石化加热炉带壁板钢结构的受力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加热炉钢结构是带有壁板的框架围护结构,广泛用于石化行业中,目前对这种带壁板钢结构的研究还较少。对石化加热炉钢结构考虑壁板作用的框架柱计算长度系数取值及其壁板加劲肋的布置现有规范没有完善的设计要求,此类结构的抗震性能及破坏机理也需进行全面、深入的试验研究。
     本文通过有限元软件ANSYS分析得出了石化加热炉带壁板钢结构框架柱计算长度系数的取值规律,对壁板加劲肋进行了优化分析,并通过循环加载试验及有限元模拟对此类结构的抗震性能进行了细致深入的研究,为此类结构的设计和工程应用提供一定参考依据。主要研究内容及成果如下:
     (1)对一实际工程加热炉两端榀框架结构分别建立了带壁板和纯框架的有限元模型进行分析,计算得到了框架柱的计算长度系数和结构的侧倾刚度,并建议石化加热炉钢结构应考虑壁板对框架柱稳定承载力的有利作用,带壁板框架柱的计算长度宜采用规范中无侧移框架柱的计算长度取值方法,且依然较为安全。
     (2)对一实际工程石化加热炉辐射段横向边榀三跨建立了有限元模型进行分析计算,得出在顶点施加水平集中荷载作用能够比较理想的模拟整体结构在侧向荷载作用下的变形,合理的加劲肋布置能有效控制壁板的面外变形,保证结构在设计荷载下的使用要求,且壁板不会先于主体结构失效,并选取石化加热炉结构中常用的参数,建立有限元模型进行优化分析,确定了壁板加劲肋的合理布置,为工程设计提供参考。
     (3)对优化后的加热炉带加劲壁板钢结构足尺模型进行水平反复荷载作用下的试验研究,系统分析结构破坏模式和耗能机理,研究其滞回性能,得到了承载力、刚度、延性和耗能能力等指标。结果表明:该种结构具有良好的延性和耗能性能;钢框架和壁板协同工作良好;加劲肋的设置改善了钢板的实际受力,提高墙体的承载力及刚度,滞回曲线饱满呈“梭形”。结构破坏模式为柱的局部屈曲、柱脚开裂、壁板发生加劲区格内的局部屈曲;底层梁柱连接部位形成塑性铰。
     (4)运用ANSYS有限元软件分析了石化加热炉带加劲壁板钢结构在循环荷载下的受力性能,并得到了试件的骨架曲线、滞回曲线、应力云图及变形云图。然后对比分析了有限元结果与试验结果,两者吻合较好,因此用ANSYS有限元软件模拟石化加热炉钢结构的受力性能是合理可行的。
Heating furnace steel structures are framework envelope structures with wall panel. These structures have begun to be applied in petrochemical industry, while in China the related research just begins. When we consider the wall effect there is no perfect design theory for effective length of frame column and wall stiffener optimization layout. In order to obtain the seismic performance and failure mechanism of such structures we need to conduct a comprehensive and in-depth test research.
     In this paper the finite element software ANSYS was used to study the laws of effective length of frame column and the optimized design of stiffener. Cyclic loading test was carried out on the heating furnace steel structures and then the finite element simulation was conducted. The research would provide reference for the design and engineering applications of such structures. The main contents and results are as follows:
     (1) Two edge pin frameworks of the furnace steel structure were established with the finite element model. By the eigenvalue buckling analysis, we got the effective length and the roll stiffness of frame column. We studied that we should consider the beneficial effect of wall panel. The effective length of frame column was closer to the calculation value of frame without sideways according to the code, and was still relatively safe.
     (2) The finite element models were established for calculation and analysis in this paper. Applying horizontal concentrated load to the top could well simulate the deformation of the whole structure under the lateral load. Reasonable layout of stiffeners could control the out-of-plane deformation of wall panels effectively. Wall panel would not fail before the main structure and ensure the function of the structure under design load. We selected common parameters of petrochemical heating furnace to establish the finite element model. The rational layout of stiffeners was determined through the analysis, providing a reference for engineering design.
     (3) A one-bay steel frame full scale model with stiffened steel wall panel was tested under low-frequency cyclic loads.Based on the experiment, the failure mode and energy dissipation mechanism of the structure were analyzed with regard to the load carrying capacity, ductility, stiffness and energy dissipation capacity. The results showed that the specimen exhibited excellent ductility and energy dissipation capacity. The stiffeners improved the work condition of the steel panels and increased the stiffness and load-carrying capacity of the panels. The hysteresis loop present "spindle" curve. The failure mode of the structure was induced by local buckling and crack of the column and local buckling of the infill panels, plastic hinges were formed at the bottom connection of the column-beam. The experiment results provide a basis for engineering application of this structure system.
     (4)The finite element software ANSYS was used to simulate the stress performance of heating furnace steel structure under low-frequency cyclic loads. Then we got the specimen skeleton curve, hysteresis curve, the stress cloud and the deformation cloud pictures. The finite element results were in good agreement with the test results. So the ANSYS finite element simulation was reasonable.
引文
[1]朱勇军,张耀春,刘锡良.蒙皮支撑柱的静力性能分析[J].建筑结构学报,1999,20(6):32-37.
    [2]厉亚宁.制氢转化炉钢结构计算与壁板分析[J].石油化工设备技术,2004,25(3):16-19.
    [3]郭彦林,周明.钢板剪力墙的分类及性能[J].建筑科学与工程学报,2009,26(3):1-13.
    [4]郭彦林,董全利.钢板剪力墙的发展与研究现状[J].钢结构,2005,20(1):3-8.
    [5]李峰,李戈.钢板剪力墙性能研究评述[J].平顶山工学院学报,2008,17(2):68-69.
    [6]郭彦林,陈国栋,缪友武.加劲钢板剪力墙弹性抗剪屈曲性能研究[J].工程力学,2006,23(2):84-91.
    [7]王秋忠.管式加热炉钢结构有限元分析及优化设计系统[D].河北:燕山大学,2009.
    [8]陈绍蕃.钢结构稳定设计的新进展[J].建筑钢结构进展,2004,6(2):1-13.
    [9]刁云云,刘坚,黄襄云.影响钢框架柱计算长度系数的因素[J].钢结构,2006,21(89):9-12.
    [10]王金鹏.考虑层与层相互作用的框架稳定分析[D].杭州:浙江大学,2003.
    [11]Tong G S, Wang J P. Column Effective Length Considering the Inter-Story Interaction. Advances in Structural Engineering,2004,7 (5):415-425.
    [12]GB 50017-2003,钢结构设计规范[S].北京:中国计划出版社,2003.
    [13]王燕,杨文惠.半刚接钢框架稳定分析中柱的计算长度取值研究[J].青岛建筑工程学院学报,2004,25(4):5-10.
    [14]童根树,王金鹏.考虑层与层相互支援的框架柱计算长度系数[J].建筑钢结构进展,2004,6(4):62-65.
    [15]王金鹏,童根树.考虑层相互作用的框架柱计算长度[J].钢结构,2004,19(3):9-14.
    [16]童根树,邢国然.框架弹塑性失稳的层稳定系数[J].工程力学,2007,24(3):13-19.
    [17]刘开强,彭伟.计算长度系数法在框架稳定分析中的运用[J].四川建筑科学研究2007,33(3):36-39.
    [18]蔡益燕,郁银泉,舒兴平.关于钢框架柱计算长度系数的确定[J].建筑结构,2008,38(11):98-99.
    [19]李俞谕,肖岩.中美规范等截面钢框架柱计算长度系数的对比[J].钢结构,2008,23(1):47-52.
    [20]李国强.关于多高层钢结构柱计算长度(Ⅰ):理论解释[J].建筑钢结构进展,2009,11(2):1-7.
    [21]王翼,李国强.关于多高层钢结构柱计算长度(Ⅱ):数例说明[J].建筑钢结构进展,2009,11(2):8-11.
    [22]王建.有限元方法确定构件计算长度研究[J].工业建筑(增刊),2005,778-783.
    [23]刘聪,吴庆林,张亮.Barcarena电厂石膏库钢柱计算长度系数确定[J].武汉大学学报,2010,43(5):627-629.
    [24]郑竹.利用屈曲分析确定跨层柱计算长度的实用方法[J].四川建筑,2009,29(1):110-112.
    [25]郑竹,尧国皇,黄用军.屈曲分析确定跨层柱计算长度方法的应用[J].工程结构,2009,29(2):152-154.
    [26]顾建.特殊框架柱计算长度的确定[J].建筑结构,2011,41:926-928.
    [27]张永园,郭成喜等.某玻璃幕墙空间钢框架计算长度分析[J].钢结构(增刊),2010,774-779.
    [28]JGJ 99-98,高层民用建筑钢结构技术规程[S].北京:中国建筑工业出版社,2001.
    [29]SH/T 3070-2005,石油化工管式炉钢结构设计规范[S].
    [30]T. Takahash,Y. Takemoto & T. takeda,et al. Experimental study on thin steel shear walls and particular bracings under alternative horizontal load[J]. IABSE Symposium.International Association for Bridge and Structural Engineering, Portugal,1973,185-191.
    [31]陈国栋.钢板剪力墙结构性能研究[D].北京:清华大学,2002.
    [32]陈国栋,郭彦林.钢板剪力墙结构静力性能理论研究[C].第十七届全国高层建筑结构学术会议论文,2002.
    [33]陈国栋,郭彦林.钢板剪力墙结构滞回性能理论研究[C].第十七届全国高层建筑结构学术会议论文,2002.
    [34]陈国栋,郭彦林.钢板剪力墙低周反复荷载试验研究报告[R].北京:清华大 学结构工程研究所,2002.
    [35]陈国栋,郭彦林.十字加劲钢板剪力墙的抗剪极限承载力[J].建筑结构学报,2004,25(1):71-78.
    [36]陈国栋,郭彦林,范珍等.钢板剪力墙低周反复荷载试验研究[J].建筑结构学报,2004,25(2):19-26.
    [37]候蕾.纵横加劲肋钢板剪力墙试验与理论研究[D].西安:西安建筑科技大学,2005.
    [38]侯蕾,郝际平,董子健等.十字加劲肋钢板剪力墙低周反复荷载试验研究[C].第五届全国现代结构工程学术研讨会论文集,2005.
    [39]李峰,李慧,李振敏等.交叉加劲肋钢板剪力墙低周反复荷载试验研究[J].西安建筑科技大学学报,2009,41(1):57-62.
    [40]曹春华.斜加劲肋钢板剪力墙性能研究[D].西安:西安建筑科技大学,2008.
    [41]郭宏超,郝际平,虎奇,李峰.半刚接钢框架-十字加劲钢板剪力墙结构滞回性能研究[J].土木工程学报,2011,44(10):35-44.
    [42]聂建国,樊健生,黄远,周炜,汪大绥,陆道渊.钢板剪力墙的试验研究[J].建筑结构学报,2010,31(9):1-8.
    [43]GB/T 2975-1998,钢及钢产品力学性能试验取样位置及试样制备[S].北京:中国标准出版社,1999.
    [44]GB/T 228-2002,金属材料室温拉伸试验方法[S].北京:中国标准出版社,2002.
    [45]JGJ 82-2011,钢结构高强度螺栓连接技术规程[S].北京:中国建筑工业出版社,2011.
    [46]JGJ 101-96,建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1997.
    [47]施刚,刘钊,张勇,王元清,石永久.高强度钢材轴心受压构件局部稳定的有限元分析[J].沈阳建筑大学学报,2010,26(6):1046-1051.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700