高级别管线钢钛脱氧产物解析及针状铁素体形核机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着管线钢的强度和韧性的不断提高,高级别管线钢的焊接性能已经成为管线钢质量好坏的重要判据。自新日铁研究人员提出氧化物冶金概念以来,有关钛的脱氧产物就受到了冶金和材料学术界的重点关注和广泛研究。对夹杂物诱发的IGF能使HAZ保持良好的韧性和较高的强度,从而提高钢材的可焊性已形成共识。但目前氧化物冶金的机理并未得到统一,学术观点各异,对钛氧化物的物相组成(主要是TiO,TiO2,Ti2O3和Ti3O5)也存在较大争议。由于这一技术由新日铁等少数厂家垄断,有关氧化物冶金技术的机理及其工艺开发进展比较缓慢。为尽快推动这一技术实现工业应用,就必须对脱氧工艺和脱氧产物进行全面认识,从而在基本掌握IGF形成规律基础上进行精确的冶炼过程控制。
     本文在调研大量文献的基础上,通过针对应用氧化物冶金的高级别管线钢脱氧工艺控制和脱氧产物析出的热力学与动力学计算,在实验室条件下开展了高级别管线钢的冶炼工作,对高级别管线钢的脱氧工艺和氧位控制;真空下耐火材料分解向钢液增氧的规律;有利于IGF形成的Ti2O3析出的热力学条件和动力学因素;钛脱氧产物的大小、成分,形貌、内部结构以及物相组成;钛脱氧产物对凝固组织的影响;氧化物冶金机理以及微米级夹杂物的研究方法等方面进行了深入细致的研究和探讨。
     通过钛氧化物析出的热力学计算,在一定条件下钛的氧化物中Ti2O3总能比其它钛氧化物优先析出,控制氧含量小于0.002%更有利于钛的氧化物以Ti2O3颗粒的形式析出;通过对高级别管线钢钛铝竞争脱氧的理论分析,确定了实验室采用无铝脱氧的工艺路线,即采用真空碳脱氧再用钛终脱氧的脱氧工艺;通过计算在炼钢温度和固液两相区内Ti2O3和TiN的竞争析出表明,在不同钛含量情况下,只要控制钢液中初始氮含量小于0.003%,Ti2O3总比TiN优先析出;通过建立的钛脱氧产物析出的动力学模型研究表明,要生成细小的Ti2O3夹杂,必须首先控制钢液凝固过程中有较高的冷却速率的基础上,应适当控制好钢液中的氧含量。
     通过对真空碳脱氧熔炼钢液时,MgO炉衬与CaO炉衬热分解向钢液供氧的理论研究表明,当钢液中实际氧含量高于与炉衬分解反应平衡时钢液氧含量时,炉衬不向钢液供氧,反之,则向钢液供氧,相比之下,CaO炉衬的稳定性更强;在实验室开展了真空碳脱氧的实验研究,在CaO坩埚内,在满足高级别管线钢C含量要求情况下(0.04%~0.06%),能够将钢液中的氧含量降到0.001%~0.002%左右;通过在金相试样和小样电解萃取的凝固析出的钛脱氧产物外部形貌观察,凝固析出的钛脱氧产物主要是Ti-O-Mn-S系形成的尺寸为1~2μm球形复合夹杂物;通过夹杂物颗粒分布统计分析发现,钢中夹杂物的数目是随着氧含量的降低而减少,但平均尺寸却随着氧含量的降低是先减小后增大;通过对凝固析出的超细夹杂物的内部形貌、结构和物相组成的SEM+EDS+EBSD研究表明,控制氧含量在50ppm以下,夹杂物的物相组成都是有利于针状铁素体形核的Ti2O3和凝固过程中以Ti2O3为形核核心的MnS,并通过透射电镜下选区电子衍射证实了EBSD的分析结果,总结归纳出了研究微米级夹杂物内部结构和物相组成的新思路;通过对微观组织的观察发现,钛脱氧钢的组织为针状铁素体,且随着钛含量的增加,组织细化越明显;诱发针状铁素体的夹杂物都是Ti2O3和MnS以及个别含Al2O3的复合夹杂物,同时发现细小的MnS也能诱发针状铁素体的形成。诱导针状铁素体形核的夹杂物尺寸在1~3μm左右,形成针状铁素体的宽度在1~3μm,长度约在5~15μm之间。综合以上分析表明,钛含量控制在0.015%~0.02%,氧含量控制在0.002%左右时,最有利于析出大量的诱发针状铁素体形核的Ti2O3的复合夹杂物;通过空冷组织和淬火组织的对比,发现钛脱氧钢形成针状铁素体除了与夹杂物本身的性质有关外,还与冷却速度也有非常重要的关系。在金相试样上和RTO表征法制样的扫描电镜元素分布分析表明,Ti、O元素主要分布在夹杂物的中心,S元素主要分布在夹杂物的外围,而从Mn元素的分布来看,在夹杂物中心和外围都含有Mn;通过RTO表征法制样的夹杂物透射电镜分析,在夹杂物最外围有单独的S元素存在,即夹杂物本身存在Mn贫乏区;通过对夹杂物拉曼光谱分析表明,钛脱氧钢样夹杂物除了Ti2O3和MnS外,还存在有MnTiO3;在对钛脱氧产物深度解析的基础上,发展并完善了Ti2O3诱发IGF的贫锰区机制。
With the improving of strength and toughness of pipeline steel, welding performance of high grade pipeline steel has become the criterion of the quality of pipeline steel. Since the conception of oxide metallurgy has been advanced by Nippon Steel, Ti-deoxidized products draw the attention and are studied in the metallurgy and material academic community. It has been accepted that IGF induced by the inclusions can maintain HAZ in a good condition of strength and toughness to improve the weldability of steel. But at present there are still controversies in the mechanism of oxide metallurgy and the phase-component of titanium oxides (mainly including TiO, TiO2, Ti2O3 and Ti3O5). Due to the technical monopoly from Nippon Steel and some other enterprises, the mechanism and technology development about oxides metallurgy are improved slowly. To promote this technology to apply in the industry as soon as possible, it is necessary to recognize the deoxidization process and products comprehensively, through which the smelting process can be controlled precisely in the base of mastering the forming law of IGF.
     Referring to a great deal of the literatures, this research has first calculated the thermodynamics and dynamics in deoxidization process controlling and precipitating products from high grade pipeline steel and then carried out this high grade pipeline steel smelting in laboratory. It has been made a conscientious study of the following: the deoxidization technology and oxygen potential controlling in high grade pipeline steel, the law of increasing oxygen in molten steel from decomposed refractory material in vacuum, the thermodynamical and dynamical factors of precipitating Ti2O3 which is favorable in forming IGF, the size, composition, shape and appearance, inner structure and phase composition of Ti-deoxidized products, the influence to coagulation structure from the Ti-deoxidized products, the mechanism of oxide metallurgy, research method of micron-sized inclusions, etc.
     By calculating the thermodynamics of precipitating Ti-oxidized products, it is known that Ti2O3 will always precipitate before other Ti-oxidized products and it is favorable to precipitate Ti2O3 in the form of particles with the oxygen content below 0.002%. And it has been determined to use Al-free deoxidization technology (with carbon-deoxidization first and Ti-deoxidization finally in vacuum) through analyzing the theory of competition in deoxidization between Ti and Al. Studying the precipitating competition between Ti2O3 and TiN in liquid-solid phase region at smelting temperature, it indicates that Ti2O3 is always precipitated preferentially than TiN in different Ti content level with the initial nitrogen content below 0.003%. By modeling the dynamics of precipitating Ti-deoxidization products, it also shows that getting tiny inclusions shall be in a high cooling rate first and let the oxygen content in a proper level.
     The theory of oxygen contamination from MgO and CaO crucible material to molten steel in smelting with carbon-deoxidization in vacuum indicates that if the practical oxygen content in molten steel is higher than the equilibrium oxygen content when the crucible material decomposing reaction reaches to equilibrium, crucible material will not supply oxygen to molten steel; and if the content is lower, it will supply to molten steel. Compared with these two crucible materials, the stability of CaO material is stronger. The carbon-deoxidization research has been carried out in vacuum in laboratory. The oxygen content in molten steel can reduce to 0.001%~0.002%, which can also meet the requirement of carbon content in high grade pipeline steel (0.04%~0.06%). By observing the outer shape and appearance of the Ti-deoxidization precipitating products extracted from metallographic and electrolyzation specimen, the main Ti-deoxidization products are 1~2μm spherical compound inclusions coming from Ti-O-Mn-S system. Following the reducing oxygen content the amount of the inclusions in steel reduces. But the average size first decreases then increases, which are showed by the statistic of the inclusion particle distribution. The observing the inner appearance, structure, phase composition of the superfine inclusions by SEM, EDS and EBSD have indicated that with the oxygen content controlled below 50ppm the inclusions are all composed by Ti2O3 which is favorable for nucleating IGF and also by MnS of which the nucleation core is Ti2O3 in cooling. The selected area electron diffraction under TEM has proved the analysis results from EBSD. The following are the new ideas of micron-sized inner structure and phase composition of inclusions. Ti-deoxidization steel is composed of IGF of which the microstructure refinement will be smaller with the increasing Ti content. The inclusions inducing IGF are Ti2O3, MnS and a few of compound inclusions containingAl2O3. Also tiny-sized MnS can promote to form IGF. The size of the inclusions inducing IGF is 1~3μm and the width and length of the IGF are 1~3μm and 5~15μm. From the above it is showed that the favorable condition of producing great deals of compound inclusions with Ti2O3 as the nucleation core which can induce to nucleate IGF are the Ti content in 0.015%~0.02% and oxygen content at 0.002%. Compared with the structure of air cooling and quenching, forming IGF in Ti-oxidization is related not only to the inclusion’s natural property but also to the cooling rate. By analyzing the element contribution by STM from metallographic specimen and RTO it has been indicated that Ti and O exist mainly in the middle of the inclusions while S is distributed over the outer. Referring to the distribution of Mn, Mn exists both inner and outer. S exist the most part of the outer layer, which is to say the inclusions contain Mn-depleted zone (MDZ) in itself. Besides Ti2O3 and MnS by analyzing Raman Spectra The inclusions in Ti-deoxidization steel still contain MnTiO3. This research has been developed and completed the MDZ mechanism of Ti2O3 nucleating IGF by studying Ti-deoxidization products in depth.
引文
[1] Kennedy,John L, Oil and Gas Pipeline Fundamentals[M]. Tulsa, Okla:Pennuwell Publishing Company, 1984.
    [2] Dr-Inghans-Georg Hillenbrand and Dr-Ing Christoph Kalwa. Production and service behavior of high-strength large-diameter pipe[C]. Pipe dreamer's conference. Pacifico Yokohama, Japan,7~8 November,2002.
    [3] Asahi H, Hara T, Tsuru E,et a1.Development of Ultra High-Strength Linepipe Xl20[J].Nippon Steel Technical Report,2004,(90):70~75.
    [4]焦百泉.管线钢性能的发展[J].焊管, 1999, 22(4): 1~7.
    [5]高惠临,董玉华,周好斌.管线钢的发展趋势和展望[J].焊管,1999, 22(3): 4~8.
    [6]辛稀贤.管线钢的焊接[M].西安:陕西科学技术出版社, 1997: 1~6.
    [7]黄志潜.国外管道技术的发展现状和几点建议[J].焊管,2000,23(3): 1~21.
    [8] Hiroshi Tamehiro, Toshiro Yoshino, Nippon Nakasugi and Mitsuo Abe. Recent Progress in High-Strength Low-Ally Line pipe. Pan Jiahua. Proceedings of the International Symposium On Structural Technique of Pipeline Engineering[J], Beijing, China, April 15-20,1992, Beijing: China Building Industry Press, 1992: 9~14.
    [9]西气东输管道分公司刘文成:"在市场风云变幻中实现高效、廉洁、优质的目标", 2003年11月.
    [10] Hashimoto Y, Komizo T, Tsukamoto M , et a1.Recent Development of Large Diameter Line Pipe(X80 and X100 Grade)[J].The Sumitomo Search, 1988, 37:93~104.
    [11] Hillenbrand H G,Kalwa C . Production and Service Behavior of High Strength Large Diameter Pipes [A].Toyoda M,Denys R eds. Proeeedins of International Conference on the Application and Evaluation of High-Grade Linepipes in Hostile Environments[C].Yokohama,Japan:Scientific Surveys Ltd.2002.203~215.
    [12] Petersen C W, Corbett K T, Fairchild D P, et a1. Improving Long-Distance Gas Transmission Economics;X120 Devlopment Overview[A].Denys R eds.Proceedings of the 4th International Pipeline Technology Conference[C].Ostend,Belgium:Scientific Surveys Ltd.2004.3~30.
    [13] Fairchild D P, Macia M L, Papka S D, et a1.High Strength Steels-Beyond x80[A]. Proceedings of International Confer—ence on the Application and Evaluation of High-Grade Line-pipes in Hostile Environments[C].Yokohama,Japan:2002.307~321.
    [14]郑磊,傅俊岩.高级别管线钢的发展现状[J].钢铁,2006,41(10):1~10.
    [15]郝瑞辉,从晖,马薇等.合金元素在高级别管线钢中的作用与控制[J].河南冶金.2006,14(3):21~24.
    [16] Akihiko Takahashi,Hiroyuki Ogawa.Influence of Microhardness and Inclusion on Stress Oriented Hydrogen Induced Cracking of Linepipe Steels[J]. ISIJ International,1996,36(3):334.
    [17] F. Kawabata et al. Metallugical and mechanical Features of X100 linepipe Steel[A]. Proceedings ofPipeline Technology Conference, Ootende, Belgium, Sept. 11-14, Pipeline Technology Vol. II,1995: 102~108。
    [18] Suh J Y,Byun J S, Shim J H, oh Y J Cho Y W, Shim J D, Lee DN. Mater Sci Technol,2000;16:1277.
    [19] B.N.波戈尔热耳斯基著.王有铭,鹿守理,韦兴译.控制轧制[M].北京:机械工业出版社,1982:1~10.
    [20] Hurley P J , Hodgson P D. Formation of Ultra-Fine Ferrite in Hot Rolled Strip : Potential Mechanisms for Grain Refinement[J ] . Materials Science and Engineering ,2001 ,302 A (2) : 206~214.
    [21]卜勇,胡本芙,高桥平七郎等.含钛低合金钢焊接热影响区晶内铁素体形核机制研究[J].钢铁,2002,37(11):48~52.
    [22]田志凌. TMCP钢局部脆性区断裂韧性的研究[J].钢铁研究学报, 1998, 10(4): 50~53.
    [23]金尺正午,中岛明,,冈本建太郎,金谷研.微细TiNによる溶接ボソド部韧性の改善と大入热溶接用钢の开发[J].鐡と鋼, 1975 , 61 (11):258.
    [24] Lee J. L. et al: Microstructure and Toughness of the Simulated HAZ in Ti and Al Killed Steels[J]. Mater. Sci . Enger. , 1991,136A: 109
    [25]陈茂爱,唐逸民,楼松年. Ti对低合金高强度钢焊接粗晶热影响区组织及韧性的影响[J].特殊钢, 2001, 22 (5): 5.
    [26] Mukae S , Fukada Y.: Solution of TiN during synthetic weld thermal cycling and HAZ toughness in low carbon Steels[J], Trans. JWS , 1987, 18 (2):58.
    [27] J. Kim et al:Hydrogen Induced Cracking Susceptibility in HSLA Steels[A]. Sympo. Of the First Int. Conf. on Advanced Structural Steels, May, 2002, Tsukuba, Japan:121.
    [28] S.Ohkita et al:Hydrogen Induced Cracking Susceptibility in High Strength Weld Metal[J]. Nippon Steel Tech.Rep. 1989, No.5: 1057.
    [29] Jin-ichi Takamura and Schozo Mizoguchi. Roles of Oxides in Steels Performance[J].Proc.of the 6th inter. iron and steel cong.,1990,Nagoya,ISIJ:591.
    [30] S.Mizoguchi and Jin-ichi Takamura.Control of Oxides as Inoculants[J]. Proc.of the 6th inter. iron and steel cong.,1990, Nagoya,ISIJ:598.
    [31] T.Sawai,M.Wakoh,Y.Uwshima and S.Mizoguchi:Effect of Zr on the Precipitation of MnS in Low Carbon Steels[J]. Proc.of the 6th inter. iron and steel cong.,1990, Nagoya, ISIJ:605.
    [32] S.Ogibayashi,K.Yamaguchi and H.Goto:The Features of Oxides in Ti-deoxidized Steel[J]. Proc.of the 6th inter. iron and steel cong.,1990, Nagoya, ISIJ:612
    [33] Gloor, K. et al. Non-metallic inclusions in weld metal[J]. IIW DOC II-A-106-63. 1963.
    [34] Katoh, K. investigation of non-metallic inclusions in mild steel weld metals[J]. IIW DOC II-A-158-65, 1965.
    [35] P. L. HARRISON and R. A. FARRAR. Journal of materials science[J]. 1981, 16:2218~2226.
    [36] Jin-ichi takamura and shozo mizoguchi. Roles of oxides in steel performance[J]. Proceedings of the sixth international iron and steel congress, 1990, Nagoya, ISIJ.: 591~597.
    [37] Jin-ichi Performance. Proc. of the 6th inter. Iron and Steel cong.. Japan: Nagoya. ISU,1990:591。
    [38] S. Mizoguchi, Jin-ichi Takamura .Control of Oxides as Inoculants[J]. Proc. of the 6th inter. Iron andSteel Cong.. Japan: Nagoya. ISIJ,1990: 598.
    [39] T.Sawai. M. Wakoh, Y.Uwshima, S.Mizoguchi. Effect of Zr on the Precipitation of MnS in Low Carbon Steels[J]. Proc. of the 6th inter. Iron and Steel Cong.. Japan: Nagoya. ISIJ, 1990:605.
    [40] S.Ogibayashi, K.Yamaaguchi,H.Goto.The Features of Oxides in Ti-deoxidized Steel. [J] Proc. of the 6th inter. Iron and Steel cong.. Japan: Nagoya. ISIJ,1990: 612.
    [41]杨健,祝凯,王聪等.改善厚板大线量焊接性能的氧化物冶金的研究进展[A].第十三届全国钢质量与非金属夹杂物控制学术会议论文集[C]. 2008年7月,中国西宁.
    [42]余圣甫,李志远,石仲堃等.低合金高强度钢药芯焊丝焊缝中非金属夹杂物诱导针状形核的作用[J].机械工程学报,2001,37(7):65.
    [43]余圣甫,雷毅,黄安国等.氧化物冶金技术及其应用[J].材料导报,2004,18(8):50~52.
    [44]余圣甫,石仲堃,李志远等.药芯焊丝焊缝金属中的非金属夹杂物对针状铁素体形成的影响规律[J].应用科学学报,2000,18(3):192.
    [45] Jin– ichi Takamura , Schozo Mizoguchi . Roles of Oxides in Steels Performance [J] .Proc. of the 6th inter . Iron and Steel Cong.. Japan : Nagoya .ISIJ,1990:591.
    [46] S. Mizoguchi , Jin - ichi Tajamura . Control of Oxides as Inoculants[J]. Proc. of the 6th inter . Iron and Steel Cong.. Japan :Nagoya .ISIJ,1990:598.
    [47] T. Sawai , M. Wakon , Y. Uwshima ,S. Mizoguchi. Effect of Zr on the Precipitation of MnS in Low Carbon Steels[J]. Proc. of the 6th inter . Iron and Steel Cong.. Japan :Nagoya .ISIJ,1990:605.
    [48] S.Ogibayashi , K. Yanmaguchi , H.Goto. The Features of Oxides in Ti-deoxidized Steel[J]. Proc. of the 6th inter . Iron and Steel Cong.. Japan :Nagoya .ISIJ,1990,612.
    [49] J.L.Lee, Y. T .Pan . The Formation of Intragranular Acicular Ferrite in Simulated Heat– affected Zone[J]. ISIJ, 1995,35(8):1027.
    [50] J. L. Lee, Y .T .Pan. Effect of Silicon Content on Microstructure and Toughness of Simulated HAZ in Titaniun Killed Steels[J]. Mater. Sci . Eng. ,1992,8(3):236.
    [51] J.L. lee, Y .T . Pan. Effect of Killing Time on the Microstruture and Toughness of the HAZ in Ti - Killed Steels[J]. Metall . Trans .1991,22A(11):2818.
    [52] R.A. Ricks, P.R. Howell. The Nature of Acicular Ferrite in HSLA Steel Weld Metals [J].J. Mater. Sci. ,1982,17:732.
    [53] F. Ishikawa, F. Takahashi. The Formation of Intragranular Ferrite Plates in Medium - carbon Steels for Hot-forging and its Effect on the Toughness [J]. ISJJ,1995,35(11):1128.
    [54] F.Ishikawa, F . Takahashi. Intragranular Ferrite Nucleation in Medium - Carbon Vanadium Steels[J], Metall.Trans.,1994,25A:929.
    [55] I.Madariage, J.Romero. Role of the Particle Matrix Interface on the Nucleation of Acicular Ferrite in a Medium Carbon Microalloyed Steel[J] .Acta. Mater., 1999,47(3):951.
    [56] K.Yamamoto , Jin– ichi Takamura .Effect of Boron on Intragranular Ferrite Formation in Ti– Oxide Bearing Steels[J]. ISIJ ,1996,36(1):80.
    [57] Y. Li, D.N.Crowther. The Effect of Vanadium and Niobium on the Properties and Microstructure of theIntrecritically Reheated Coarse Grain HAZ in Low Carbon Microalloyed Steel[J]. ISIJ, 2001,41(1):46.
    [58]郑庆,朱立新.氧化物冶金技术的理论与工艺[J].世界钢铁,2005(2):1~6.
    [59] Andress G D C, Capdevila C, Martin D S, et al. Effect of the microalloying elements on nucleation fo allotriomorphic ferrite in medium carbon-manganese steels [J]. J Mater Sci Lett, 2001, 20(12):1135.
    [60] H. Mabuchi , R. Uemon. The Role of Mn Depletion in Intra– Granular Ferrite Transformation in the Heat Affected Zone of Welded Joints with Large Heat Input in Structrural Steels[J]. ISIJ,1996,36:1406.
    [61] J. shim , Y. Cho. Nucleation of intragranular Ferrite at Ti2O3 Particle in Low Carbon Steel[J]. Acta Mater., 1999,47 (9):2751.
    [62] Madariage I,Gutiereez I. Role of the particle matrix interface on the nucleation of acicular ferrite in a medium carbon microalloyed steel [J] . Acta Mater, 1999,47(3):951.
    [63] Shim J H ,Cho Y W, et.Nucleation of intranular ferrite at Ti2O3 particle in low carbon steel[J] .Acta Mater ,1999,47(9):2751.
    [64] Oh Y J ,Lee S Y ,Byun J S, et al. Non-metallic inclusions and acicular ferrite in low carbon steel [J]. Mater Trans JIM, 2000, 41(12):1135.
    [65]刘中柱,桑原守.氧化物冶金技术的最新进展及其实践[J].炼钢,2007,23(3):1~6..
    [66]李新明,郑少波,郑庆等.钢的氧化物冶金技术[J].上海金属,2005(9):55~60.
    [67] Shozo Mizoguchi , Jin-ichi Takamura .Control of oxides as inoculants-metallurgy of axides in steel [A]. Proc Sixth Int. Iron and Steel Congress [C]. Nagoya: ISIJ,1990: 598~604。
    [68]蒋国昌.纯净钢及二次精炼.上海:上海科学技术出版社[M]. 1996,10:223~233.
    [69]李建国,于春玲等.兵器材料科学与工程[M]. 2001,24(5).
    [70] J. shim , Y . cho . Nucleation of Intragranular Ferrite at Ti2O3 Particle in Low Carbon Steel [J].Acta Mater .1999,47(9):2751。
    [71] H. Homma ,S . Okita , K.Okamooto Analysis of Weld Cracking of HSLA Steel[J] .Weld Journal ,1987,66 (5):601.
    [72]杨颖,宋福明,宋波等.非调质钢中钛氧化物冶金行为[J].北京科技大学学报.2005,27(5):540~554.
    [73]宋波,毛璟红,王福明等.非调质钢中钛脱氧产物析出行为[J].北京科技大学学报,2006,28,(3):242~247.
    [74] J Gregg, H.Bhadeshia. Titanium– rich Mineral Phases and the Nucleation of Bainite[J] .Metallrugican and Material Transaction A. 1994,125(8):1603.
    [75] Byun J S, Shin J H, Cho Y W, Lee D N. Acta Mater, 2003(51):1593.
    [76] T Furuhara. Acceleration of ferrite nucleation at inclusion by prior hot deformation of austenite[J]. CAMP-ISIJ, 1998,11(6): 1129.
    [77] K Yamamoto. Effect of boron on intra-granular ferrite formation in Ti-Oxide bearing steels[J]. ISIJ Int. ,1996,36(1):80~86.
    [78] G. Shigesato. Effect of Mn depletion on intra-granular ferrite transformation in heat affected zone of welding in low alloy steel[J]. Tetsu-to-Hagane ,2001,87(2):93~100.
    [79] R A Farrar .Acicular ferrite in carbon-manganese weld metals :an overview[J]. J. Mat. Sci. ,1987,(22):3812~3820.
    [80] Z Liu . Nucleation of acicular fernite on sulfide inclusion during rapid solidification of low carbon steel [J]. CAMPISIJ ,2006,19(4):743.
    [81] H.S.Kim,H.G.Lee,K.S.Oh.Evolution of Size, Composition and Morphology of Primary and Secondary Inclusion in Si/Mn abd Si/Mn/Ti Deoxidized Steels[J]. ISIJ, 42(12): 1404.
    [82] Jye-Long Lee,Acta metal[J]. Mater..1994,42(10):3291~3298.
    [83] F. J. Barbaro et al. Materials Science and Technology[J].1989,5: 1057~1067.
    [84]郑庆.管线钢中形成有利于氧化物夹杂的冶金条件项目结题报告.上海:宝钢,2003.
    [85] K.Yamamoto,Jin-ichi Takamuta.Effect of Boron on Intragranular Ferrite Formation in Ti-Oxide Bearing Steels[J].ISIJ,1996,36(1):80.
    [86] Jye-Long Lee,Acta metal[J]. Mater..1994,42(10):3291~3298.
    [87] Jye-Long Lee.ISIJ international[J].1995,35(8):1027~1033.
    [88] Hiroki GoTo et al. ISIJ international.1995,35(3):286~291.
    [89] Zhongting Ma, Dieter Janke. Characteristics of Oxide Precipitation and Growth during Solidification of Deoxided Steel[J] .ISIJ International ,1998,38(1):46~52.
    [90] Kou S., Le Y.. Welding parameters and Grain Structure of Weld Metal-A thermodynamic Consideration[J] .Metallrugical Transaction ,1988,19A(4):1075~1082.
    [91] Hiroki Goto, Ken-ichi Miyazawa, Koh-ichi Yamaguchi, Shigeaki Ogibayashi, Tanaka K. Effect of Cooling Rate on Oxide Precipitation During Solidification of Low Carbon Steels[J]. ISIJ International ,1994,34(5):414~419.
    [92] Hiroki Goto, Ken-ichi Miyazawa, Wataru Yamada, Kazuaki Tanaka. Effect of Cooling Rate on Composition of Oxides Precipitated During Solidification of Steels[J]. ISIJ Int.,1995, 35(6):708~714.
    [93] Hiroki Goto, Ken-ichi Miyazawa, Kazuaki Tanaka. Effect of Oxygen Content on Size Distribution of Oxides in Steel[J]. ISIJ Int,1995,35(3):286~291.
    [94] Yoshio kawashita, hideaki Suito. Precipitation Behavior of Al-Ti-O-N Inclusions in Unidirectionally Solidified Fe-30mass%Ni Alloy[J]. ISIJ International, 1995,35(12):1468~1476.
    [95]李静媛,曾光延,罗学厚.非金属夹杂物与钢的韧性研究[J].全国第九届钢质量与夹杂物学术会议论文集,1999:1.
    [96]刘自立. X80管线钢超细夹杂物及其三维形貌研究[D].上海大学硕士学位论文,2006.
    [97] Woo-Yeol CHA, Takahiro MIKI, Yasushi SASAKI, et al. Identification of Titanium Oxide Phases Equilibrated with liuid Fe-Ti Alloy Based on EBSD Analysis[J]. ISIJ International, Vol.46(2006), No.7:987.
    [98] Jong-Jin PAK, Jong-Oh JO, Sun-In KIM, et al. Thermodynamics of Titanium and Oxygen Dissolved in Liquid Iron Equilibrated with Titanium Oxides[J]. ISIJ International, Vol, 47(2007),No.1:16.
    [99]方臣富,李晓泉,陶永宏.船舶焊接设备的应用现状及发展[J].焊接设备与材料,2006, 35(6), 43~46.
    [100]朱丙伸,吴伦发.我国船舶焊接技术的应用现状和发展趋势[J].机械工人,2005,No.10,12~14.
    [101]刘景凤,段斌,马德志.新技术在国内建筑钢结构焊接中的应用[J].电焊机,2007,37(4),,38~63.
    [102]陈颜堂,陈晓,,李书端等.大线能量低焊接裂纹敏感性压力容器用钢的性能[J].机械工程材料,2005, 29( 6), 39-43.
    [103]刘硕.大口径油气管道环焊技术的进展及在宝钢的应用[J].宝钢科技.2007, No. 2, 35-38.
    [104]熊林玉,杜则浴,董丽红等.高强度X80钢管道的焊接[J].石油工程建设,2004, 30(4), 31-34.
    [105] S Shinichi. High tensile strength steel plates for shipbuilding with excellent HAZ toughness [ J ] . J FE Tech. Rep . ,2004 (5) : 19~24.
    [106] K Tatsumi . High tensile strength steel plates and welding consumables for architectural construction with excellent toughness in welded joints [ J ] . J FE Tech. Rep . , 2004 (5): 38~44.
    [107] A Kojima . Super high HAZ toughness technology with fine microstructure imparted by fine particles[J ] .新日铁技报, 2004(380):2~5.
    [108] K F Al Hajeri . Particle-stimulated nucleation of ferrite in heavy steel section [ J ] . ISIJ Int . , 2006 , 46 ( 8 ) : 1233~1240.
    [109]杨颖,敖列哥,李宪林.氧化物冶金技术研究的进展[J] .炼钢,2005,21(5).
    [110]杨颖.非调质钢中钛氧化物冶金行为的研究[D].北京科技大学硕士论文,2005年:29~30.
    [111]王明林.低碳钢凝固过程含钛析出物的析出行为及其对凝固组织影响的机理研究[D].钢铁研究总院博士论文,2003年:35~37.
    [112] Jong-Jin Pak,Dong-Sik Kim. Thermodynamics of Titanium,Nitrogen and Oxygen in Ti Added Liquid steels[J].Asia Steel Inernational Conference 2006:540~545.
    [113]陆岳璋,周玉红.X80—X100级管线钢的开发[J].宽厚板,2000年05期:35.
    [114]陈家祥.炼钢常用图表数据手册[M].北京:冶金工业出版社,1984.
    [115]黄希祜.钢铁冶金原理[M].北京:冶金工业出版社,1990.
    [116] Ohnaka I. Mathematical Analysis of Solute Redistribution during Solidification with Diffusion in Solid Phase. Trans ISIJ, 1986,26 (12): 1045~1051.
    [117] Zhongting MA, Dieter JANKE. Characteristics of Oxide Precipitation and Growth During Solidification of Deoxidized Steel[J]. ISIJ International, 1998,36 (1) : 46~52.
    [118] T. Degawa and T. Ototani . Refining of High Purity Ni-base Superalloy Using Calcia Refractory[J].Tetsu-to-Hagane,1987(14):1691.
    [119] Seiji Nishi, Kanehiro Ogawa etc . Melting of Clean Maraging Steel by Vacuum Induction Method[J].R&D Kobe Steel Engineering Reports,1989,39(1):73.
    [120]孙长杰,邢纪萍.氧化钙坩埚在高纯净化合金研究中的应用[J].金属学报,1998,24(7):731~734.
    [121]薛正良,李正邦,张家雯等.真空感应熔炼碳脱氧研究[J].钢铁,2003,38(6):12~14.
    [122]薛正良,高俊波,齐江华,李正邦,张家雯.真空感应熔炼过程炉衬向钢液供氧现象的研究[J].特殊钢,2005,26(1):8.
    [123]邵象华.真空熔炼物理化学[J].金属学报,1964,7(1):96.
    [124]高明,马颖澈,赵秀娟.真空感应熔炼中的碳脱氧[J].材料研究学报,2001年03期:275~278.
    [125]陈家祥.钢铁冶金学(炼钢部分)[M].北京:冶金工业出版社,1999.
    [126]韩其勇.冶金过程动力学[M].北京:冶金工业出版社,1983.
    [127]曲英.炼钢学原理[M].北京:冶金工业出版社,1980.
    [128] Schmidt N H. Band positions used for online crystallographic orientation determination from electron back scattering patterns[J]. Scanning Microscopy,1991,5:637.
    [129] Dingley D J, Randle V. Microtexture determination by electron back-scatter diffraction [J]. J Mater Sci, 1992,27:4545-4566.
    [130]刘庆.电子背散射衍射技术及其在材料科学中的应用[J].中国体视学与图象分析,2005(4):205~210.
    [131]李凡,黄海波,王雷.电子背散射衍射分析技术的应用[J].理化检验-物理分册:2007(10):505~516.
    [132]郭宇航,金云学,张丽华等.金属电子背散射衍射试样的制备技术[J].理化检验-物理分册,2007(8):201~205.
    [133]屠世润,高越.金相原理与实践[M].北京:机械工业出版社,1990:60,316.
    [134]王国承,邓庚凤.钢中夹杂物研究的新方法及其应用[J].江西理工大学学报,2008(5):51~54.
    [135]方克明,周兴,黄浪等.纳米材料的微观结构的透射电镜和高分辨电镜表征技术[J].纳米器件与技术,2005(6):26~29.
    [136]方克明,周兴,苏继灵.纳米材料的透射电镜表征[J].现代科学仪器,2003(2):15~17.
    [137]邱平善,王桂芳,郭立伟.材料近代分析测试方法实验指导[M].哈尔滨工程大学出版社,2001年.
    [138]邓照军,李平和.透射电镜对细小夹杂物的分析方法及应用[J].物理测试,2005(2):3~8.
    [139]廖乾初.改善场发射扫描电镜分辨本领的原理和展望[J].电子显微学报,2000(10):709~716.
    [140]冯岩青,李智丽.扫描电镜及能谱仪的主要功能开发[J].包钢科技,2008(8):93~95.
    [141] Fang Keming, Ni Ruiming. Research on Determination of the Rate-Earth Content in Metal Phases of Steel[J].Metallurgical Transaction A, 1986,17A:315~323.
    [142] Shigesato G, Sugiyama M, Aihara S, Uemori R, Tomita Y. Tetsu-to-Hagane 2001:87~93.
    [143] J.-S. Byun, J.-H. Shim, Y.W. Cho et al. Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C-Mn steel[J]. Acta Materialia 51(2003):1593~1606.
    [144] Shim,J.H., Byun, J.S., Cho, Y.W., et al. Mn Absorption Chararteristics of Ti2O3 Inclusions in Low Carbon Steels[J]. Scripta Materialia. Vol. 44, 2001:49~54.
    [145]程光熙.拉曼布里渊散射原理及应用[M],科学出版社.2001(2):45.
    [146]郑顺旋,激光拉曼光谱学[M].上海科学技术出版社,1985(4):2.
    [147]肖萍.钛氧化物的光谱表征及表面吸附研究[D].上海大学硕士论文,2006:9~11.
    [148] http://rruff.info/index.php/new_search=1,拉曼光谱数据库.
    [149]肖萍,郑少波,尤静林等.钛氧化物结构及其拉曼光谱表征[J]光谱学与光谱分析.2007(5):936~938.
    [150]李文超.冶金与材料物理化学[M].北京:冶金工业出版社,2001.
    [151]王利伟.钢液凝固过程中钛基超细夹杂物形成机理研究[D].上海大学硕士学位论文,2007.
    [152]张全会,郑少波,郑庆等.钢液凝固过程中微观偏析和钛氧夹杂生成的耦合模型[J].金属学报,2007(7):745~750.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700