竹/塑复合建筑模板材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用竹纤维与聚丙烯(PP)进行复合,研制高性能竹塑复合建筑模板(壳)材料对促进我国建筑模板工业的发展,拓展竹材应用领域,改造传统的竹材产业提高其附加值,具有积极的意义。
     在本论文的研究中,采用绿竹爆破浆纤维与PP进行共混复合加工以研制竹塑建筑模板材料。针对目前研究中的不足(爆破处理对纤维形态的影响、竹纤维在塑料熔体中的分散困难,竹塑相容性差),结合竹塑共混加工生产竹塑复合建筑模板的技术要点,进行了以下四个方面的研究。
     (1) 绿竹爆破法高得率浆的研究。采用适当预处理和爆破工艺,可以制得得率80%以上,裂断长大于3300μm的绿竹爆破浆。
     (2) 竹塑复合材料复合工艺及性能研究。(a)比较采用双螺杆挤出机混炼工艺与密炼机混炼工艺两种复合加工工艺对复合体系力学性能的影响。结果表明:竹纤维与PP粉,并添加适量相容剂在高速混合机中共混得到初混料片,经双螺杆挤出切粒,最后注塑或模压成型,能够实现竹纤维在塑料熔体中的分散及改善竹塑间的相容性,是竹塑复合材料开发较为合理的加工方法。(b)采用单因素试验法安排试验,考察竹塑配比、相容剂含量两因子对竹塑复合体系物理力学性能的影响。结果表明:在合适的范围内竹纤维含量的增加有助于提高竹塑复合材料的主要力学性能,在本试验条件下,竹纤维含量40%左右弯曲强度和弯曲模量达到极大值(相对于纯聚丙烯弯曲强度提高35%,弯曲模量提高两倍多);竹纤维含量的增加,可明显提高材料的耐热性(竹纤维含量50%时材料热变形温度相对于基体塑料可提高37℃):竹纤维增加会使熔体流动速率下降,增加加工难度。适量相容剂有助于提高复合材料性能,相容剂用量为7%时,竹/PP复合体系拉伸强度比未加相容剂时提高了约15%,缺口冲击强度比未加相容剂的提高了约20%。综上所述,竹塑复合材料中合理的竹塑配比为3:7、4:6、5:5;相容剂的合理含量为6%~8%。
     (3) 竹塑复合材料相容性及其复合机理研究。通过示差扫描量热仪(DSC)的分析及扫描电镜(SEM)的观察,证明了相容剂的确改善了竹纤维与PP的相容性,提高了竹塑复合体系的粘结强度:在适量相容剂的作用下,竹纤维能够发挥其比强度高的特点,对基体塑料具有增强的作用,从而使竹塑复合
    
    摘要
    材料整体力学性能相对于基体塑料有较大提高。
     (4)竹塑复合材料建筑模板性能研究。采用正交试验法安排试验,考察竹
    塑配比、板坯密度、热压温度和热压时间四因素对竹塑复合建筑模板材料的物
    理力学性能的影响,并进行验证试验。可以得出,竹塑复合建筑模板材料的合
    适制造工艺参数为:竹塑配比5:5,板坯密度1.09/cm3,热压温度200℃,热
    压时间15min。研制的竹塑复合建筑模板材料主要物理力学性能(弹性模量
    除外)达到并超过我国现行的“混凝土模板用胶合板”优质材执行标准
    (GB八7656一1999)中的技术指标要求,静曲强度达31.IMpa(指标值:24Mpa)、
    内结合强度达4.OMpa(指标值:1 .OMpa)、吸水厚度膨胀率为0.41%(指标值:
    4%),冲击强度达36.6Mpa,但弹性模量偏低。
Utilizing the fibre of bamboos and polypropylene (PP ) to make the high-performance building formwork of bamboo/plastic composite ,which promotes the development of building formwork industry of our country, lightens the old and useless plastics pollution to the environment, expands the bamboo application, transforms traditional bamboo products industry to improve its added value.
    In this article , the following four researches are accomplished to discover a suitable technology to manufacture the bamboo-plastic composite of building formwork, which overcomes the drawback( effect of explosion treatment to fiber morphology, the scattering in the plastic melting ,bamboo fibre bad compatible to plastic).
    1)Study on high-yield pulping of green bamboo with steam explosion process. The result shows that explosion pulp of breaking length up to 3300um and yield up to 80% is obtained by suitable processing condition of pretreatment and steam explosion.
    2)Study on the compound technique and the performance of bamboo/plastic composite.( i )compairing two processing technology of double-screw extruding machine technology with interal batch mixer technology, Its result shows mixing bamboo fibre ,PP powder, and right dosage of compatible materials in high-speed mixer , pushing and granulating, mould pressing and sample-making, can realize bamboo fibre scattering in plastic melting body and improve bamboo plastic compatibility. It is suitable processing technology for bamboo/plastic composite. (ii)Adopt single factor experimental way to test, investigate bamboo plastic matching , compatible materials dosage two factor's influence on the performance of bamboo/plastic composite. The result shows: increasing bamboo fibre content, bamboo/plastic composite mechanics performance is on the rise, when bamboo fibre charge is 40% flexural strength reaches maximum (raise for the pure polypropylene by 35%); Increase the bamboo fibre, can improve heat resistance of material
    obviously (material hot
    
    
    
    out of shape temperature can raise for the base body plastics by 37 C when bamboo fibre charge was 50% );The rise of bamboo fibre can make melt flow rate drop , increase difficulty of processing. The right dosage of compatible materials contributes to improving composite performance, compatible materials charge was 7%, 30% bamboo / PP composite tensile strength raise about 15% , elongation at break raised about 20%.
    3)Bamboo/plastic compatibility and mechanism analysing. The analysis results by means of DSC and SEM indicate that the compatible material improves the compatibility bamboo fibre and PP really, and raises the strength of forming of the system; When compatible material dosage is right, bamboo fibre can reinforce plastics , make bamboo/plastic composite mechanics performance improve a lot for the base body plastics.
    4) Study on the building formwork of bamboo/plastic composite. The orthogonal design is adopted to investigate the influence of bamboo-plastic matching, board density , hot pressing temperature and hot pressing time four factors on building formwork. The result indicates that the optional conditions of manufacturing building formwork of bamboo/plastic composite are: the bamboo-plastic matching 5:5, the density 1.0g/cm3, hot pressing temperature 200 C, hot pressing time 15min. the building formwork of bamboo/plastic composite physics mechanics performance exceed " plywood for concrete form " the not high-quality material last standard (GB/17656-1999 ), flexural strength is 31.1Mpa, combine intensity is 4.0Mpa, absorb water thickness is 0.41%, but the elastic amount is on the low side.
引文
[1] 蔡少文,张景行.建筑模板的合理利用与发展趋势浅议.珠江现代建设,1998(6):33-34.
    [2] 王绍民.我国现浇混凝土模板工程发展进程与展望.建筑技术,1998.22(1):5-9.
    [3] 王泽洪.建筑模板的特点及应用.成都建筑,2000,22(1):39-42.
    [4] 曹显华.浅析覆膜竹材胶合板在建筑模板上的应用.生产率系统,2001,3(27):61-62.
    [5] 徐蓉,周彦豪.塑料—纤维复合材料的某些进展.塑料科技,1991(3):10-14
    [6] 赵安赤.发展新型塑料建筑模壳前景广阔.塑料,1990,19(4):38-40.
    [7] 糜嘉平.我国新型模板的发展动向.建筑技术,1999,30(8):546-549.
    [8] Leaversuch RD. Modern Plastics, 1987,64(8):66
    [9] Sandi A R, Caulfield DF, Rowell R M. Plastic Engineering, April 1994,27.
    [10] 蔺艳琴,揣成智.天然植物纤维增强热塑性塑料.塑料 1999,28(5):35-38.
    [11] 赵义平,刘敏江等.热塑性树脂/植物纤维复合材料的纤维改性方法.中国塑料,2001,15(12):17-20.
    [12] 肖加余.高性能天然纤维复合材料及其制品研究与开发现状.玻璃钢/复合材料,2000,(2):38-43.
    [13] 吴自强,唐四丁等.废旧聚丙烯回收利用技术的现状及发展趋势.再生资源研究,2002,(1):25-27.
    [14] 余权英.黄麻塑料复合材料.高分子通报,1991,(2):72-75,128
    [15] Ghosh S K, Salnajpati Setal. TextileTrends India. 1986,29 (4):61.
    [16] G.E. Myers. Wood flour/polypropylene composites: Influence of polypropylene and process and composition variable on mechanical properties. Interm. J. Polymer Mater. 1991, (15): 21-44.
    [17] 中国林科院木工所木质纤维复合材料专题组.木/塑纤维复合工程材料工艺试验研究.木材工业,1998,12(4):15-17.
    
    
    [18] 李坚.走向21世纪的木质复合材料.世界林业究,1995,(3):34-39。
    [19] 揣成智,李树等.聚丙烯/接枝木纤维复合材料相容性及性能的研究.中国塑料,2000,14(5):23-28.
    [20] 袁新恒,张隐西等.马来酸酐接枝聚丙烯在纸粉填充聚丙烯体系中偶联作用的研究.高分子材料科学与工程,1999,15(6):112-114.
    [21] 陈玉放,揣成智等.植物纤维热塑性树脂共混复合物的开发及问题.广州化学,1998,(1):56—64.
    [22] 廖兵,黄玉惠,等.改性纤维对LDPE和木纤维复合材料力学性能的影响.高分子材料科学与工程,1999,15(3):123-125.
    [23] Shukla S. R. Rao G. V et al. J. Appl. Polym. Sci. 1990, (49), 1423-1340
    [24] Nair K C M, M Diwan s, Thoms S, J Appl Polym Sci, 1996. (61): 1483
    [25] Premamoy Ghosh, Prasanta Kumar Gangulg. Plas. Rub. Comp. Pro. appl 1993, 20(3).
    [26] Nishioka N, Nakano Y, Hirota T, Fujiwara N, Uno M.J Appl Polym Sci, 1996. (59): 1203.
    [27] Sain M M, Kokta B V. Polym Plast Technol Eng. 1994, 33(1):89.
    [28] Felix J M,Gatenholm P. J Appl Polym Sci. 1992, (42):609.
    [29] Kazayawoko M, Balatinecz JJ, et al. Appl Polym Sci. 1997, (66):1163
    [30] 杜方潮等,合成树脂与塑料.Vol.34 No.4(1990).
    [31] 赵劲松,聚氯乙稀,Vol.16 No.5(1991).
    [32] 廖兵等,广州化学,Vol.28 No.3(1996).
    [33] 袁新恒等,塑料工业,Vol.60 No.1(1997).
    [34] 阮吉敏等,塑料加工应用,Vol.5 No.3(1995).
    [35] 中国林科院木工所木质纤维复合材料专题组.聚丙烯纤维对木/塑纤维复合材料性能影响的初步研究.木材工业,1997,11(6):5-7.
    [36] 中国林科院木工所木质纤维复合材料专题组.木/塑纤维复合材料在轿车工业中的应用前景.木材工业,1997,11(5):27-28.
    [37] 闫昊鹏,王建军.木纤维-合成纤维复合的研究.木材工业,2001,15(4):9-11,18.
    [38] 蔺艳琴,揣成智等.聚丙烯/木纤维复合材料增强改性的研究.现代塑料加工应用,2000,12(1):14-17.
    [39] 梁天干.福建竹类.福州:福建科学技术出版社,1987,1-2.
    
    
    [40]黄干强.硬木爆破法制浆的研究.中国造纸,1991(6):22-28,
    [41]刘宝彩.汽蒸爆破法制蔗渣高得率浆.广东造纸,1996(4):17-21.
    [42]侯彦召.测定磺酸基和羧基的两种方法.中国造纸,1995(3):20-25.
    [43]陈嘉翔.制浆原理与工程.北京:轻工业出版社,1990:150-153.
    [44]陈玉放.植物纤维热塑性聚丙烯树脂共混复合材料的开发研究.天津轻工业学院博士学位论文,1998.
    [45]曾汉民.树脂基复合材料界面工程,清华大学出版社,1990:271—301.
    [46]杨文斌.废弃塑料—木材碎料复合材料及复合机理的研究.东北林业大学博士后研究工作报告,2002。
    [47]邬义明.植物纤维化学.轻工业出版社,1990.
    [48]吴人洁.复合材料界面研究的现状与展望,九十年代我国复合材料发展展望研讨会论文集.北京(1990):13.
    [49]黄玉东,魏月贞.复合材料界面研究现状(上).哈尔滨工业大学,1993.10(3):1—9.
    [50]KazawokoM., BalatineczJ. J. et, J.Appl. Polym. Sci.,1997, (66): 1163-1173
    [51]吴妙生,周祝林.热塑性纤维复合材料综述.材料工程,1994,(10):12-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700