抽出物对磺化化学机械浆过氧化氢漂白性能及纤维表面性质影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
竹子是我国重要的造纸纤维原料。竹材原料的合理利用是解决我国造纸工业原料匮乏的重要途径之一。但高得率竹浆光学性能较差,漂白浆白度偏低且白度稳定性差,严重制约了高得率竹浆的应用范围。高得率竹浆的抽出物对白度及稳定性有重要影响。因此对竹子抽出物的主要成分、化学结构,及其对漂白影响等的研究可以推动我国高得率竹浆的发展,对合理高效利用竹子资源等具有重大意义。
     本论文以慈竹、马尾松和尾叶桉磺化化学机械浆(SCMP)为研究对象,以慈竹SCMP为研究重点,通过对慈竹、马尾松、尾叶桉SCMP的纤维形态研究发现慈竹SCMP纤维平均长度与马尾松SCMP相当,接近于尾叶桉SCMP的2倍,宽度则略大于尾叶桉。磺化处理过程中Na2SO3用量为15%,NaOH用量为4%时,纤维平均长度有所增加,纤维平均宽度则出现下降。采用一段H2O2用量为6%的过氧化氢漂白,尾叶桉SCMP漂白浆白度最高,为84.47%ISO,且白度稳定较好;慈竹SCMP不仅初始白度最低,且漂白浆的白度也较低,仅为61.21%ISO,PC值则有4.45,说明慈竹SCMP不仅难漂白而且容易返黄。
     利用GC-MS、UV-Vis对慈竹SCMP的苯醇抽出物、二氯甲烷抽出物和甲醇抽出物研究发现,慈竹SCMP中有机溶剂抽出物含量较低,主要由小分子酚类、脂肪酸类和甾醇类等物质组成,其中部分物质在紫外330 nm左右有吸收,对纸浆发色及漂白有较大影响。有机溶剂抽提后的纸浆较易漂白,苯醇抽提后的浆料最终漂白浆白度提高了近9%ISO;甲醇和苯醇抽出物中含有较多易发色的物质,其去除后纸浆白度稳定性也得到提高,甲醇抽提的慈竹SCMP的漂白浆PC值下降了65.8%。对比慈竹、马尾松和尾叶桉SCMP的甲醇抽出物可知,马尾松未漂浆中的甲醇抽出物含量最高,为0.57%;过氧化氢漂白后出现不同程度的下降。马尾松SCMP甲醇抽出物中含有较多的小分子酚类和树脂酸类,慈竹SCMP中则是小分子酚类和甾醇类含量较多,漂白后小分子酚类和树脂酸类物质基本被除去,但甾醇类含量仅降低了33.3%。慈竹SCMP甲醇抽出物小分子酚类和甾醇类、马尾松SCMP中的小分子酚类和树脂酸类是它们较难漂白的重要原因。慈竹甲醇抽出物制浆漂白过程中变化较大,磺化处理后的甲醇抽出物含量为原料中的22.3%,磨浆后含量为原料中的11.2%,而过氧化氢漂白浆中的甲醇抽出物含量仅为原料中的7.38%。慈竹甲醇抽出物中的主要由小分子烷烃类、小分子芳香类、糖类、脂肪酸类及甾醇类等物质组成。在制浆漂白过程中,小分子类及糖类在磺化处理中大部分被除去,甾醇类物质的去除率只有约50%。
     研究发现漂白前的碱抽提处理可以提高慈竹SCMP漂白浆白度和白度稳定性能,在NaOH用量为2.0%,浆浓10%,70 oC,30 min的碱抽提条件下,单段过氧化氢漂白浆的白度可达64.23%ISO,比未处理浆料提高了6.91%ISO,PC值由3.24降至1.07,下降了66.9%。碱抽提后慈竹SCMP的两段过氧化氢漂白(QPP)白度可达77.13%ISO,PC值降至0.86。GC-MS分析表明碱抽出物中的化学成分可以分为短链类小分子、酚类和脂肪酸类,其中酚类是最重要的组成部分。碱抽提过程中酚类物质的溶出量随NaOH的用量增加而增多。慈竹SCMP碱抽出物在UV-Vis光谱中280 nm和330 nm处的吸收,也表明其中含有较多的酚类物质。这些酚类物质是造成慈竹SCMP难以漂白的一个重要原因。
     模拟碱抽出物在纤维表面的吸附试验表明,溶液中的碱抽出物易于吸附在纤维表面上,吸附在纤维表面的抽出物随溶液pH升高而增多,随着溶液中抽出物的浓度的增大而增加。制浆和漂白过程中溶出酚类抽出物容易吸附而留在纸浆中,尤其是碱性条件下抽出物更易于吸附在纤维表面。通过对过氧化氢与碱抽出物模拟物反应的研究发现,溶液中抽出物浓度较大时,过氧化氢被迅速消耗,即使碱抽出物浓度较低仍有较大量的过氧化氢被消耗。由此可见,慈竹SCMP中的抽出物在碱性条件下容易与过氧化氢发生反应,使得溶液中过氧化氢浓度迅速降低,漂白效率下降。
     根据SEM-EDS、XPS和AFM分析表明,SCMP纤维表面覆盖有一层木素和抽出物,占纤维表面较大比例,高于纸浆中总木素和抽出物含量,经过氧化氢漂白前后SCMP纤维表面木素含量变化不大。慈竹SCMP未漂浆纤维表面的抽出物占总纤维表面的7.11%,尾叶桉SCMP纤维表面分布的抽出物更多;过氧化氢漂白后慈竹SCMP纤维表面的抽出物的比例出现下降但不明显,大部分酚类物质主要分布于纤维内部。尾叶桉SCMP纤维表面抽出物以脂肪酸类为主,在漂白过程中溶出较多。漂白中过氧化氢主要作用于纤维内部,尾叶桉SCMP纤维内抽出物较少,过氧化氢漂白效率较高;慈竹SCMP纤维内部含量较多酚类物质造成过氧化氢的消耗,影响了漂白效率,使纸浆中残留较大量的发色基团,这是高得率竹浆难漂白、易返黄的主要原因。
Bamboo is an important raw material for papermaking in China. The reasonable utilization of bamboo is an effective way to solve the shortage of fibrous materials for China paper industry, but the poor optical properties of bamboo high yield pulp, which are low brightness of bleached pulp and poor brightness stability, influence the application. Extractives in bamboo high yield pulp would impact the pulp brightness and brightness stability. So main component, chemical structure, and its impact on bleaching of extractives in bamboo should be studied, which could serve the development of bamboo high yield pulp in China and be of great significance of efficient use of bamboo.
     In this thesis, using bamboo (Neosinocalamus affinis.) SCMP, pine (Pinus massoniana) SCMP and Eucalyptus (Eucalyptus urophylla) SCMP as the research objectives and mainly focus on bamboo SCMP, through the study on the fiber morphology of bamboo SCMP, pine SCMP and Eucalyptus SCMP, the results showed the average length of bamboo SCMP fiber was similar to pine SCMP fiber, about 2 times of eucalyptus SCMP fiber, while the width of bamboo SCMP fiber was a little larger than that of eucalyptus. The average length of bamboo SCMP fiber, which Sulfonated with 15% Na2SO3 and 4% NaOH, was longer than that with the same dosage of Na2SO3 and soda dosage of 2%, meanwhile the average width was decreased. Results of three SCMP that bleached by one stage peroxide bleaching with hydrogen peroxide dosage of 6% showed that, the brightness of bleached Eucalyptus SCMP pulp was the highest, 84.47%ISO, so as the brightness stability; bamboo SCMP was not only with lowest initial brightness, but also lower brightness of bleached pulp, only 61.21%ISO. PC number of bleached bamboo SCMP was 4.45, meaning that bamboo SCMP was hard to bleach and is easily yellowed.
     Using GC-MS and UV-Vis, extractives with benzene-alcohol, dichlorometane and methanol from Bamboo SCMP were studied; results showed that, contents of extractives in bamboo SCMP were low. And the extractives were mainly composed of phenols, fatty acids, sterols and so on. Some substances in the extractives, whose UV spectrum had absorbance around 330 nm, had great impact on the bleachability of SCMP pulp. After organic solvent extraction, the SCMP was easy to bleach. The brightness gain of the bleached pulp of benzene-alcohol extracted bamboo SCMP was nearly 9 %ISO. Removal of substances by methanol and benzene-alcohol extraction could improve the pulp brightness stability. PC number of the bleached pulp of methanol extracted bamboo SCMP decreased by 65.8%. Comparison on methanol extractives of bamboo, pine and Eucalyptus SCMP showed, methanol extractives content of unbleached pine pulp was the highest, about 0.57%; after hydrogen peroxide bleaching, methanol extractives content was decreased differently. Methanol extractives of pine SCMP contained more phenols and resin acids, while methanol extractives of bamboo SCMP contains more phenols and sterols. Phenols and resin acids were removed mostly after bleaching, but sterols were only decreased by 33.3%. Phenols and sterols in methanol extractives of bamboo SCMP, as well as phenols and resin acids in pine SCMP, were the most important reasons for their difficulties of bleaching. Methanol extractives changed greatly during pulping and bleaching process. Content of methanol extractives in the sulfonated bamboo chips was about 22.3% of that in bamboo chips, and bamboo SCMP of 11.2%, hydrogen peroxide bleached pulp of only 7.38%. Methanol extractives of bamboo were mainly consisted by small molecule alkanes, phenols, saccharides, fatty acid and sterols. During sulfonation process, small molecules substances and saccharides were removed mostly; in the other hand, the removal rate of steroid alcohols was about 50%.
     It was found that alkaline extraction before bleaching could improve the brightness and brightness stability of bleached bamboo SCMP. Under alkaline extraction condition of soda dosage 2.0%, pulp consistency of 10%, 70 oC, 30 min, the brightness of one-stage peroxide bleached bamboo SCMP could reach 64.23 %ISO, 6.91%ISO higher than that of untreated pulp, and PC number decreased by 66.9%. Multistage bleaching would improve the brightness. After alkaline extraction under conditions of 2.0% NaOH dosage, 70°C, 30 min, brightness of two-stage (QPP) peroxide bleahed bamboo SCMP could reach 77.13 %ISO and PC number reduced to 0.86. Results of GC-MS analysis showed that the alkaline extractives were composed of short-chain alkanes, phenols and fatty acids, and phenols were the most important compositions. The amount of phenols dissolving out the pulp during alkaline extraction increased with the increase of NaOH dosage. Absorbance around 280 nm and 330 nm of UV-Vis spectrum of bamboo SCMP alkaline extractives showed there were a lot of phenols, which was the important reasons that caused the difficulty of bamboo SCMP bleaching.
     Study on the model alkaline extractives adsorption on the fiber, using tannin as a model compound, showed that alkaline extractives in the solution could be easily adsorbed on the fiber surface. Adsorption of the extractives on fiber surface increased with higher concentration of extractives in solution, as well as the increased pH of solution. Phenols dissolved out during pulping and bleaching process would be easily adsorbed on the fiber and remain in the pulp, especially under alkaline conditions. Research on hydrogen peroxide reaction with model alkaline extractives found that hydrogen peroxide was rapidly consumed when the concentration of extractives in solution was high. Even concentrations of alkaline extractives was lower, there was a lot of hydrogen peroxide was consumed. So, extractives in bamboo SCMP were intended to react with hydrogen peroxide under alkaline condition caused the rapid decrease of the concentration of hydrogen peroxide in the solution decreased rapidly. this was also the reason of poor bleachability of bamboo SCMP.
     Results of SEM-EDS, XPS and AFM analysis showed that, SCMP fiber surface covered with a layer of lignin and extractives, accounting for a large proportion of the fiber surface, which were higher than the total contents of lignin and extractives in pulp. Coverage of lignin on SCMP fiber surface after hydrogen peroxide bleaching remained almost the same as unbleached SCMP fiber surface. Content of extractives on unbleached bamboo SCMP fiber surface was 7.11%, whereas content of extractives on unbleached eucalyptus SCMP fiber surface was more. Coverage of extractives on SCMP fiber surface was deceased slightly after hydrogen peroxide bleaching, most of the phenols inside of fiber reacted with peroxide. Extractives covered the eucalyptus SCMP fiber surface were mainly fatty acids, which would dissolved out during bleaching. Hydrogen peroxide attacked inside of fiber in bleaching, so bleaching of eucalyptus SCMP was more efficient due to less extractives in the; while phenols in the Bamboo SCMP fiber would caused consumption of the hydrogen peroxide, and affected bleaching efficiency, led to a lot chromophore structure remained in pulp, which was the main reasons caused difficulties to bamboo SCMP bleaching, and yellowing of bleached pulp.
引文
[1]董文海,全球造纸工业发展趋势分析[J].中华纸业, 2010. 31(23): 16-19.
    [2]李玉峰,亚洲将为全球造纸行业进一步发展提供有力推动[J].中华纸业, 2011. 32(7): 74-77.
    [3]杨懋暹, 2020年中国造纸工业发展预测[J].中华纸业, 2010. 31(3): 8-12.
    [4]黄润斌,我国造纸工业纤维原料结构现状及变化特点[J].纸和造纸, 2006. 25(z1): 4-6.
    [5]国家林业局森林资源管理司,第七次全国森林资源清查及森林资源状况[J].林业资源管理, 2010(1): 1-8.
    [6]张敏,夏朝宗,黄国胜等, 2010年全球森林资源评估特点与启示[J].林业资源管理, 2011(1): 1-6.
    [7]胡宗渊,新历史阶段探讨我国造纸工业未来发展[J].中华纸业, 2010. 31(7): 8-13.
    [8]郭永新,中国造纸原料的现状和未来[J].中华纸业, 2010. 31(19): 14-17.
    [9] 2010年10-12月及全年我国纸产品进出口统计[J].造纸信息, 2011(4): 41-42.
    [10] Ni, Y.H., He, Z.B.,Zhou, Y.J. Alkaline peroxide bleaching and its impact on the properties of high yield pulp (HYP)[C].Proceedings of International Conference on Pulping, Papermaking and Biotechnology 2008: ICPPB '08, Nanjing, China, Vol I. 2008: 434-442.
    [11]李威灵,我国造纸工业的能耗状况和节能降耗措施[J].中国造纸, 2011. 30(3): 61-64.
    [12]詹怀宇,制浆原理与工程.第三版[M].北京:中国轻工业出版社. 2009.
    [13] Raudsepp, W., Harper, J., Buchanan, A., et al., Heat recovery in mechanical pulping[J]. Appita Journal, 2009. 62(3): 179-181.
    [14] Zhou, Y.J., Collins, G.,Zou, X.J. Research and product development in High Yield Pulp (HYP) at Tembec[C].Emerging Technologies of Pulping & Papermaking. Guangzhou, China, 2002: 210-219.
    [15]刘斌,三倍体毛白杨木材特性分析及CTMP制浆[J].中华纸业, 2008. 29(10): 18-21.
    [16]周亚军,漂白高得率化学机械浆综述[J].中国造纸, 2005. 24(5): 51-60.
    [17] Maijala, P., Kleen, M., Westin, C., et al., Biomechanical pulping of softwood with enzymes and white-rot fungus Physisporinus rivulosus[J]. Enzyme and Microbial Technology, 2008. 43(2): 169-177.
    [18] Omholt, I.,Miles, K.B., Preheating and Refining of Mechanical Pulp at High Temperature. Part I: Fibre Separation and Initial Development[J]. Journal of Pulp and Paper Science, 2008. 34(1): 39-45.
    [19]周亚军,张栋基,李甘霖,漂白高得率化学机械浆综述[J].中国造纸, 2005. 24(5): 51-60.
    [20]马美云,王键,高得率浆的研究与产品开发[J].国际造纸, 2003. 22(3): 24-28.
    [21]周概军,高得率浆的特性与应用[J].国际造纸, 2007. 26(1): 1-10.
    [22] Gao, Y., Rajbhandari, V., Li, K.C., et al., Effect of HYP fibers on bulk and surface roughness of wood-free paper[J]. Tappi Journal, 2008. 7(4): 4-10.
    [23] Ramos, J., Paulino, L., Turrado, J., et al., Surface treatment of chemithermomechanical pulp (CTMP) to prevent brightness reversion[J]. Cellulose Chemistry and Technology, 2003. 37(1-2): 95-115.
    [24] Liu, H.B., Ni, Y.H.,Yang, S.H., Applying dyes to HYP-containing paper grades[J]. Appita Journal, 2008. 61(2): 128.
    [25]章文林.浅谈化学热磨机械浆——CTMP[C].中国造纸学会第十届学术年会论文集. 2001.
    [26]蒋忠道,浅谈CTMP制浆要点[J].黑龙江造纸, 2001(2): 14-17.
    [27]景晓渝,关于APMP制浆技术与应用现状研究的论述[J].化工自动化及仪表, 2008. 35(6): 1-3.
    [28]孔凡功,陈嘉川,杨桂花等,三倍体毛白杨APMP制浆的研究[J].中国造纸, 2003. 22(5): 15-18.
    [29] Yuan, Z., Heitner, C.,McGarry, P., Evaluation of the APMP process for mature and juvenile loblolly pine[J]. Tappi Journal, 2006. 5(7): 24-32.
    [30]杨伯钧,国外杨木高得率浆生产简介[J].纸和造纸, 2005(6): 79-83.
    [31] Dietz, T., Hopf, B., Schmidt, K., et al., Aspects of optimisation of mechanical pulp bleaching with hydrogen peroxide[J]. Appita Journal, 2009. 62(5): 335-338.
    [32]唐风华,张运展,鲁国栋,高得率化学浆TCF高白度漂白[J].上海造纸, 2003.34(1): 13-15.
    [33]彭涛,林鹿,劳宗广等,马尾松CTMP过氧化氢漂白工艺优化研究[J].造纸科学与技术, 2007. 26(4): 17-27.
    [34]李鸿斌,任维羡,林曙明,桉木化机浆过醋酸与过氧化氢漂白的研究[J].造纸化学品, 2002. 14(1): 19-23.
    [35]龙柱,李建华,王保等,速生杨树龄及品种对APMP制浆的影响[J].中国造纸, 2005. 24(1): 10-12.
    [36]陈乃明,邓拥军,韩善明等,尾巨桉与马占相思P-RC APMP工艺制浆性能比较[J].林产化学与工业, 2008. 28(4): 25-30.
    [37]傅其军,陆琪,吴明刚等,速生桉木P-RC APMP工业化生产[J].中国造纸, 2010. 29(12): 69-70.
    [38]雷晓春,陈嘉川,林鹿等,几种速生材APMP制浆性能探讨[J].中国造纸, 2006. 25(1): 69-70.
    [39]张红杰,胡惠仁,提高高得率浆光学稳定性研究的新进展[J].中国造纸学报, 2008. 23(2): 109-114.
    [40]周亚军,袁志润,高得率浆白度稳定性及返黄抑制的研究[J].国际造纸, 2007. 26(4): 5-11.
    [41] Tyrvainen, J., Law, K.N.,Valade, J.L., Alkaline-peroxide inter-stage treated mechanical pulp from jack pine (Pinus banksiana) .2. Pulp optical properties, color reversion, extractives content, and process implications[J]. Pulp & Paper-Canada, 1997. 98(7): 26-30.
    [42] Li, C., Kim, D.H.,Ragauskas, A.J., Brightness reversion of mechanical pulps. XIX. Photostabilization of mechanical pulps by UV absorbers: Surface photochemical studies using diffuse reflectance technique[J]. Journal of Wood Chemistry and Technology, 2004. 24(1): 39-53.
    [43] Friman, L., Hoglund, H., Hogberg, H.E., et al., Tannin-iron impregnated thermomechanical pulp - Part II: Bleachability and brightness reversion[J]. Nordic Pulp & Paper Research Journal, 2004. 19(4): 525-531.
    [44] Peart, C.,Ni, Y., UV-Vis spectra of lignin model compounds in the presence of metal ions and chelants[J]. Journal of Wood Chemistry and Technology, 2001. 21(2):113-125.
    [45] Li, C.,Ragauskas, A.J., Brightness reversion of mechanical pulps. Part XVII: Diffuse reflectance study on brightness stabilization by additives under various atmospheres[J]. Cellulose, 2000. 7(4): 369-385.
    [46] Johansson, M.,Gellerstedt, G., Chromophoric content in wood and mechanical pulps[J]. Nordic Pulp & Paper Research Journal, 2000. 15(4): 282-286.
    [47] Li, C., Cook, C.M.,Ragauskas, A.J., Brightness reversion of mechanical pulps XI: Photostabilization of high-yield pulps by thiosulfinates[J]. Journal of Wood Chemistry and Technology, 1999. 19(1-2): 27-41.
    [48] Ragauskas, A.J., Allison, L., Cook, C., et al., Brightness reversion of mechanical pulps. X. Photoreversion fiber topochemistry[J]. Journal of Wood Chemistry and Technology, 1998. 18(3): 289-297.
    [49] Johansson, C.I., Beatson, R.P.,Saddler, J.N., Fate and influence of western red cedar extractives in mechanical pulping[J]. Wood Science and Technology, 2000. 34(5): 389-401.
    [50]徐萃声,竹子原料与制浆造纸[J].造纸科学与技术, 2006. 25(4): 1-6.
    [51]邱尔发,中国竹子多样性及其利用评述[J].竹子研究汇刊, 2001. 20(2): 11-14.
    [52]张春霞,尹殿和,杨勇,论竹产业在西南开发中的地位和作用[J].竹子研究汇刊, 2002. 21(1): 74-77.
    [53]谢贻发,我国竹类资源综合利用现状与前景[J].热带农业科学, 2004. 24(6): 46-52.
    [54] Leponiemi, A., Non-wood pulping possibilities - a challenge for the chemical pulping industry[J]. Appita Journal, 2008. 61(3): 234-243.
    [55]王昌命,王锦,王文久等,云南主要竹材材性与制浆造纸性能分析[J].中国造纸, 2008. 27(8): 10-12.
    [56]杨清,周承贵,苏光荣等,小叶龙竹的化学成分与制浆性能[J].南京林业大学学报(自然科学版), 2008. 32(1): 65-68.
    [57]薛崇昀,贺文明,聂怡,八种竹子材质性能的研究[J].中华纸业, 2009. 30(17): 83-88.
    [58]杨清,西双版纳丛生竹的纤维形态与造纸性能[J].中国造纸学报, 2008. 23(4):1-7.
    [59]杨仁党,竹子作为造纸原料的性能和潜力[J].林产工业, 2002. 29(3): 8-11.
    [60]吴义强,彭万喜,周建波等华南地区五种竹材的纤维形态及化学成分比较研究[C].第一届全国生物质材料科学与技术学术研讨会论文集.北京. 2007: 109-116.
    [61]陈其兵,四川省优良纸浆竹种选择与竹纸产业化发展[J].竹子研究汇刊, 2002. 21(4): 47-51.
    [62]苏文会,大木竹化学成分的研究[J].浙江林学院学报, 2005. 22(2): 180-184.
    [63]莫健梅,撑绿杂交竹的制浆性能分析[J].造纸科学与技术, 2005. 24(4): 22-25.
    [64]朱先军,伍红,刘道恒等,粤东四种竹子硫酸盐法制浆的研究[J].造纸科学与技术, 2004. 23(2): 10-11,21.
    [65]宋海农,郑艳民,王双飞,低少污染竹子制浆造纸新技术与我国的竹浆产业化[J].竹子研究汇刊, 2003. 22(3): 49-54.
    [66]夏新兴,刘书钗,任维羡,竹材及其磺化化机浆木素结构与发色基团特性研究[J].中国造纸学报, 1995(10): 14-19.
    [67]陈礼辉,江茂生,聂少凡等,毛竹蒸汽爆破法高得率浆的研究[J].福建林学院学报, 2001. 21(3): 228-232.
    [68]杨玲,李文俊,唐晓军等,竹子碱性过氧化氢法制浆性能研究[J].湖南造纸, 2007(2): 14-15.
    [69]郑永文,张有利,绿竹改良APMP制浆工艺的研究[J].湖北造纸, 2008(2): 12-15.
    [70]农尚勇,竹子化机浆生产低定量胶印新闻纸的研究[D].广西大学:南宁, 2005.
    [71]林本平,刘艳兰,王双飞等,粉单竹APMP制浆过程中木素结构的变化[J].中国造纸学报, 2007. 22(4): 5-10.
    [72] Xu, J.M., Zhao, R.J., Fei, B.H., et al., Chemical composition analysis of hybrid bamboo[J]. Modern Bamboo Structures, 2008: 285-289.
    [73]林本平,王双飞,高得率浆光诱导返黄机理及其抑制技术的研究进展[J].中国造纸学报, 2007. 22(1): 92-98.
    [74]王琼,苏智先,慈竹构件和分株水平总黄酮含量的变化[J].云南植物研究, 2004. 26(4): 458-464.
    [75]袁晓峰,竹叶、竹秆总黄酮动态变化研究[D].南京林业大学:南京, 2006.
    [76] del Rio, J.C., Romero, J.,Gutierrez, A., Analysis of pitch deposits produced in Kraftpulp mills using a totally chlorine free bleaching sequence[J]. Journal of Chromatography A, 2000. 874(2): 235-245.
    [77]李新平,陈中豪,蓝桉CTMP过氧化氢漂白难点分析[J].中国造纸学报, 2007. 22(2): 26-30.
    [78]石海强,何北海,紫外-可见光谱测定马尾松纸浆树脂中甘油三酯含量[J].光谱学与光谱分析, 2007. 27(1): 135-138.
    [79] Willfor, S.M., Ahotupa, M.O., Hemming, J.E., et al., Antioxidant activity of knotwood extractives and phenolic compounds of selected tree species[J]. Journal of Agricultural and Food Chemistry, 2003. 51(26): 7600-7606.
    [80] Willfor, S., Hemming, J., Reunanen, M., et al., Lignans and lipophilic extractives in Norway spruce knots and stemwood[J]. Holzforschung, 2003. 57(1): 27-36.
    [81] Fernandez, M.P., Watson, P.A.,Breuil, C., Gas chromatography-mass spectrometry method for the simultaneous determination of wood extractive compounds in quaking aspen[J]. Journal of Chromatography A, 2001. 922(1-2): 225-233.
    [82] Gutierrez, A., del Rio, J.C., Gonzalez-Vila, F.J., et al., Analysis of lipophilic extractives from wood and pitch deposits by solid-phase extraction and gas chromatography[J]. Journal of Chromatography A, 1998. 823(1-2): 449-455.
    [83]赵媛媛,景治中,王红等,气相色谱中的衍生试剂及新进展[J].分析科学学报, 2003. 19(1): 92-96.
    [84] Willfor, S., Ali, M., Karonen, M., et al., Extractives in bark of different conifer species growing in Pakistan[J]. Holzforschung, 2009. 63(5): 551-558.
    [85] Willfor, S., Leppanen, A.,Hemming, J. Analysis of extractives in different pulps - method development, evaluation, and recommendations[C].15th International Symposium on Wood, Fiber and Pulping Chemistry. Oslo, Norway. 2009.
    [86] McDonald, A.G., Stuthridge, T.R., Clare, A.B., et al. Isolation and analysis of extractives from radiata pine HTMP fibre[C].ISWPC - 9th International Symposium on Wood and Pulping Chemistry. 1997: 711-716, 481.
    [87] del Rio, J.C., Gutierrez, A., Gonzalez-Vila, F.J., et al., Characterization of organic deposits produced in the kraft pulping of Eucalyptus globulus wood[J]. Journal of Chromatography A, 1998. 823(1-2): 457-465.
    [88] Fuhr, B.J., Jonasson, R.G.,Tosto, F. Fingerprinting of extractives in woods and pulps[C].Pulping Conference, Vols 1-3. 1998: 1389-1402, 1611.
    [89] Gutierrez, A., Rodriguez, I.M.,del Rio, J.C., Chemical composition of lipophilic extractives from sisal (Agave sisalana) fibers[J]. Industrial Crops and Products, 2008. 28(1): 81-87.
    [90] Gutierrez, A., Romero, J.,del Rio, J.C., Lipophilic extractives from Eucalyptus globulus pulp during kraft cooking followed by TCF and ECF bleaching[J]. Holzforschung, 2001. 55(3): 260-264.
    [91] Gutierrez, A., Del Rio, J.C., Martinez, M.J., et al., Fungal degradation of lipophilic extractives in Eucalyptus globulus wood[J]. Applied and Environmental Microbiology, 1999. 65(4): 1367-1371.
    [92] Freire, C.S.R., Silvestre, A.J.D., Neto, C.P., et al., Effect of oxygen, ozone and hydrogen peroxide bleaching stages on the contents and composition of extractives of Eucalyptus globulus kraft pulps[J]. Bioresource Technology, 2006. 97(3): 420-428.
    [93] Hanneman, A.J.S., Hrutfiord, B.F.,Campbell, R., Gas chromatographic analysis of acetone extractives in lodgepole pine and western hemlock thermomechanical pulp furnish[J]. Tappi Journal, 2002. 1(7): 13-19.
    [94] Marques, G., del Rio, J.C.,Gutierrez, A., Lipophilic extractives from several nonwoody lignocellulosic crops (flax, hemp, sisal, abaca) and their fate during alkaline pulping and TCF/ECF bleaching[J]. Bioresource Technology, 2010. 101(1): 260-267.
    [95] Pino, V., Ayala, J.H., Gonzalez, V., et al., Determination of the alkyl- and methoxy-phenolic content in wood extractives by micellar solid-phase microextraction and gas chromatography-mass spectrometry[J]. Talanta, 2007. 73(3): 505-513.
    [96] Villaverde, J.J., Domingues, R.M.A., Freire, C.S.R., et al., Miscanthus x giganteus extractives: A source of valuable phenolic compounds and sterols[J]. Journal of Agricultural and Food Chemistry, 2009. 57(9): 3626-3631.
    [97] Magnus, E., Hoel, H.,Norske, G.E.C., TMP wastewater treatment, including a biological high-efficiency compact reactor - Toxicity reduction and removal of extractives[J]. Nordic Pulp & Paper Research Journal, 2000. 15(1): 37-45.
    [98] Peng, W.X., Li, K.F., Zhang, D.Q., et al. Determination of chemical components of red 1%NaOH extractives of E-urograndis wood by GC-MS[C].Physical and Numerical Simulation of Materials Processing, Pts 1 and 2. 2008: 1325-1328, 1510.
    [99] Sun, R.C., Salisbury, D.,Tomkinson, J., Isolation and characterization of hot water-soluble lipophilic extractives from wheat straw. Part II. Spectroscopic and thermal characterization[J]. Wood and Fiber Science, 2003. 35(3): 469-477.
    [100] Verenich, S., Laari, A., Korhonen, S., et al., Comparision of ozonation and wet oxidation for the destruction of lipophilic wood extractives from paper mill circulation water[J]. Ozone-Science & Engineering, 2001. 23(5): 401-409.
    [101] Kostamo, A., Holmbom, B.,Kukkonen, J.V.K., Fate of wood extractives in wastewater treatment plants at kraft pulp mills and mechanical pulp mills[J]. Water Research, 2004. 38(4): 972-982.
    [102] Duchesne, I.,Daniel, G., The ultrastructure of wood fibre surfaces as shown by a variety of microscopical methods - a review[J]. Nordic Pulp & Paper Research Journal, 1999. 14(2): 129-139.
    [103]殷敬华,莫志深,现代高分子物理学(下册)[M].北京:科学出版社. 2001: 15.
    [104] Henriksson, A.,Gatenhalm, P., Surface properties of CTMP fibers modified with xylans[J]. Cellulose, 2002. 9(1): 55-64.
    [105]周敬红,王双飞,韦小英,蔗渣白腐菌处理的电镜观察[J].中国造纸学报, 1999. 14(2): 15-19.
    [106] Allem, R., Characterization of paper coatings by scanning electron microscopy and image analysis[J]. Journal of Pulp and Paper Science, 1998. 24(10): 329-336.
    [107] Stroem, G., Carlsson, G.,Schulz, A., Chemical composition of coated paper surfaces determined by means of ESCA.[J]. Nordic Pulp & Paper Research Journal, 1993. 8(1): 105-112.
    [108] Ruel, K., Chabannes, M., Boudet, A.M., et al., Reassessment of qualitative changes in lignification of transgenic tobacco plants and their impact on cell wall assembly[J]. Phytochemistry, 2001. 57(6): 875-882.
    [109]白春礼,扫描隧道显微术及其应用[M].上海:上海科学技术. 1992: 45.
    [110]郭宁,秦紫瑞,原子力显微镜的发展与表面成像技术[J].理化检验—物理分册,1998. 34(10): 13-17.
    [111] Simola, J., Malkavaara, P., Alen, R., et al., Scanning probe microscopy of pine and birch kraft pulp fibres[J]. Polymer, 2000. 41(6): 2121-2126.
    [112] Simola-Gustafsson, J., Hortling, B.,Peltonen, J., Scanning probe microscopy and enhanced data analysis on lignin and elemental-chlorine free or oxygen delignified pine kraft pulp[J]. Colloid and Polymer Science, 2001. 279(3): 221-231.
    [113] Gustafsson, J., Ciovica, L.,Peltonen, J., The ultrastructure of spruce kraft pulps studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS)[J]. Polymer, 2003. 44(3): 661-670.
    [114] Li, K., Lei, X., Lu, L., et al., Surface characterization and surface modification of mechanical pulp fibres[J]. Pulp & Paper-Canada, 2010. 111(1): 28-33.
    [115] Pang, L.,Gray, D.G., Heterogeneous fibrillation of kraft pulp fibre surfaces observed by atomic force microscopy[J]. Journal of Pulp and Paper Science, 1998. 24(Compendex): 369-372.
    [116] Boras, L.,Gatenholm, P., Surface composition and morphology of CTMP fibers[J]. Holzforschung, 1999. 53(2): 188-194.
    [117] Maciel, A.M.,Wilkins, C.P., AFM ultrastructural studies of chemical softwood tracheids and secondary fines generated by various refining treatments[J]. Paper Technology, 2002. 43(6): 25-33.
    [118] Bessonoff, M., Niemi, H., Nguyen, T., et al., The effects of DCS from TMP on paper and fiber surface[J]. Paperi Ja Puu-Paper and Timber, 2000. 82(8): 531-538.
    [119] Niemi, H., Paulapuro, H.,Mahlberg, R., Review: application of scanning probe microscopy to wood, fibre and paper research[J]. Paperi Ja Puu-Paper and Timber, 2002. 84(6): 389-406.
    [120]刘世宏,王当憨,潘承璜, X射线光电子能谱分析[M].北京:科学出版社. 1988: 10.
    [121] Dorris, G.M.,Gray, D., The surface analysis of paper and wood fiber by ESCA. Application to cellulose and lignin[J]. Cellulose Chemistry and Technology, 1978. 12: 9-23.
    [122]杜官本,表面光电子能谱(XPS)及其在木材科学与技术邻域的应用[J].木材工业, 1999. 13(3): 17-20.
    [123] Buchert, J., Carlsson, G., Viikari, L., et al., Surface characterization of unbleached kraft pulps by enzymatic peeling and ESCA[J]. Holzforschung, 1996. 50(Compendex): 69-74.
    [124]方桂珍,多元羧酸与木材酯化反应化学分析光电子能谱ESCA的研究[J].木材工业, 1999. 13(2): 24-26.
    [125] Dorris, G.M.,Gray, D.G., The surface analysis of paper and wood fiber by ESCA(I). Application of Cellulose and Lignin[J]. Cellulose Chemistry and Technology, 1978. 12: 9-23.
    [126] Dorris, G.M.,Gray, D.G., The surface analysis of paper and wood fiber by ESCA(II). Surfac composition of mechanical pulps[J]. Cellulose Chemistry and Technology, 1978. 12: 721-734.
    [127] Dorris, G.M.,Gray, D.G., The surface analysis of paper and wood fiber by ESCA(III). Interpretation of Carbon (1s) Peak Shape[J]. Cellulose Chemistry and Technology, 1978. 12: 735-743.
    [128]梁云,颜进华,陈克复,颜料涂布纸涂层的表面分析技术[J].造纸科学与技术, 2001. 20(2): 8-10.
    [129]王进,陈克复,杨仁党等,扫描电镜和X射线能谱应用于涂布纸涂层的分析[J].造纸科学与技术, 2005. 24(2): 9-12.
    [130]李坚,王清文,方桂珍等,木材波谱学[M].北京:科学出版社. 2003.
    [131] Mjoeberg, P.J., Chemical surface analysis of wood fibers by means of ESCA[J]. Cellulose Chemistry and Technology, 1981. 15(5): 481-486.
    [132] Akeyama, S.,Gray, D.G., An ESCA study of the chemisorption of stearic acid vapor on cellulose[J]. Cellulose Chemistry and Technology, 1982. 16(1): 133-142.
    [133] Hon, D.N.S., ESCA study of oxidized wood surfaces[J]. Journal of Applied Polymer Science, 1984. 29(9): 2777-2784.
    [134] Gelius, U., Heden, P.F., Hedman, J., et al., Molecular spectroscopy by means of ESCA [electron spectroscopy for chemical analysis]. III. Carbon compounds[J]. Physica Scripta, 1970. 2(1-2): 70-80.
    [135] Li, K.,Reeve, D.W., Determination of surface lignin of wood pulp fibres by x-rayphotoelectron spectroscopy[J]. Cellulose Chemistry and Technology, 2004. 38(3-4): 197-210.
    [136] Troem, G.,Carlsson, G., Wettability of kraft pulps - effect of surface composition and oxygen plasma treatment. [J]. Journal of Adhesion Science and Technology, 1992. 6(6): 745-761.
    [137] ?sterberg, M., On the Interactions in Cellulose Systems: Surface Forces and Adsorption[D], Royal Institute of Technology: Stockholm, Sweden, 2000.
    [138] Seisto, A.,Laine, J., Surface chemical composition of birch Milox pulp[J]. Paperi ja Puu/Paper and Timber, 1999. 81(Compendex): 54-58.
    [139] Johansson, L.S., Campbell, J.M., Fardim, P., et al., An XPS round robin investigation on analysis of wood pulp fibres and filter paper[J]. Surface Science, 2005. 584(1): 126-132.
    [140] Johansson, L.S., Campbell, J., Koljonen, K., et al., On surface distributions in natural cellulosic fibres[J]. Surface and Interface Analysis, 2004. 36(8): 706-710.
    [141] Johansson, L.S.,Campbell, J.M., Evaluation of surface distributions in natural cellulosic fibres via XPS background analysis.[J]. Abstracts of Papers of the American Chemical Society, 2002. 223: U122-U122.
    [142] Johansson, L.-S., Monitoring fibre surfaces with XPS in papermaking processes[J]. Mikrochimica Acta, 2002. 138(3-4): 217-223.
    [143] Johansson, L.S., Campbell, J.M., Koljonen, K., et al., Evaluation of surface lignin on cellulose fibers with XPS[J]. Applied Surface Science, 1999. 144-45: 92-95.
    [144] Koljonen, K., Osterberg, M., Johansson, L.S., et al., Surface chemistry and morphology of different mechanical pulps determined by ESCA and AFM[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2003. 228(1-3): 143-158.
    [145] Fardim, P., Gustafsson, J., von Schoultz, S., et al., Extractives on fiber surfaces investigated by XPS, ToF-SIMS and AFM[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2005. 255(1-3): 91-103.
    [146] Laine, J., Stenius, P., Carlsson, G., et al., Surface characterization of unbleached kraft pulps by means of ESCA[J]. Cellulose, 1994. 1(2): 145-160.
    [147] Hua, X., Kaliaguine, S., Kokta, B.V., et al., Surface analysis of explosion pulps byESCA. Part 1. Carbon (1s) spectra and oxygen-to-carbon ratios[J]. Wood Science and Technology, 1993. 27(6): 449-459.
    [148] Hua, X., Kaliaguine, S., Kokta, B.V., et al., Surface analysis of explosion pulps by ESCA. Part 2. Oxygen (1s) and sulfur (2p) spectra[J]. Wood Science and Technology, 1993. 28(1): 1-8.
    [149]杨崎峰,詹怀宇,王双飞,蔗渣爆破浆表面的XPS分析[J].造纸科学与技术, 2006. 23(4): 22-24.
    [150] Krogerus, B., Fagerholm, K.,Tiikkaja, E., Fines from different pulps compared by image analysis[J]. Nordic Pulp & Paper Research Journal, 2002. 17(4): 440-444.
    [151] Rundlof, M., Sjolund, A.K., Strom, H., et al., The effect of dissolved and colloidal substances released from TMP on the properties of TMP fines[J]. Nordic Pulp & Paper Research Journal, 2000. 15(4): 256-265.
    [152] Kang, T.G.,Paulapuro, H., Characterization of chemical pulp fines[J]. Tappi Journal, 2006. 5(2): 25-28.
    [153] Liu, X.A., Whiting, P., Pande, H., et al., The contribution of different fractions of fines to pulp drainage in mechanical pulps[J]. Journal of Pulp and Paper Science, 2001. 27(4): 139-143.
    [154] Liimatainen, H., Taipale, T., Haapala, A., et al., Influence of mechanical pulp fines on clay retention[J]. Tappi Journal, 2008. 7(12): 10-16.
    [155]石淑兰,何福望,制浆造纸分析与检测[M].北京:中国轻工业出版社. 2003.
    [156]李兵云,粉单竹SCMP漂白中木素结构变化及生物酶改善漂白性能的研究[D].华南理工大学:广州, 2010.
    [157] Friman, L., Hoglund, H., Hogberg, H.E., et al., Tannin-iron impregnated thermomechanical pulp. Part I: Effects of extractions and heat on brightness[J]. Nordic Pulp & Paper Research Journal, 2004. 19(2): 229-236.
    [158] Marques, G., Gutierrez, A.,del Rio, J.C., Chemical composition of lignin and lipids from tagasaste (Chamaecytisus proliferus spp. palmensis)[J]. Industrial Crops and Products, 2008. 28(1): 29-36.
    [159] Gutierrez, A.,del Rio, J.C., Chemical characterization of pitch deposits produced in the manufacturing of high-quality paper pulps from hemp fibers[J]. BioresourceTechnology, 2005. 96(13): 1445-1450.
    [160] del Rio, J.C., Marques, G., Rodriguez, I.M., et al., Chemical composition of lipophilic extractives from jute (Corchorus capsularis) fibers used for manufacturing of high-quality paper pulps[J]. Industrial Crops and Products, 2009. 30(2): 241-249.
    [161] Keating, J., Johansson, C.I., Saddler, J.N., et al., The nature of chromophores in high-extractives mechanical pulps: Western red cedar (Thuja plicata Donn) chemithermomechanical pulp (CTMP)[J]. Holzforschung, 2006. 60(4): 365-371.
    [162] Johansson, C.I., Saddler, J.N.,Beatson, R.P., Characterization of the polyphenolics related to the colour of western red cedar (Thuja plicata Donn) heartwood[J]. Holzforschung, 2000. 54(3): 246-254.
    [163] Freire, C.S.R., Silvestre, A.J.D., Pereira, C.C.L., et al., New lipophilic components of pitch deposits from an Eucalyptus globulus ECF bleached kraft pulp mill[J]. Journal of Wood Chemistry and Technology, 2002. 22(1): 55-66.
    [164] Qin, M.H., Xu, Q.H., Shao, Z.Y., et al., Effect of bio-treatment on the lipophilic and hydrophilic extractives of wheat straw[J]. Bioresource Technology, 2009. 100(12): 3082-3087.
    [165] Hiltunen, E., Mononen, K., Alvila, L., et al., Discolouration of birch wood: analysis of extractives from discoloured surface of vacuum-dried European white birch (Betula pubescens) board[J]. Wood Science and Technology, 2008. 42(2): 103-115.
    [166] Freire, C.S.R., Silvestre, A.J.D., Neto, C.P., et al., Lipophilic extractives of the inner and outer barks of Eucalyptus globulus[J]. Holzforschung, 2002. 56(4): 372-379.
    [167] Mosbye, J., Laine, J.,Moe, S., The effect of dissolved substances on the adsorption of colloidal extractives to fines in mechanical pulp[J]. Nordic Pulp & Paper Research Journal, 2003. 18(1): 63-68.
    [168] Dube, E., Shareck, F., Hurtubise, Y., et al., Enzyme-based approaches for pitch control in thermomechanical pulping of softwood and pitch removal in process water[J]. Journal of Chemical Technology and Biotechnology, 2008. 83(9): 1261-1266.
    [169] Fleet, C.,Breuil, C., High concentrations of fatty acids affect the lipase treatment of softwood thermomechanical pulps[J]. Applied Microbiology and Biotechnology, 1998.49(5): 517-522.
    [170] Freire, C.S.R., Silvestre, A.J.D.,Neto, C.P., Lipophilic extractives in Eucalyptus globulus kraft pulps. Behavior during ECF bleaching[J]. Journal of Wood Chemistry and Technology, 2005. 25(1-2): 67-80.
    [171] Korpela, A., Removal of resin from mechanical pulps by selective flotation: Mechanisms of resin flotation and yield loss of fibers[J]. Journal of Wood Chemistry and Technology, 2006. 26(2): 175-186.
    [172] Nielsen, N.P.K., Norgaard, L., Strobel, B.W., et al., Effect of storage on extractives from particle surfaces of softwood and hardwood raw materials for wood pellets[J]. European Journal of Wood and Wood Products, 2009. 67(1): 19-26.
    [173] Chai, X.S., Hou, Q.X., Luo, Q., et al., Rapid determination of hydrogen peroxide in the wood pulp bleaching streams by a dual-wavelength spectroscopic method[J]. Analytica Chimica Acta, 2004. 507(2): 281-284.
    [174] Dongmeza, E., Steinbronn, S., Francis, G., et al., Investigations on the nutrient and antinutrient content of typical plants used as fish feed in small scale aquaculture in the mountainous regions of Northern Vietnam[J]. Animal Feed Science and Technology, 2009. 149(1-2): 162-178.
    [175] Doussot, F., De Jeso, B., Quideau, S., et al., Extractives content in cooperage oak wood during natural seasoning and toasting; Influence of tree species, geographic location, and single-tree effects[J]. Journal of Agricultural and Food Chemistry, 2002. 50(21): 5955-5961.
    [176] Gu, H.F., Li, C.M., Xu, Y.J., et al., Structural features and antioxidant activity of tannin from persimmon pulp[J]. Food Research International, 2008. 41(2): 208-217.
    [177] Maximova, N., Osterberg, M., Koljonen, K., et al., Lignin adsorption on cellulose fibre surfaces: Effect on surface chemistry, surface morphology and paper strength[J]. Cellulose, 2001. 8(2): 113-125.
    [178] Gellerstedt, F.,Gatenholm, P., Surface properties of lignocellulosic fibers bearing carboxylic groups[J]. Cellulose, 1999. 6(2): 103-121.
    [179] Fardim, P.,Holmbom, B., Origin and surface distribution of anionic groups in different papermaking fibres[J]. Colloids and Surfaces A-Physicochemical and EngineeringAspects, 2005. 252(2-3): 237-242.
    [180] Johansson, L.S., Monitoring fiber surface with XPS in papermaking process[J]. Mikrochimica Acta, 2002. 138: 217-223.
    [181] Fardim, P.,Duran, N., Influences of surface chemical composition on the mechanical properties of pulp as investigated by SEM, XPS and multivariate data analysis[J]. Journal of the Brazilian Chemical Society, 2005. 16(2): 163-170.
    [182] Kangas, H., Suurnakki, A.,Kleen, M., Modification of the surface chemistry of TMP with enzymes[J]. Nordic Pulp & Paper Research Journal, 2007. 22(4): 415-423.
    [183] Kleen, M., Kangas, H.,Laine, C., Chemical characterization of mechanical pulp fines and fiber surface layers[J]. Nordic Pulp & Paper Research Journal, 2003. 18(4): 361-368.
    [184] Shen, W., Parker, I.H.,Sheng, Y.J., The effects of surface extractives and lignin on the surface energy of eucalypt kraft pulp fibres[J]. Journal of Adhesion Science and Technology, 1998. 12(2): 161-174.
    [185] Kleen, M., Sjoberg, J., Dahlman, O., et al., The effect of ECF and TCF bleaching on the chemical composition of soda-anthraquinone and kraft pulp surfaces[J]. Nordic Pulp & Paper Research Journal, 2002. 17(3): 357-363.
    [186] Ness, J.,Hodgson, K.T., The effects of peroxide bleaching on thermo-mechanical pulp self-sizing[J]. Nordic Pulp & Paper Research Journal, 1999. 14(2): 111-115.
    [187] Hulten, A.H.,Paulsson, M., Surface characterization of unbleached and oxygen delignified kraft pulp fibers[J]. Journal of Wood Chemistry and Technology, 2003. 23(1): 31-46.
    [188] Popescu, C.M., Tibirna, C.M., Raschip, I.E., et al., Bulk and surface characterization of unbleached and bleached softwood kraft pulp fibres[J]. Cellulose Chemistry and Technology, 2008. 42(9-10): 525-547.
    [189] Shen, W.,Parker, I.H., Surface composition and surface energetics of various eucalypt pulps[J]. Cellulose, 1999. 6(1): 41-55.
    [190] Laine, J., Stenius, P., Carlsson, G., et al., Surface characterization of unbleached kraft pulps by means of ESCA[J]. Cellulose, 1994. 1(2): 145-160.
    [191] Dorris, G.M.,Gray, D., The surface analysis of paper and wood fiber by ESCA. 2.Surface composition of mechanical pulps[J]. Cellulose Chemistry and Technology, 1978. 12: 721-734.
    [192] Ostenson, M., Jarund, H., Toriz, G., et al., Determination of surface functional groups in lignocellulosic materials by chemical derivatization and ESCA analysis[J]. Cellulose, 2006. 13(2): 157-170.
    [193] Koljonen, K., Mustranta, A.,Stenius, P., Surface characterisation of mechanical pulps by polyelectrolyte adsorption[J]. Nordic Pulp & Paper Research Journal, 2004. 19(4): 495-505.
    [194]詹怀宇,李志强,蔡再生,纤维化学与物理[M].北京:科学出版社. 2005.
    [195] Gustafsson, J., Lehto, J.H., Tienvieri, T., et al., Surface characteristics of thermomechanical pulps; the influence of defibration temperature and refining[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2003. 225(1-3): 95-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700