技术.2006,22(7):1006-1008.
    [15] Prat F, Centarti M, Sibille A,et al. Extracorporeal high-intensity focused ultrasound for VX2 liver tumors in the rabbit[J]. Hepatology. 1995,21(3):832-836.
    [16] 袁淑兰,王修杰,王艳萍,等. HIFU 诱导人肺癌细胞凋亡及其可能机制[J]. 实用肿瘤杂志,2003,(5):375-378.
    [17] Ohnishi K, Ohnishi T. Heat-induced p53-dependent signal transduction and its role in hyperthermic cancer therapy [J]. Int J Hyperthermia.2001,17(5):415-427.
    [18] van Bree C, van der Maat B, Ceha HM, et al. Inactivation of p53 and of pRb protects human colorectal carcinoma cells against hyperthermia-induced cytotoxicity and apoptosis[J]. J Cancer Res Clin Oncol.1999,125(10):549-555.
    [19] Nishita M, Inoue S, Tsuda M, et al. Nuclear translocation and increased expression of Bax and disturbance in cell cycle progression without prominent apoptosis induced by hyperthermia [J]. Exp Cell Res. 1998,244(1):357-366.
    [20] Hihil M, Kurnick.JT, Ramirez-Montagut.T, et al. Studies of the mechanism of cytolysis by tumour-infiltrating lymphocytes [J]. Clin Exp Immunol. 1999,116(3):388-394.
    [21] Khar A, Pardhasaradhi BV, Varalakshmi C, et al. Natural kill cell as the effector which mediates in vivo apoptosis in AK-5 tumor cells [J].Cellular Immunology.1997,177(1):86-92.
    [22] Lowin B, Hahne M, Mattmann ch, et al.Cytocytic T-Cell cytotoxicity is mediated through perforin and FAS lytic pathways [J]. Nature.1994, 370(6491):650-652.
    [23] 张传海,许戈良,葛勇胜,等.亚砷酸对肝癌细胞增殖及 PCNA,c-Myc 蛋白表达的影响[J].第四军医大学学报.2005,26(14):1306-1306.
    1. Goldberg S, Gazelle S, Dawson S, et al. Tissue ablation with radiofrequency: effect of probe size, gauge, duration and temperature on lesion volume. Acad Radiol,1995;2:399–404
    2. Miao Y, Ni Y, Bosmans H . Radiofrequency ablation for eradication of renal tumor in a rabbit model by using a cooled-tip electrode technique. Ann Surg Oncol. 2001;8(8):651-657.
    3. Horigome H, Nomura T, Saso K. Percutaneous radiofrequency ablation therapy using a clustered electrode in the animal liver. Hepatogastroenterology. 2001;48(37):163-165.
    4. B. Tins , V. Cassar-Pullicino ,I. McCall ,et al. Radiofrequency ablation of chondroblastoma using a multi-tined expandable electrode system: initial results Eur Radio ,2006 ;16:804-810
    5. Miao Y,Ni Y, Mulier S, et al. Ex vivo experiment on radiofrequency liver ablation with saline infusion through a screw-tip cannulated electrode. J Surg Res. 1997, 15;71(1):19-24.
    6. Diethard Schmidt1, Jochen Trübenbach, Jens Brieger, et al. Automated Saline-Enhanced Radiofrequency Thermal Ablation: Initial Results in Ex Vivo Bovine Livers .AJR 2003; 180:163-165
    7. Joachim Kettenbach, Wolfgang K?stler, Ernst Rücklinger, et al. Percutaneous Saline-Enhanced Radiofrequency Ablation of Unresectable Hepatic Tumors: Initial Experience in 26 Patients. AJR 2003; 180:1537-1545
    8. Antonio Giorgio1, Luciano Tarantino, Giorgio de Stefan,et al. Percutaneous Sonographically Guided Saline-Enhanced Radiofrequency Ablation of Hepatocellular Carcinoma AJR 2003; 181:479-484
    9. J. H?nsler, M. Frieser, S. Schaber,et al. Radiofrequency Ablation of Hepatocellular Carcinoma with a Saline Solution Perfusion Device: A Pilot Study .JVIR 2003; 14:575-580
    10. Buscarini E, Savoia A, Brambilla G , et al Radiofrequency thermal ablation of liver tumors. Eur Radiol 2005 15:884–894
    11. Chang CK, Hendy M, Smith M, et al. Radiofrequency ablation of the porcine liver with complete hepatic vascular occlusion. Ann Surg Oncol 2002;9:594–598.
    12. Rossi S, Garbagnati F, Lencioni R, et al. Percutaneous radio-frequency thermal ablation of nonresectable hepatocellular carcinoma after occlusion of tumor blood supply. Radiology, 2000 ;217(1):119-126.
    13. Chinn SB, Lee FT Jr, Kennedy GD, et al. Effect of vascular occlusion on radiofrequency ablation of the liver: results in a porcine model. AJR Am J Roentgenol. 2001;176(3):789-795.
    14. Patterson EJ, Scudamore CH, Owen DA, et al. Radiofrequency ablation of porcine liver in vivo: effects of blood flow and treatment time on lesion size .Ann Surg, 1998 ;227(4):559-565.
    15. Maataoui A, Qian J, Vossoughi D et al. Transarterial chemoembolization alone and in combination with other therapies: a comparative study in an animal HCC model. Eur Radiol. 2005 ;15:127–133.
    16. A. Veltri , P. Moretto, A. Doriguzzi et al Radiofrequency thermal ablation (RFA)after transarterial chemoembolization (TACE)as a combined therapy for unresectable non-early hepatocellular carcinoma (HCC). Eur Radiol, 2005 ;15(7):1415-1420.
    17. Ritz JP, Isbert C, Roggan A, et al .Correlation of intrahepatic light and temperature distribution in laser-induced thermotherapy of liver tumors and liver tissue. Lasers Surg Med ,2000;15:174–182.
    18. Prudhomme M, Mattei-Gazagnes M, Fabbro-Peray P, et al. MRI thermodosimetry in laser-induced interstitial thermotherapy. Lasers Surg Med ,2003;32:54–60.
    19. Muralidharan M, Malcontenti-Wilson C, Christophi C. Effect of blood flow occlusion on laser hyperthermia for liver metastases. J Surg Res 2002;103:165–174.
    20. Muralidharan V, Malcontenti-Wilson C, Christophi C. Interstitial laser hyperthermia for colorectal liver metastases: the effect of thermal sensitization and the use of a cylindrical diffuser tip on tumor necrosis. J Clin Laser Med Surg. 2002;20(4):189-196.
    21. Janda P, Sroka R, Mundweil B, et al. Comparison of thermal tissue effects induced by contact application of fiber guided laser systems. Lasers Surg Med. 2003;33(2):93-101.
    22. Muralidharan V, Malcontenti-Wilson C, Christophi C. Effect of blood flow occlusion on laser hyperthermia for liver metastases. J Surg Res. 2002; 103(2):165-174.
    23. Nikfarjam M, Malcontenti-Wilson C, Christophi C. Focal hyperthermia produces progressive tumor necrosis independent of the initial thermal effects. J Gastrointest Surg. 2005 ;9(3):410-7.
    24. Nikfarjam M, Muralidharan V, Malcontenti-Wilson C, et al. Progressive microvascular injury in liver and colorectal liver metastases following laser induced focal hyperthermia therapy. Lasers Surg Med. 2005;37(1):64-73.
    25. Ritz JP, Lehmann K, Isbert C, et al. Effectivity of Laser-Induced Thermotherapy:In Vivo Comparison of Arterial Microembolization and Complete Hepatic Inflow Occlusion Lasers in Surgery and Medicine 2005 ,36:238–244.
    26. ter Haar, G. R., Acoustic Surgery, Physics Today, 2002,54, 16:29-34.
    27. F. Wu, W.Z. Chen and J. Bai et al., Pathological changes in human malignant carcinoma treated with high-intensity focused ultrasound, Ultrasound Med. Biol, 2001, 27: 1099–1106.
    28. R. Feng, Ultrasonic cavitation and ultrasonic therapy, JNature , 2003, 25 :311–314.
    29. Sokka S, King R, Hynynen K. MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh. Phys Med Biol 2003;48(2):223–241 .
    30. Melodelima D, Chapelon JY, Theillere Y, et al. Combination of thermal and cavitation effects to generate deep lesions with an endocavitary applicator using a plane transducer: ex vivo studies. Ultrasound Med Biol. 2004;30(1):103-111.
    31. He PZ, Xia RM, Duan SM, et al. The affection on the tissue lesions of difference frequency in dual-frequency high-intensity focused ultrasound (HIFU) Ultrason Sonochem. 2006;13(4):339-344.
    32. Kaneko Y, Maruyama T, Takegami K, et al. Use of a microbubble agent to increase the effects of high intensity focused ultrasound on liver tissue. Eur Radiol, 2005;15(7):1415-1420.
    33. Tran BC, Seo J, Hall TL, et al. Microbubble-enhanced cavitation for noninvasive ultrasound surgery. IEEE Trans Ultrason Ferroelectr Freq Control. 2003 ;50(10):1296-1304.
    34. Yu T, Wang G, Hu K ,et al. A microbubble agent improves the therapeutic efficiency of high intensity focused ultrasound: a rabbit kidney study. Urol Res. 2004;32(1):14-9.
    35. Yu T, Xiong S, Mason TJ, et al. The use of a microbubble agent to enhance rabbit liver destruction using high intensity focused ultrasound. Ultrason Sonochem. 2006;13(2):143-149.
    36. Yu T, Fan X, Xiong S, et al. Microbubbles assist goat liver ablation by high intensity focused ultrasound[J]. Eur Radiol. 2006 ,16(7):1557-1563.
    1. 冯若,王智彪,主编. 实用超声治疗学.科学技术文献出版社 2002 ,23-25
    2. Yoichiro M, John S.A, Shin Y, et al. Medical ultrasound with microbubbles Experimental .Thermal and Fluid Science, 2005,(29): 255–265
    3. Ikeda T, Yoshizawa S, Tosaki M, et al .Cloud cavitation control for lithotripsy using high intensity focused ultrasound. Ultrasound Med Biol, 2006, 32(9):1383-1397.
    4. RebeccaT, Michael B, Tatiana K ,et al . In vitro kidney stone erosion with dual frequency HIFU. In: Proceedings of 6nd International Symposium on Therapeutic Ultrasound, 2006, pp 122
    5. Loske AM, Fernandez F, Gutierrez J. Increased fragmentation efficiency by enhancement of cavitation for extracorporal shock wave lithotripsy. Z Med Phys, 2005, 15(1):53-58.
    6. Pishchalnikov YA, Sapozhnikov OA, Bailey MR , et al. Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves. J Endourol, 2003, 17(7):435-446.
    7. Chitnis PV, Cleveland RO. Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave. J Acoust Soc Am, 2006, 119(4):1929-1932.
    8. Melodelima D, Chapelon JY, Theillere Y, et al. Combination of thermal and cavitation effects to generate deep lesions with an endocavitary applicator using a plane transducer: ex vivo studies. Ultrasound Med Biol, 2004, 30(1):103-111.
    9. Liu HL, Chen WS, Chen JS, et al. Cavitation-enhanced ultrasound thermal therapy by combined low- and high-frequency ultrasound exposure. Ultrasound Med Biol, 2006 ,32(5):759-767.
    10. 顾慧琼,向理科, 王智彪.高强度聚焦超声治疗兔胫骨移植性鳞状细胞癌中的空化现象. 天津医药, 2005,33(6):363-365。
    11. Qian z,Sagers RD,Pitt W.Investigation of the mechanism of the biocacoustic efect.J Biomed Mater Res,1999,44(2):198-205.
    12. 周颦,王怀碧,付敏,等.高强度聚焦超声对离体肿瘤细胞的急性生物学效应.临床超声医学杂志, 1999,1(3):162-164
    13. Roberts WW, Hall TL, Ives K,et al. Pulsed cavitational ultrasound: a noninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney. J Urol, 2006 ,175(2):734-738.
    14. Timothy H, Kathleen K, J Brain F, et al. Temporal trends in the rabbit kidney after cavitational tissue ablation .In: Proceedings of 6nd International Symposium on Therapeutic Ultrasound, 2006, pp 30
    15. Zhen X, Timothy H, J Brian F ,et al . Measurement of Tissue Particle sizes Generated from Mechanical Tissue Fractionation by Pulsed Cavitational UltrasoundTherapy: Histotripsy. In: Proceedings of 6nd International Symposium on Therapeutic Ultrasound, 2006, pp 122
    16. Rabkin BA, Zderic V, Vaezy S. Hyperecho in ultrasound images of HIFU therapy: involvement of cavitation. Ultrasound Med Biol,2005 ,31(7):947-956.
    17. Poliachik SL, Chandler WL, Mourad PD, et al. Activation, aggregation and adhesion of platelets exposed to high-intensity focused ultrasound. Ultrasound Med Biol,2001 ,27(11):1567-1576.
    18. Tu J, Matula TJ, Brayman AA, Crum LA,et al .Inertial cavitation dose produced in ex vivo rabbit ear arteries with Optison by 1-MHz pulsed ultrasound. Ultrasound Med Biol, 2006 ,32(2):281-288.
    19. H.G. Flynn, Charles C. Church, et al. A mechanism for the generation of cavitation maxima by pulsed ultrasound. J Acoust Soc Am,1984 ,76 (2): 505–512.
    20. Zhu C, He S, Shan M, et al. Study of a peak in cavitation activity from HIFU exposures using TA fluorescence. Ultrasonics. 2006, 22;44 Suppl 1:e349-351.
    21. Kaneko Y, Maruyama T, Takegami K, et al. Use of a microbubble agent to increase the effects of high intensity focused ultrasound on liver tissue. Eur Radiol, 2005,15(7):1415-1420.
    22. Yu T, Wang G, Hu K , et al. A microbubble agent improves the therapeutic efficiency of high intensity focused ultrasound: a rabbit kidney study. Urol Res,2004 ,32(1):14-19.
    23. Yu T, Xiong S, Mason TJ, et al. The use of a microbubble agent to enhance rabbit liver destruction using high intensity focused ultrasound. Ultrason Sonochem, 2006 ,13(2):143-149.
    24. Yu T, Fan X, Xiong S, et al. Microbubbles assist goat liver ablation by high intensity focused ultrasound. Eur Radiol. 2006 ,16(7):1557-1563.
    25. Tran BC, Seo J, Hall TL, et al. Microbubble-enhanced cavitation for noninvasive ultrasound surgery. IEEE Trans Ultrason Ferroelectr Freq Control, 2003 ,50(10):1296-1304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700