钢筋钢丝网砂浆加固混凝土柱的轴压、偏压及抗震滞回性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土柱是关系结构安全性、耐久性的关键构件,目前常用的三种加固方法:加大截面法、外包钢法和纤维复合材料法都有各自的不足,譬如加大截面法施工复杂、体积增加较大,外包钢法技术要求高、耐久性较差,纤维复合材料法费用高、耐热耐火性较差。研发中的钢丝网砂浆加固法可克服上述常用加固法的不足,但不能明显提高柱的承载能力;研发中的钢筋网砂浆加固法可显著提高柱的承载力,但延性和耐久性尚不尽人意。为既大幅度提高柱的承载能力,又大幅度提高延性、抗震性能和耐久性,本文提出钢筋(大直径)钢丝网砂浆加固混凝土柱的新方法,并进行了较系统的试验研究。
     1.钢筋钢丝网砂浆加固混凝土圆柱的轴压试验研究
     分别制作钢筋钢丝网砂浆(SW)、钢筋网砂浆(S)和纤维复合材料(FRP)加固混凝土圆柱共74根。以承载力和延性为指标,以不同加固方法、钢筋和钢丝网相对用量为主要影响因素,进行了对比试验研究。研究结果表明,与S和FRP加固法相比,SW既能大幅度提高混凝土圆柱的极限承载力,又能显著提高其位移延性。如SW2(钢筋网加两层钢丝网)试件在承载力比S(钢筋网)试件高51%的情况下,SW2试件的位移延性达S试件的2.05倍;主要原因之一是SW试件优越的配筋分散性使得加载过程中出现大量纵横交错的细小裂缝(≈网格间距)而大量耗能。提出了SW加固混凝土圆柱极限承载力计算公式,经比较与试验结果吻合较好。此外还探索了测量圆柱外表面砂浆环向应变的方法。
     2.钢筋钢丝网砂浆加固混凝土圆柱的小偏压试验研究
     分别制作SW和S加固混凝土圆柱共18根,进行了以小偏心距为影响因素的抗压对比试验研究。结果表明,偏心距对各加固柱的极限承载力有显著影响;S和SW加固法均不能有效提高小偏心受压试件的位移延性;实测SW试件极限承载力显著高于既有偏压承载力公式计算值。
     3.钢筋钢丝网砂浆加固混凝土方柱的抗震滞回试验研究
     分别制作钢筋钢丝网砂浆(FS)、钢筋网砂浆(S)加固混凝土方柱和对比柱(O)6根,进行抗震滞回试验研究。结果表明,FS既能显著提高混凝土方柱的滞回耗能能力和侧向位移延性,又能明显增强试件的侧向承载力和刚度。在FS加固试件的配筋率仅比S加固试件高11%的情况下,FS试件的总耗能是S试件的1.61倍;主要原因之一是钢丝网的优越配筋分散性避免了受力主筋与混凝土/砂浆的脱粘破坏,且在一定程度上使砂浆层保持裂而不碎,裂缝两侧砂浆相互摩擦挤压耗能。本文还探讨了柱底塑性铰长度问题;并指出将能量耗散系数与总能耗结合才能合理评价构件的抗震性能。
     最后,结合研究现状及试验过程中所遇到的问题,提出了今后的研究设想。整个研究表明,钢筋钢丝网砂浆加固法是一种可靠的加固方法,加之经济、施工简易(不需支模和大型施工机具),非常适合城乡中小学校舍的抗震加固,应用前景广泛,很可能取得不同以往的实质性效果。
Concrete column is the key member in the construction framework which affects its safety and durability greatly. Enlarging concrete section by using new concrete, enveloping steel and strengthening with fiber-reinforced polymer (FRP) are three widely-used methods to strengthen concrete column, but these methods have their own disadvantages, such as construction complex and volume increase of enlarging section method, high technical needs and poor durability of enveloping steel, and the high cost and poor fire proof of FRP method. In order to improve the seismic performance, ductility and durability of concrete columns significantly while improving the bearing capacity greatly, this thesis put forward a new method for strengthening concrete columns with ferrocement including steel bars (large diameter) and its experimental study was carried out.
     a. The axial compression performance
     A total of 74 circular concrete columns were strengthened by using ferrocement including steel bar (SW), steel bar (S) and FRP respectively. Comparative test was performed under axial compressive load, the effect such as different strengthening methods and the area ratios between steel bar and wire mesh were studied according to the index of bearing capacity and ductility. The results showed that, SW not only improved the bearing capacity dramatically, but also improved the displacement ductility significantly comparing with S and FRP methods. For example, on the premise that the bearing capacity of the SW2 (with two layers of wire mesh) columns was 51% higher than the S columns, the ductility of the SW2 columns was still 2.05 times of the S columns. One of the main reasons is that the superior reinforcement dispersion of the SW columns induces a massive criss-cross of tiny cracks during the loading process, leading to a great energy dissipation. The formula of the ultimate load of the SW columns was proposed, the calculated results show a good agreement with experimental data. In addition, a method for measuring the stain of mortar surface was explored.
     b. The eccentric loaded performance
     18 circular concrete columns strengthened by SW and S were tested under eccentric loading, and the effect of the eccentricity (small) was studied. The results show that, eccentricities have a significant effect on the ultimate bearing capacity of each strengthened column. Both S and SW methods can not improve the ductility effectively. The measured ultimate load of the SW column was much higher than that by using the code formula.
     c. The seismic performance
     An experimental study of 6 square concrete columns strengthened by ferrocement including steel bar (FS) and steel bar (S) was carried out under the cyclic loading. The results show that, the FS can not only improve the hysteretic energy dissipation and ductility of square concrete column significantly, but also enhance the bearing capacity and rigidity greatly. When the reinforcement ratio of the FS column was only 11% higher than that of the S column, the total energy dissipation of the former was as much as 1.61 times of the latter. One of the main reasons is that the wire mesh with superior reinforcement dispersion protects the bond between longitudinal bars and concrete/mortar well, meanwhile it makes the mortar keep cracked but not broken, friction and extrusion of the mortar on both sides of the cracks lead to a large energy dissipation. The plastic hinge length at the column bottom was discussed. In addition, it was pointed out that a reasonable evaluation could only be drawn out based on a comprehensive analysis on both the energy dissipation coefficient E and the total energy dissipation.
     Further research issues were put forward at the end of the thesis.
     The whole research shows that, ferrocement (including steel bar) strengthening is a reliable strengthening method, coupled with low cost, construction easily (no need of moulds and large construction tools), which is suitable for seismic retrofit of the primary and secondary school buildings in urban and rural China. With broad application prospects, this method will probably get different concrete results.
引文
[1]王永维.我国建筑物鉴定与加固改造技术现状与展望.第五届全国建筑物鉴定与加固改造学术讨论会,全国建筑物鉴定与加固标准技术委员会,汕头, 2000.
    [2]张鑫,李安起,赵考重.建筑结构鉴定与加固改造技术的进展[J].工程力学, 2011, 28(1):1-11, 25.
    [3]刘西拉.结构工程学科的进展与前景[M].北京:中国建筑工业出版社, 2007.
    [4] CECS 25: 90.混凝土结构加固技术规范[S].北京:中国计划出版社, 1990.
    [5] Editorial[J]. Cement and Concrete Composites, 2000, 22(3): iii-iv.
    [6]陈肇元.土建结构工程的安全性与耐久性[M].北京:中国建筑工业出版社, 2003.
    [7]新华网.广东农村中小学12000多所危房校舍复核完成. 2006年09月25日.
    [8] GB 50367-2006.混凝土结构加固设计规范[S].北京:中国建筑工业出版社, 2006.
    [9]刘西拉,方东平,宋晓冰.沿着结构生命周期的探索[J].中国土木工程学会第九届年会论文集.北京:中国水利水电出版社. 2000: 3-12.
    [10]邸小坛,周燕.旧建筑物的检测加固与维护[M].北京:地震出版社, 1992.
    [11]马晓升.纤维复合材料加固混凝土的几个重要问题.汕头大学硕士论文. 2005.
    [12]姜浩,熊光晶等.碳纤维/玻璃纤维复合加固混凝土柱的抗压性能研究[J].汕头大学学报, 2001, 16(1): 13-16.
    [13]熊光晶,姜浩,杨建中等.混杂纤维复合材料及其在混凝土梁柱加固中的应用研究[J].工业建筑, 2001, 31(9): 11-13.
    [14]杨建中,熊光晶等.用混杂纤维复合材料预制圆套筒加固混凝土方柱的性能研究[J].混凝土与水泥制品, 2002. (1): 33-35.
    [15]严洲.钢丝网钢筋加固混凝土柱的性能.汕头大学硕士学位论文. 2006.
    [16]李丰丰.钢筋钢丝网砂浆加固混凝土柱的轴压性能.汕头大学硕士学位论文. 2008.
    [17]尚守平.钢丝(筋)网复合砂浆加固混凝土构件[J].第7届全国建筑物鉴定与加固改造学术会议论文集,重庆出版社. 2004, 742-749.
    [18] G.J. Xiong, X.Y. Wu, F.F. Li, Z. Yan. Load Carrying Capacity and Ductility of Circular Concrete Columns Confined by Ferrocement Including Steel Bars[J]. Construction and Building Materials, 2011, 25(5): 2263-2268
    [19]吴小勇,李丰丰,严洲,熊光晶.钢筋钢丝网砂浆加固混凝土圆柱的抗轴压性能[J].工程力学, 2011, 28(1): 131-137
    [20] Li Fengfeng, Wu Xiaoyong, Yan Zhou, Lu Xiaohua, Xiong Guangjing. Behavior of circular concrete columns repaired with steel bars and wire mesh-mortar[J].
    [21] Advanced Materials Research, 2010, 133-134(2010): 1247-1252
    [22] Mothana Ahmed Al-Kubaisy, Mohd Zamin Jumaat. Ferrocement Laminate Strengthens RC Beams[J]. Concrete International, 2000, 22(6): 37-43.
    [23] Ganesan, N., Anil, J. Strength and Behavior of Reinforced Concrete Columns Confined by Ferrocement[J]. Journal of Ferrocement, 1993, 23(2): 99-108.
    [24]朱缨,孙增寿,宋万增.钢纤维和钢丝网混凝土的研究及工程应用[J].河南科学, 2002, 20(6): 736-739.
    [25] Prakash Desayi, Balaji k Rao. Probabilistic Analysis of Tensile Strength of Ferrocement[J]. The International Journal of Cement Composites and Lightweight Concrete, 1988, 10(1): 15-25.
    [26] B R Walkus. Short and Long Term Behaviour of Ferrocement Subjected to Uniaxial Tension[J]. The International Journal of Cement Composites and Lightweight Concrete, 1988, 10(2): 125-129.
    [27] ACI Committee 549. Guide for the Design, Construction and Repair of Ferrocement, ACI Structural Journal, 1988, 85(3): 325-351.
    [28] Mansur, M.A. Ultimate Strength Design of Ferrocement in Flexure, Journal of Ferroment[J], 1988, 18(4): 385-395.
    [29] Johnston C D, Mowat D N. Ferrocement-Material Behavior in Flexural[J]. J. Struct. Div. ASCE, 100, USA, 1974, 2054-2069.
    [30]熊光晶.焊接钢丝网水泥弯曲极限承载力的计算[J].建筑结构学报, 1997, (18): 33-40.
    [31]熊光晶.焊接钢丝网水泥在弯曲疲劳荷载作用下的应力计算[J].力学与实践, 1997 (19): 28-30.
    [32] Nagataki, et al. Carbonation of Mortar in Relation to Ferrocement Construction [J]. ACI Materials Journal, 1988, 85(3): 71-25.
    [33] Hanai J B, Debs M K. Susceptibility of Ferrocement to Reinforcement Corrosion [J]. Proceedings of the Fifth International Ferrocement Symposium, UK, 1994.
    [34] Mehta P K. Concrete Structure, Properties and Materials, Elsevier Applied science, USA. 1986.
    [35] G. Xiong, G. Singh. Flexural Fatigue Properties of Weldmesh Ferrocement in a Sulfuric Acid Environment[J]. Journal of Ferrocement, 1994, 24(3): 209-223.
    [36] Guang Jing Xiong, G.urdev Singh. A User Friendly Program for Designing Weldmesh Ferrocement in a One-way Flexural[J]. Journal of Ferrocement, 1995, 25(3): 261-266.
    [37]熊光晶.焊接钢丝网水泥的弯曲疲劳特性[J].混凝土与水泥制品,1997, (2): 46-50
    [38] Guangjing Xiong, Gurdev Singh. Rational Evalution of Flexural Behavior of Weldmesh Ferrocement in Normal and Corrosive Environments[J].ACI Structural Journal, 1998, 95(6): 647-653.
    [39]熊光晶, L.IP, G. Singh.镀锌焊接钢丝网水泥在一种模拟海洋环境中的疲劳特性[J].哈尔滨建筑大学学报, 1999, 32(1): 43-47.
    [40] Romualdi J P. Ferrocement for infrastructure rehabilitation[J]. Concrete International: Design and Construction, 1987, 9(9): 24-28.
    [41] Irons M. Laminated for better repair[J]. Concrete International: Design and Construction, 1987, 9(9): 34-38.
    [42] ACI 549 Committee. A Guide for the Design, Construction and Repair of Ferrocement. ACI Structural Journal, 1988, 85(3): 323-351.
    [43] Andrews G, Sharma A K. Repaired Reinforced Concrete Beams[J]. Concrete International, 1988, 10(4): 47-51.
    [44] Basaunbul I A, Gubati A, Al-Sulaimani, et al. Repaired Reinforced Concrete Beams[J]. ACI Material Journal, 1990, 87(4): 345-354.
    [45] Sharma A K. Tests of Reinforced Concrete Continuous Beams with and without Ferrocement[J]. Concrete International, 1992, 14(3): 36-40.
    [46] Ong K. C. G, Paramasivam P, and Lim C. T. E. Flexural Strengthening of Reinforced Concrete Beams Using Ferrocement Laminates[J]. Journal of Ferrocement, 1992, 22(4): 331-342.
    [47] Paramasivam P, Ong K.C.G, Lim C.T.E. Repair of Damage RC Beams Using Ferrocement Laminates[J]. In. Proc. of Fourth International Conf. On Structural Failure, Durability and Retrofitting, Singapore, July 1993: 613-620.
    [48] Hamoud Hhmad Farhan Dehwah, Islem Ahmad Basunbul, Mohammed Maslehuddin et al. Durability Performance of Repaired Reinforced Concrete Beams [J]. ACI Materials Journal, 1994, 91(2): 167-172.
    [49] P. J. Nedwell, M. H. Ramesht, S. Rafei-taghanaki. Investigation into the Repair of ShortSquare Columns Using Ferrocement[J]. Proceeding of the Fifth International Symposium on Ferrocement. London, 1994, 277-285.
    [50] Ezzat. H. Fahmy, Yousry. B. I. Shaheen, Yasser. S. Korany. Repairing Reinforced Concrete Beams by Ferrocement [J]. Journal of Ferrocement, 1997, 27(1): 19-32.
    [51] Ezzat. H. Fahmy, Yousry. B. I. Shaheen, Yasser. S. Korany. Use of Ferrocement Laminates for Repairing Reinforced Concrete Slabs [J]. Journal of Ferrocement, 1997, 27(3): 219-232.
    [52] Paramasivam P, Lim C T E, Ong K C G. Strengthening of RC Beams with Ferrocement Laminates [J]. Cement&Concrete Composites, 1998, 20(1): 53-65.
    [53] E. H. Fahmy, Y. B. I. Shaheen, Y. S. Korany. Repairing Reinforced Concrete Columns Using Ferrocement Laminates[J]. Journal of Ferrocement, 1999, 29(2): 115-124.
    [54]曹双寅,孙永新,夏存卫等.粘钢加固钢筋混凝土梁斜截面承载能力的试验研究[J].建筑结构, 2000, 30(8): 45-48.
    [55] Abdulah, Katsuki Takiguchi. An investigation into the behavior and strength of reinforced concrete columns strengthened with ferrocement jackets[J]. Cement& Concrete Composites, 2003, 25(2): 233-242.
    [56] B. Vidivelli, C. Antony Jeyasehar, P. R. Srividya. Repair and Rehabilitation of Reinforced Concrete Beams by Ferrocement[J]. Journal of Ferrocement, 2004, 34(3): 410-415
    [57]聂建国,王寒冰,张天申等.高强不锈钢绞线网-渗透性聚合物砂浆抗弯加固的试验研究[J].建筑结构学报, 2005, 26(2): 1-9.
    [58]尚守平,曾令宏,彭晖等.复合砂浆钢丝网加固RC受弯构件的试验研究[J].建筑结构学报, 2003, 24(6): 87-91.
    [59]曾令宏.钢丝网复合砂浆加固混凝土受弯构件的试验研究,湖南大学硕士论文, 2003.
    [60]熊光晶,赵若红.关于房屋现浇混凝土楼板收缩温差斜角裂缝控制的讨论[J].四川建筑科学. 2004, 30(2): 25.
    [61]林敬明,熊光晶.一种有效控制房屋现浇混凝土楼板收缩温差斜角裂缝的新方法[J].建筑技术开发, 2005 32(12): 80.
    [62] P K Mehta et al. Concrete Microstructure, Properties, and Materials. 3rd edition, New York, McGraw-Hill, 2006.
    [63] Porter M L, Harries K. Future Directions for Research in FRP Composites in Concrete Construction[J]. Journal of Composites for Construction, ASCE, 2007, 11(3): 252-257.
    [64]张新培.钢筋混凝土抗震结构非线性分析[M].北京:科学出版社, 2003.
    [65] Bournas D A, Lontou P V, Papanicolaou C G. Triantafillou T C. Textile-reinforced mortar versus fiber-reinforced polymer confinement in reinforced concrete columns[J]. ACI Structural Journal, 2007, 104(6): 740-748.
    [66] Waliuddin A M, Rafeeqi S F A. Study of the behavior of plain concrete confined with ferrocement[J]. Journal of Ferrocement, 1994, 24(2):139-15.
    [67] Takiguchi T. Shear Strengthening of Reinforced Concrete Columns Using Ferrocement Jackets[J]. ACI Structual Journal, 2001, 98(5): 696-704.
    [68] AI Kubaisy M et al. Crack Control of Reinforced Concrete Members Using Ferrocement Tension Zone Layer[J]. Journal of Ferrocement, 2005, 35(1): 490-499.
    [69]熊光晶, Singh G.保护层的质和量与镀锌焊接钢丝网水泥的耐久性[J].水利学报, 1998, 29(7): 41-45.
    [70] ACI Committee 318-02. Building Code Requirement for Structural Concrete[S]. American Concrete Institute, 2002.
    [71] Xiong G J, Chen X H, Chen L Q. Behavior of a Hybrid Modified Ferrocement under Co-action of Sustained Flexural Load and Flowing Sulfuric Acid Solution[J]. Cement and Concrete Composites, 2004, 26(1): 81-86.
    [72] Xiong G J et al. Behavior of a Hybrid Modified Mortar under a Flowing Sulfuric Acid Environment[J]. Cement and Concrete Research, 2004, 34 (4): 665-669.
    [73]尚守平,蒋隆敏,张毛心.钢筋网复合砂浆加固RC偏心受压柱的试验研究[J].建筑结构学报, 2005, 26(2): 742-749.
    [74]尚守平,蒋隆敏,张毛心.钢筋网高性能复合砂浆加固钢筋混凝土方柱抗震性能的研究[J].建筑结构学报, 2006, 27(4): 16-22.
    [75]聂建国,陶巍,张天申.预应力高强不锈钢绞线网-高性能砂浆抗弯加固试验研究[J].土木工程学报, 2007, 40(8):1-7.
    [76]曹忠民,李爱群等.高强钢绞线网-聚合物砂浆抗震加固框架梁柱节点的试验研究[J].建筑结构学报, 2006, 27(4): 10-15
    [77] Janke L, Czaderski C, Ruth J, Motavalli M. Experiments on the residual load-bearing capacity of prestressed confined concrete columns[J]. Engineering Structures, In Press, Corrected Proof, Available online 17 May 2009.
    [78]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社, 2003: 90-92, 175-178, 335-337.
    [79]蔡健,杨明,吕永森.钢筋混凝土圆柱中圆形螺旋箍筋的受力机理[J].华南理工大学学报(自然科学版), 1996, 24(9): 59-63.
    [80] Berthet J F, Ferrier E, Hamelin P. Compressive behavior of concrete externally confined by composite jackets Part B: modeling[J]. Construction and Building Materials, 2006, 20(5): 338-347.
    [81] Berthet J F, Ferrier E, Hamelin P. Compressive behavior of concrete externally confined by composite jackets Part A: experimental study[J]. Construction and Building Materials, 2005, 19(3): 223-232.
    [82]吴小勇,李丰丰,严洲,熊光晶.钢筋钢丝网砂浆加固混凝土圆柱的轴压试验研究.中国建筑科学研究院.既有建筑综合改造关键技术研究与示范项目交流会论文集,深圳, 2009.
    [83] http://en.wikipedia.org/wiki/Ferrocement
    [84] Antoine E. Naaman. Ferrocement and Laminated Cementitious Composites[M]. 1st edition. Michigan: Techno Press, 2000, 367.
    [85] http://www.ferrocement.net/
    [86]宋小龙,安继儒.新编中外金属材料手册[M].北京:化学工业出版社, 2007.
    [87] Mohammed Arif, Pankaj, Surendra K. Kaushik. Mechanical behaviour of ferrocement composites: an experimental investigation[J]. Cement & Concrete Composites, 1999, 21(4): 301-312
    [88] B. R. Walkus. Short and Long Term Behaviour of Ferrocement Subjected to Uniaxial Tension[J]. The International Journal of Cement Composites and Lightweight Concrete, 1988, 10(2): 125-128
    [89]曾令宏.高性能复合砂浆钢筋(丝)网加固混凝土梁试验研究与理论分析.湖南大学博士学位论文. 2006. 26
    [90] M. A. Al-Kubaisy, M. Z. Jumaat. Flexural behaviour of reinforced concrete slabs with ferrocement tension zone cover[J]. Construction and Building Materials, 2000, 14(5): 245-252
    [91] Porter M L, Harries K. Future Directions for Research in FRP Composites in Concrete Construction[J]. Journal of Composites for Construction, ASCE, 2007, 11(3): 252-257.
    [92]曹忠民,李爱群等.高强钢绞线网-聚合物砂浆抗震加固框架梁柱节点的试验研究[J].建筑结构学报, 2006, 27(4): 10-15
    [93] Janke L, Czaderski C, Ruth J, Motavalli M. Experiments on the residual load-bearing capacity of prestressed confined concrete columns[J]. Engineering Structures, 2009, 31(10): 2247-2256.
    [94] Berthet J F, Ferrier E, Hamelin P. Compressive behavior of concrete externally confined by composite jackets Part B: modeling[J]. Construction and Building Materials, 2006, 20(5): 338-347.
    [95] Berthet J F, Ferrier E, Hamelin P. Compressive behavior of concrete externally confined by composite jackets Part A: experimental study[J]. Construction and Building Materials, 2005, 19(3): 223-232.
    [96]黄炎生,宋欢艺,蔡健.钢筋混凝土偏心受压构件增大截面加固后可靠度分析[J].工程力学, 2010, 27(8): 146-151.
    [97] M.N.S. Hadi. The behaviour of FRP wrapped HSC columns under different eccentric loads[J]. Composite Structures, 2007, 78(4): 560-566.
    [98] Rosario Montuori, Vincenzo Piluso. Reinforced concrete columns strengthened with angles and battens subjected to eccentric load[J]. Engineering Structures, 2009, 31(2): 539-550.
    [99]郭子雄,吕西林.高轴压比框架柱恢复力模型试验研究[J].土木工程学报, 2004, 37(5): 32-38.
    [100]余琼,陆洲导.型钢混凝土偏压柱力学性能研究[J].建筑结构, 2009, 39(6): 34-39.
    [101] http://en.wikipedia.org/wiki/Carbon_(fiber).
    [102]刘文川.复合材料的断裂功[J].机械工程材料, 1984, (5): 1-4.
    [103] Rathish Kumar P, Rao CBK. Constitutive behavior of high-performance ferrocement under axial compression[J]. Magazine of Concrete Research, 2006, 58(10): 647-56.
    [104] D R Seshu1, A K Rao. Behaviour of ferrocement confined reinforced concrete (FCRC) under axial compression[J]. Materials and Structures, 1998, 31(9): 628-633
    [105]鲁国昌,叶列平,杨才千,冯鹏. FRP管约束混凝土的轴压应力-应变关系研究[J].工程力学, 2006, 23(9): 98-103.
    [106] Amir Mirmiran, Mohsen Shahawy, Michel Samaan, Hazem El Echary, Juan Carlos Mastrapa, Odell Pico. Effect of Column Parameters on FRP-Confined Concrete[J]. Journal of Composites for Construction, 1998, 2(4): 175-185.
    [107] Lars Janke, Christoph Czaderski, Jürgen Ruthb, Masoud Motavalli. Experiments on the residual load-bearing capacity of prestressed confined concrete columns[J]. Engineering Structures, 2009, 31(10): 2247-2256.
    [108] Muhammad N S, Hadi. Behaviour of eccentric loading of FRP confined fibre steel reinforced concrete columns[J]. Construction and Building Materials, 2009, 23(2): 1102-1108
    [109]王亚勇.抗震加固三十年回顾和反思[R].上海:中国建筑学会抗震防灾分会、同济大学土木工程学院、中国建筑科学研究院抗震研究所(北京), 2005.
    [110]张敬书.我国抗震鉴定和加固技术的发展[J].工程抗震与加固改造, 2004, (5): 33-39.
    [111] B Kondraivendhan, Bulu Pradhan. Effect of ferrocement confinement on behavior of concrete[J]. Construction and Building Materials, 2009, 23(3): 1218-1222
    [112] Chris Sleight. Earthquake damage could exceed US $34 billion. International construction, 2011, 14 Mar.
    [113] Bin Zhao, Fabio Taucera, Tiziana Rossetto. Field investigation on the performance of building structures during the 12 May 2008 Wenchuan earthquake in China[J]. Engineering Structures, 2009, 31(8): 1707-1723.
    [114]叶列平,陆新征,赵世春,李易.框架结构抗地震倒塌能力的研究——汶川地震极震区几个框架结构震害案例分析[J].建筑结构学报, 2009, 30(6): 67-76.
    [115]雷静雅,杨辉,徐学勇,胡坚. 5.12汶川地震房屋震害分析[J].武汉理工大学学报, 2010, 32(23): 39-41.
    [116]霍林生,李宏男,肖诗云,王东升.汶川地震钢筋混凝土框架结构震害调查与启示[J].大连理工大学学报, 2009, 49(5): 718-723.
    [117]王亚勇.汶川地震建筑震害启示——抗震概念设计[J].建筑结构学报, 2008, 29(4): 20-25.
    [118]宋彧,段敬民.建筑结构试验与检测(交通版)[M].北京:人民交通出版社, 2005.
    [119]熊仲明,王社良.土木工程结构试验[M].北京:中国建筑工业出版社, 2006.
    [120]蒋隆敏.钢筋网高性能水泥复合砂浆固RC柱在静载与低周反复荷载作用下的性能研究.湖南大学博士学位论文.
    [121] Sungjin Bae, Oguzhan Bayrak. Drift Capacity of Reinforced Concrete Columns[J]. ACI Structural Journal, 2009, 106(4): 405-415.
    [122]中国建筑科学研究院.建筑抗震试验方法规程(JGJ 101-96).北京:中国建筑工业出版社, 1997.
    [123] Sungjin Bae, Oguzhan Bayrak. Seismic Performance of Full-Scale Reinforced Concrete Columns[J]. ACI Structural Journal, 2008, 105(2): 123-133.
    [124] Kenneth J. Elwood, Marc O. Eberhard. Effective Stiffness of Reinforced Concrete Columns[J]. ACI Structural Journal, 2009, 106(4): 476-484.
    [125]张新培.钢筋混凝土抗震结构非线性分析.北京:科学出版社, 2003.
    [126]高菲,刘文锋,李春晖.钢筋混凝土压弯构件恢复力模型的研究[J].青岛理工大学学报, 2008, 29(2): 40-46.
    [127]彭亚萍,王铁成. FRP增强混凝土框架节点恢复力模型[J].江苏大学学报(自然科学版), 2010, 31(1): 98-103.
    [128]郭子雄,吕西林.高轴压比框架柱恢复力模型试验研究[J].土木工程学报, 2004, 37(5): 32-38.
    [129]胡立黎,郑宏,肖峰.钢筋混凝土深梁填充钢框架的恢复力模型[J].土木工程学报, 2010, 43(9): 49-54.
    [130]周献祥.结构设计笔记[M].北京:中国水利水电出版社, 2008.
    [131] Jun Hyeok Choi. Seismic retrofit of reinforced concrete circular columns using stainless steel wire mesh composite[J]. Canadian Journal of Civil Engineering, 2008, 35: 140-147.
    [132] Sungjin Bae, Oguzhan Bayrak. Plastic Hinge Length of Reinforced Concrete Columns[J]. ACI Structural Journal, 2008, 105(3): 290-300.
    [133]姜锐,苏小卒.塑性铰长度经验公式的比较研究[J].工业建筑, 2008, 38(S1): 425-430.
    [134] Park R, Paulay T. Reinforced Concrete Structures[M]. John Wiley & Sons, New York, 1975.
    [135] Khuntia M., Ghosh S. K. Flexural Stiffness of Reinforced Concrete Columns and Beams: Analytical Approach[J]. ACI Structural Journal, 2004, 101(3): 351-363.
    [136] Mander J. B., Priestley M. J. N., Park, R. Theoretical Stress-Strain Model for Confined Concrete[J]. Journal of Structural Engineering, 1988, 114(8): 1804-1826.
    [137]朱伯龙,董振祥.钢筋混凝土非线性分析[M].上海:同济大学出版社,1985.
    [138]边江.塑性铰长度对平面框架滞回耗能计算影响分析.重庆大学硕士学位论文, 2010.
    [139]抗震加固研究会(日)编,季小莲译.图解钢筋混凝土结构抗震加固技术[M].北京:中国建筑工业出版社, 2010.
    [140] GB 50011-2001.建筑抗震设计规范[S].北京:中国建筑工业出版社, 2008.
    [141]叶燎原,潘文.结构静力弹塑性分析(push-over)的原理和计算实例[J].建筑结构学报, 2000, 21(1): 37-43.
    [142]小谷俊介,叶列平.日本基于性能结构抗震设计方法的发展[J].建筑结构, 2000, 30(6): 3-9.
    [143]钱稼茹,罗文斌.静力弹塑性分析——基于性能/位移抗震设计的分析工具[J].建筑结构, 2000, 30(6): 23-26.
    [144]赵琦,桑晓艳.静力弹塑性分析(Push-over Analysis)方法的研究[J].陕西建筑, 2009, (3): 14-17.
    [145]张劲,王庆扬,胡守营,王传甲. ABAQUS混凝土损伤塑性模型参数验证[J].建筑结构, 2008, 38(8): 127-130.
    [146] ABAQUS, Inc. Abaqus Theory Manual, Version 6.8. 2008, Providence, Rhode Island: Dassault Systèmes.
    [147] Michalis Fragiadakis, Nikos D. Lagaros. An overview to structural seismic design optimisation frameworks[J]. Computers & Structures. Article in Press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700