氯离子在损伤及开裂混凝土内的输运机理及作用效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯离子是影响海洋环境下混凝土结构耐久性问题的最主要因素,各种环境及荷载造成的损伤及开裂对氯离子的侵蚀有加剧作用,研究氯离子在损伤及开裂混凝土内的输运机理,对准确预测其使用寿命并进而采取相应措施提高其服役寿命具有十分重要的理论和应用价值。本文的主要研究工作如下:
     (1)分别采用双重孔隙介质模型和二维扩散模型,研究了溶液静止和流动状态下氯离子在开裂混凝土内的输运,模型同时考虑了表面氯离子浓度和氯离子扩散系数的时变性、氯离子的线性结合理论和裂缝的自愈合效应,得出了与实际试验数据相符合的结果。
     (2)采用双重孔隙介质模型,考虑氯离子在混凝土孔隙内的线性结合,将水分和氯离子在混凝土和裂缝内的迁移分别表示为扩散形式和对流-扩散形式,得出了不同饱和度下的水分扩散方程和氯离子对流-扩散方程,及Rayleigh-Ritz分布下的相应水分扩散系数随孔隙饱和度的变化规律,并采用有限单元法和有限差分法计算了干湿交替作用下的水分和氯离子在一规则开裂混凝土内的迁移过程,得出的干湿循环状态下的氯离子侵蚀结果与试验结果相吻合。
     (3)进行了普通混凝土、掺加0.1%聚丙烯纤维和掺加1%钢纤维的混凝土在不同湿度环境中的养护,并对养护好的部分试件进行75℃和120℃的烘烤,然后对所有试件进行了氯离子浸泡试验,60d和180d后的测试结果表明,养护时混凝土湿度越小,后期施加的温度越高,浸泡后相同深度的氯离子质量分数越大,且拟合后得到的表观氯离子扩散系数越大。掺加纤维后氯离子质量分数及表观扩散系数的增加程度均有所减缓。
     (4)研究了普通混凝土、掺加0.1%聚丙烯纤维和掺加1%钢纤维的混凝土在10次、25次、50次冻融循环后的动弹性模量、质量损失、抗折强度、抗压强度及120d的氯化钠溶液浸泡试验,结果表明,除冻融循环10次后的抗压强度及氯离子扩散系数外,三种混凝土的动弹性模量、抗折、抗压强度均随冻融循环次数增加而减小,掺加纤维的混凝土的动弹性模量、抗折强度、抗压强度降低速度及氯离子扩散系数的增大速度均小于普通混凝土。在普通体积掺量下,钢纤维抵抗微裂缝的能力要稍优于聚丙烯纤维,可以减缓混凝土在冻融过程中的损伤速度。
     (5)研究了加载中和加载后不同应力水平下的氯离子在普通混凝土内的侵蚀。通过对试件180d的取样测试,结果表明,当施加的压应力小于抗压强度的50%时,无论施加的是瞬时荷载还是持续荷载,混凝土内同一深度的自由氯离子质量分数随荷载水平的变化没有一定的规律性,当荷载施加到95%的抗压强度后卸载时,混凝土内相同深度的氯离子质量分数比其他应力水平时明显增大。且顺着荷载施加方向的氯离子质量分数要小于垂直荷载施加方向的值。施加不大于50%极限压应力的荷载后混凝土的表观氯离子扩散系数有所减小,其中瞬时荷载下混凝土内表观氯离子扩散系数大于相同应力水平下持续荷载作用下混凝土内的值。当应力水平达到70%时,瞬时荷载下混凝土内的表观氯离子扩散系数随着应力水平的增加逐渐增大。据此建立了相应的多项式计算模型。
     (6)采用两端对锚、三点加载的方式使钢筋混凝土梁式试件跨中开裂,研究了不同跨中裂缝宽度和加载方式对氯离子在混凝土内侵蚀和受拉区钢筋腐蚀的影响。通过对试件不同位置的取样测试,结果表明,弯曲裂缝处的氯离子质量分数远大于没有开裂区域,拉应力对开裂区和受拉区的氯离子输运也起到了一定的加速作用,受拉区的相对氯离子扩散系数在1.1-2.2之间。水灰比越大,应力水平越高,相同截面内的氯离子质量分数越大,变化荷载比持续静荷载更加速了氯离子的侵蚀速度。相同时间下,受拉区的钢筋锈蚀程度也要大于非受力区。水灰比越大,保护层厚度越小,受拉区的钢筋锈蚀程度越大,在本文所采用的应力水平及荷载作用方式范围内,钢筋锈蚀几乎没有变化。
     (7)将混凝土内钢筋初锈作为结构的耐久性极限状态,结合已经得到的参数关系,采用概率的方法分析了不同损伤情形下的耐久性失效概率和寿命,得出了随损伤参数变化的初锈概率分布曲线。结果表明,随着养护时混凝土饱和度的降低,其内部钢筋的初锈慨率逐渐增加,耐久性寿命相应缩短。冻融循环可使混凝土的寿命降低55%。较小的压应力延长了混凝土结构的使用寿命,但当压应力水平超出一定限值后,其使用寿命会逐渐减小。随着混凝土拉应力水平或钢筋混凝土构件中钢筋拉应力水平的增加,混凝土结构的使用寿命逐渐减小,当素混凝土达到80%的应力水平时,其使用寿命缩短了16.9%。当钢筋应力达到100MPa时,钢筋混凝土构件的使用寿命缩短了47.2%.
Chloride ions have a tremendous influence on the durability of marine concrete structures damaged by environments and loads. It is important to study the chloride ions transportation in damaged and cracked concrete in order to have a better understanding on the ion transmission mechanism and to predict the reasonable service life of concrete structures. In this thesis, the following studies have been carried out.
     Modified dual porous media model and two-dimensional model are introduced separately to discuss the chloride ions transport in saturated and cracked concretes on basis of the stationary or flowing solutions. The change of time-dependent surface chloride concentration, the decrease of apparent diffusion coefficient, the linear bonding of chloride ions in concrete porous, and the self healing are considered in these two models. The calculated results are agreed very well with the experimental results.
     The dual porous media model is modified to analyze the chloride ions transport in unsaturated and cracked concrete. Water and chloride ions are expressed as diffusion and advection-diffusion equations respectively. The diffusion coefficients are expressed as saturation's equation with the Rayleigh-Ritz distribution of concrete porous diameter and crack width. A cracked concrete specimen periodicity exposed to chloride solutions is calculated by finite element and finite difference methods, which results are agreed very well with the experimental results.
     Three different types of concrete materials, including OPC (ordinary performance concrete), PFC (polypropylene fiber concrete) and SFC (steel fiber concrete), were cured in different humilities for 28 days. To reflect the influence of high temperatures on the durability of concrete, parts of them were baked in oven. Some of these specimens were immersed into chloride solutions for 60 and the others for 180 days. Then the chloride in concrete was tested by RCT method. The results show that both the reduction of curing humidity and the increase of baking temperature can increase the diffusion coefficient. But this process can be slowed by polypropylene and steel fibers.
     After freeze-thaw cycles, the dynamic elastic modulus, flexural strength and compressive strength of former three types of concretes were tested firstly. Then some of the tested specimens were exposed to chloride solutions for 120 days. Results show that the dynamic elastic modulus, flexural and compression strengths decrease with the increase of freeze-thaw cycles. Chloride concentration at the same depth and diffusion coefficient increase with the freeze-thaw cycle times.
     The specimens with or after the compression stresses were exposed to chloride solution for 180 days. The experimental results show that when the stress level is less than 70%, chloride ions present little variations, the diffusion coefficient decrease a little. But when the stress level increase to 95%. both the chloride concentration and diffusion coefficient increase with the increase of stress levels. The chloride diffusion coefficient with stress is a little smaller than that after stress. A polynomial equation is proposed to predict this regulation according to the test results.
     Concrete beams were subjected to three-point bending by coupling in pairs, and cracks appeared in the mid-span of these beams. The influences of cracks and tensile tress on chloride concentration and diffusion coefficient were studied. Results show that the chloride concentration in cracked zone is much larger than that in uncracked section. The chloride diffusion coefficient in tensile zone increases 1.1~2.2 times. Chloride concentration increases with the increase of water to cement ratio and stress level. Varied load accelerates the chloride transportation. Tensile stress also speeds up the reinforcement corrosion process. The steels in tensile zone corrode much more when the water to cement ratio increases and the cover depth decreases, but vary a little in beams with different stress levels and crack widths in this thesis.
     The service life of damaged concrete is predicted on basis of the probabilistic framework of Monte Carlo Simulation when regards steel corrosion starting as limit state. Probabilistic information about uncertainties related to the surface chloride content and the threshold chloride concentration has been estimated from previous experimental or statistical studies, and the damage ratios are getting from test results. The predicted life reduces with the decreases of curing saturation, and with the increase of temperature, freeze-thaw cycle times and tensile stress. Compressive stress below 80% of the ultimate compressive strength increases the life, but decreases the life above that level.
引文
[1-1]张雄.混凝土结构裂缝防治技术[M].北京:化学工业出版社,2007.
    [1-2]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社.2002.
    [1-3]冯乃谦,顾晴霞,郝挺宇.混凝土结构的裂缝与对策[M].北京:机械工业出版社,2006.
    [1-4]中华人民共和国国家统计局网站, http://www.stats.gov.cn.
    [1-5]http://www.cemnet.com/publications/GlobalCementReport/world-cement-overview/ player.html.
    [1-6]http://wenku.baidu.com/view/073324ec102de2bd96058803.html.
    [1-7]http://www.worldsteel.org/?action=stats_search.
    [1-8]美国能源资料协会http://www.eia.gov
    [1-9]冯乃谦,牛全林,李崇智,刘国栋.混凝土耐久性病害综合症及其预防的研究[J].中国建材,2004,25(2):76-77.
    [1-10]蒋元驹,韩素芳.混凝土工程病害与修补加固[M].北京:海洋出版社,1996.
    [1-11]Metha P K. Durability of concrete-fifty years of progress[J]. ACI SP-126,1991,1-31.
    [1-12]金伟良,袁迎署,卫军,王海龙.氯盐环境下混凝土结构耐久性理论与设计方法[M].北京:科学出版社,2011.
    [1-13]洪乃丰.混凝土中钢筋腐蚀与防护技术——钢筋腐蚀危害与对混凝土的破坏作用[J].工业建筑,1999,29(8):66-68.
    [1-14]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998.
    [1-15]徐强,俞海勇.大型海工混凝土结构耐久性研究与实践[M].北京:中国建筑工业出版社,2008
    [1-16]潘德强.我国海港工程混凝土结构耐久性现状及对策[A],土建结构工程的安全性与耐久性[C].北京:中国建筑工业出版社,2003,96-107.
    [1-17]童保全,王硕威.浙东沿海水工钢筋混凝土构件腐蚀破坏调查[J].水运工程,1984.
    [1-18]张恺,包琦玮等.北京地区立交桥梁耐久性调查分析[A],土建结构工程的安全性与耐久性[C].北京:中国建筑工业出版社,2003,228-231.
    [1-19]黄士元,杨全兵.我国寒冷地区混凝土路桥结构的耐久性问题[A].土建结构工程的安 全性与耐久性[C].北京:中国建筑工业出版社,2003,188-194.
    [1-20]金伟良等.浙东沿海高桩码头耐久性调查和研究报告[R].浙江大学研究报告,杭州:2002.
    [1-21]金伟良等.浙江省公路混凝土桥梁结构耐久性调查报告[R].浙江大学研究报告.杭州:2004.
    [1-22]金伟良等.浙江镇海电厂二、三期升压站工程混凝土结构耐久性检测与鉴定报告[R].浙江大学研究报告,杭州:2002.
    [1-23]徐有邻,顾祥林.混凝土结构工程裂缝的判断与处理[M].北京:中国建筑工业出版社.2010.
    [1-24]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社.1997.
    [1-25]钱晓倩,詹树林.周富荣等.早期养护时间对混凝土早期收缩的影响[J].沈阳建筑大学学报(自然科学版),2007,23(4):610-614.
    [1-26]詹树林,钱晓倩.起始养护时间对混凝土早期收缩的影响[J].建筑材料学报,2007.10(3):359-363.
    [1-27]Lea F C. The effect of temperature on some of the properties of materials[J]. Engineering. 1920,110:293-298.
    [1-28]Lea F C, Stradling R. The resistance to fire of concrete and reinforced concrete[J]. Journal of the Society of Chemical Industry,1922,41(18):395-396.
    [1-29]Crozier D A, Sanjayan J G. Chemical and physical degradation of concrete at elevated temperatures[J]. Concrete in Australia,1999,25(1):18-20.
    [1-30]李金玉,曹建国,徐文雨,林莉,关遇时.混凝土冻融破坏的机理研究[J].水利学报,1999,30(1):41-49.
    [1-31]Johannesson B. Dimensional and ice content changes of hardened concrete at different freezing and thawing temperatures[J]. Cement and Concrete Composites,2010,32(1): 73-83.
    [1-32]施士升.冻融循环对混凝土力学性能的影响[J].土木工程学报,1997.30(4):35-42.
    [1-33]邹超英,赵娟,梁锋.冻融作用后混凝土力学性能的衰减规律[J].建筑结构学报,2008,29(1):117-123.
    [1-34]段安,钱稼茹.受冻融环境混凝土的应力-应变全曲线试验研究[J].混凝土,2008,8,13-16.
    [1-35]李成涛,周云麟.水及其相转变对混凝土性能的影响[J].混凝土,2003,2:18-19.
    [1-36]重庆大学建筑材料教研室.建筑材料性能学[M].重庆:重庆大学出版社,2001:223-315.
    [1-37]韩静云,张小伟.田永静等.污水处理系统中混凝土结构的腐蚀现状调查及分析[J].混凝土,2000,11:31-34.
    [1-38]唐明述.关于碱-集料反应的几个理论问题[J].硅酸盐学报,1990,18(4):365-373.
    [1-39]Diamond S. A review of alkali-silica reaction and expansion mechanism 1. Alkalies in cements and in concrete pore solutions[J]. Cement and Concrete research,1975,5(4): 329-345.
    [1-40]Giineyisi E, Ozturan T and Gesoglu M. Effect of initial curing on chloride ingress and corrosion resistance characteristics of concretes made with plain and blended cements[J]. Building and Environment 2007,42:2676-2685.
    [1-41]姜福香,于奎峰,赵铁军,鲁统春.高温后混凝土耐久性能试验研究[J].四川建筑科学研究,2010,36(2):32-34.
    [1-42]Jin Weiliang, Zhang Yi. Fire's effect on chloride ingress related durability of concrete structure [J]. Journal of Zhejiang University SCIENCE A,2007.8(5):675-681
    [1-43]张鹏,赵铁军.郭平功.Wittmann F H冻融和碳化作用对混凝土氯离子侵蚀的影响[J].东南大学学报(自然科学版),2006,36(SII):238-242.
    [1-44]Masatoshi Yamakawa. Chloride permeability of distressed concrete[D]. University of Colorado.1996.
    [1-45]R. Francois, J. C. Maso. Effect of damage in reinforced concrete on carbonation or chloride penetration[J]. Cement and Concrete Research,1988,18(6):961-970.
    [1-46]Chunqing Li. Corrosion initiation of reinforcing steel in concrete under natural salt spray and service loading-results and analysis[J]. ACI Materials journal,2000,97(6):690-697.
    [1-47]Gowripalan N, Sirivivatnanon V, Lim C C. Chloride diffusivity of concrete cracked in flexure[J]. Cement and Concrete Research,2000,30(5):725-730.
    [1-48]赵尚传,贡金鑫,水金锋.弯曲荷载作用下混凝土氯离子扩散规律的试验研究[J].第四届混凝土结构耐久性科技论坛《混凝土结构耐久性设计与评估方法》.杭州,2006:227-246.
    [1-49]Sanchun Yoon, Kejin Wang, W.jason Weiss and Surendra P. Shah. Interaction between loading, corrosion and serviceability of reinforced concrete[J]. ACI Materials Journal,2000, 97(6):637-644.
    [1-50]Francois R, Maso J C. Effect of damage in reinforced concrete on carbonation or chloride penetration[J]. Cement and Concrete Research,1988,18(6):961-970.
    [1-51]Choinska M, Khelidj A. Chatzigeorgiou G, Pijaudier-Cabot G. Effects and interactions of temperature and stress-level related damage on permeability of concrete[J]. Cement and Concrete Research.2007;37(1):79-88.
    [1-52]Wang K, Jansen D C, Shah S P, Karr A. Permeability study of cracked concrete[J]. Cement and Concrete Research.1997;27(3):381-93.
    [1-53]Aldea C M, Shah S P, Karr A. Permeability of cracked concrete[J]. RILEM, Material and Structures 1999;32:370-376.
    [1-54]Olga Garces Rodriguez, Doug Hooton R. Influence of cracks on chloride ingress into concretefJ]. ACI Materials Journal,2003,100(2):120-126.
    [1-55]Francois R. Effects of cracks on local diffusion of chloride and on long-term corrosion behavior of reinforced concrete members[A]. Proceedings of an international workshop on durability of reinforced concrete under combined mechanical and climate Ioads(CMCL) [C]. Qingdao:Qingdao Publishing House,2005:113-121.
    [1-56]Ismail M. Effect of crack opening on the local diffusion of chloride in inert materials[J]. Cement and Concrete Research,2004,34(4):711-716.
    [2-1]Olga Garces Rodriguez.Doug Hooton R. Influence of cracks on chloride ingress into concrete[J].ACl Materials Journal,2003,100(2):120-126.
    [2-2]EL.柯斯乐.扩散流体系统中的传质[M].王宇新,姜忠义译.北京:化学工业出版社,2002.
    [2-3]Takewaka K, Yamaguchi T,Maeda S. Simulation model for deterioration of concrete structures due to chloride attack[J]. Journal of Advanced Concrete Technology,2003,1(2): 139-146.
    [2-4]Francois R. Effects of cracks on local diffusion of chloride and on long-term corrosion behavior of reinforced concrete members[A]. Proceedings of an international workshop on durability of reinforced concrete under combined mechanical and climate loads(CMCL) [C]. Qingdao:Qingdao Publishing House,2005:113-121.
    [2-5]Ismail M. Effect of crack opening on the local diffusion of chloride in inert materials[J]. Cement and Concrete Research,2004.34(4):711-716.
    [2-6]Kato Y, Uomoto T. Modeling of effective diffusion coefficient of substances in concrete considering spatial properties of composite materials[J]. Journal of Advanced Concrete Technology,2005,3(2):241-251.
    [2-7]Ismail M. Effect of crack opening on the local diffusion of chloride in cracked mortar samples[J]. Cement and Concrete Research,2008,38(8-9):1106-1111.
    [2-8]Djerbi A, Bonnet S. Khelidj A, et al. Influence of traversing crack on chloride diffusion into concrete[J]. Cement and Concrete Research,2008,38(6):877-883.
    [2-9]Sandra jefremczuk. Chloride ingress and transport in cracked concrete[D]. Master thesis, McGill University,2004:66-71.
    [2-10]周志芳.裂隙介质水动力学原理[M].高等教育出版社,北京,2007.
    [2-11]Boulfiza,M., et al. Chloride ingress in marine concrete structures:a discrete representation of cracking[J]. Doboku Gakkai Nenji Gakujutsu Koenkai Koen Gaiyoshu,2000,55:396-397.
    [2-12]Ema Kato, Yoshitaka Kato and Taketo uomoto. Development of simulation model of chloride ion transportation in cracked concrete[J]. Journal of advanced concrete technology,2005, 3(1):85-94.
    [2-13]Chunqing Li, Jianjun Zheng and Lin Shao. New solution for prediction of chloride ingress in reinforced concrete flexural members[J]. ACI Materials Journal,2003,100 (4):310-325.
    [2-14]刘光,邱贞花.离子溶液物理化学[M].福州:福建科学技术出版社,1987.
    [2-15]Japan Concrete Institute. Interface problem between structural and durability design of concrete structures[J]. Committee report,1998.
    [2-16]Warren T E, Root P J. The behaviour of naturally fractured reservoirs [J]. Society of Petroleum Engineerings,1963,3:245-255.
    [2-17]Mohammed T U, Hamad A H. Relationship between free chloride and total chloride contents in concrete[J]. Cement and Concrete Research,2003,33(9):1487-1490.
    [2-18]Lu Xinying, Li Cuiling, Zhang Haixia. Relationship between the free and total chloride diffusivity in concrete[J]. Cement and Concrete Research,2002,32(2):323-326.
    [2-19]Ishida T, Miyahara S, Maruya T. Chloride binding capacity of mortars made with various Portland cements and mineral admixtures[J]. Journal of Advanced Concrete Technology, 2008,6(2):287-301.
    [2-20]田俊峰,潘德强,赵尚传.海工高性能混凝土抗氯离子侵蚀耐久寿命预测[J].中国港湾建设,2002.2:1-6.
    [2-21]Mumtaz K, Michel G. Chloride-induced corrosion of reinforced concrete bridge decks[J]. Cement and Concrete Research,2002,32(1):139-143.
    [2-22]Ishida T, Iqbal Pon, Anh Htl. Modeling of chloride diffusivity coupled with non-linear binding capacity in sound and cracked concrete[J]. Cement and Concrete Research,2009, 39(10):913-923.
    [2-23]Suryavanshi A K, Swamy R N, Cardew G E. Estimation of diffusion coefficients for chloride ion penetration into structural concrete[J]. ACI Materials Journal,2002,99(5):441-449.
    [2-24]中国工程院土木水利与建筑学部工程结构安全.混凝土结构耐久性设计与施工指南(CCES01-2004)[M],北京:中国建筑工业出版社,2004:36-40.
    [2-25]Sabine Care. Effect of temperature on porosity and on chloride diffusion in cement pastes[J]. Construction and Building Materials,2008,22(7):1560-1573.
    [2-26]Clear C.A.:Cement and Concrete Association Technical Report 559, England.1985.
    [2-27]Jacobsen S., Marchand J., Homain H., SEM observations of the microstructure of frost deteriorated and self-healed concretes[J]. Cement and Concrete Research.1995.25(8): 1781-1790.
    [2-28]Hearn N. A recording permeameter for measuring time-sensitive permeability of concrete[J]. Ceramic Transactions,1990,16:463-475.
    [2-29]Arnold T. and Johnson D.:Proceedings of international workshop on roller compacted concretes[C], CRIB-Universite Laval. Quebec, Canada,1994,171-185.
    [2-30]Carola Edvardsen. Water permeability and autogenous healing of cracks in concrete[J]. ACI Materials Journal,96 (4) 1999:448-454.
    [2-31]Stefan Jacobsen, Jacques Marchand and Luc Boisvert. Effect of cracking and healing on chloride transport in OPC concrete[J]. Cement and Concrete Research,1996,26(6): 869-881.
    [2-32]Jacobsen S.. Sellevold E.J.:Rapid freeze/thaw testing of concrete-pore structure changes by cracking and healing, Concrete under severe conditions, Enviromental loading, First international conference on concrete under severe conditions, Sapporo, Japan, August,1995, 1:114-125.
    [2-33]Fidjestol P, Nilsen N. Performance of concrete in marine environment[J]. ACI SP-65,1980: 205-221.
    [2-34]Bakker R F M. Corrosion of Steel in Concrete[R] R1LEM Report of the TC 60-CSC New York. Chapman and Hall,1988:22-54.
    [2-35]Sandberg P and Tang L. A field study of the penetration of chlorides and other ions into a high quality concrete marine bridge column[C], concrete durability, V.M. Malbotra, ed. ACI SP-145, America Concrete Institute. Detroit,557-571.
    [2-36]Dry Carolyn. Use of embedded self-repair adhesives in certain areas of concrete bridge members to prevent failure from severe dynamic loading[C]. Proceedings of SPIE,1999,3675:126-130.
    [2-37]匡亚川,欧进萍.混凝土裂缝的仿生自修复研究与进展[J].力学进展,2006,36(3):406-414.
    [2-38]Jung Daniel. Perform ance and properties of embedded microspheres for self-repairing applications:[Master Thesis]. University of Illinois,1995,1-4.
    [2-39]Nakarai K, Ishida T, Maekawa K. Multi-scale physiochemical modeling of soil-cementitious material interaction, Soils and Foundations 2006,46 (5):653-664.
    [2-40]Tetsuya lshida, Prince O'Neill Iqbal, Ho Thi Lan Anh. Modeling of chloride diffusivity coupled with non-linear binding capacity in sound and cracked concrete[J] Cement and Concrete Research,2009.39(10):913-923.
    [2-41]Koji Takewakal. Toshinobu Yamaguchi and Satoshi Maeda. Simulation model for deterioration of concrete structures due to chloride attack[J]. Journal of Advanced Concrete Technology,2003.1(2):139-146.
    [2-42]Vidal T, Castel A. Francois R. Corrosion process and structural performance of a 17 year old reinforced concrete beam stored in chloride environment[J]. Cement and Concrete Research. 2007,37(11):1551-1561.
    [3-1]Powers T C, Brownyard T L. Studies of the physical properties of hardened portland cement paste[J]. Journal of the American Concrete Institute 1947; 43(9):845-880.
    [3-2]姬永生.袁迎曙.干湿循环作用下氯离子在混凝土中的侵蚀过程分析[J].工业建筑,2006,36(12):16-19/23.
    [3-3]金伟良,金立兵,延永东,姚昌建.海水干湿交替区氯离子对混凝土侵入作用的现场检测和分析[J].水利学报,2009,40(3):364-371.
    [3-4]Samson E. Marchand J, Snyder K A, Beaudoin J J. Modeling ion and fluid transport in unsaturated cement systems in isothermal conditions. Cement and Concrete Research,2005, 35(1):141-153.
    [3-5]Ababneh A., Benboudjema F., and Xi Y. Chloride penetration in non-saturated concrete[J]. Journal of Materials in Civil Engineering, ASCE,2003,15(2):183-191.
    [3-6]张奕.氯离子在混凝土中的输运机理研究[D].杭州,浙江大学,2008.
    [3-7]林刚,刘应华.干湿交替下混凝土氯离子运输模拟[J].武汉工业学院学报,2009,28(3):68-71.
    [3-8]Pel L. Kopinga K, Brocken H. Moisture transport in porous bulding materials[J]. Heron. 1996,41(2):95-105.
    [3-9]Hall C. Water sorptivity of mortars and concretes:a review[J]. Magazine of Concrete Research,1989(41):51-61.
    [3-10]Wong S F, Wee T H, Swaddiwudhipong S, et al. Study of water movement in concrete. Magazine of Concrete Research,2001,53(3):205-220.
    [3-11]Samson E, Marchand J, Snyder K A, Beaudoin J J. Modeling ion and fluid transport in unsaturated cement systems in isothermal conditions[J]. Cement and Concrete Research, 2005,35(1):141-153.
    [3-12]Breysse D. Transport of fluids in cracked media, Penetration and permeability of concrete, H. W. Reinhardt, ed., RILEM Report 16,1997,123-153.
    [3-13]Koichi Maekawa, Rajesh Chaube, Toshiharu Kishi.. Modeling of Concrete PerformancefM]. E & FN Spon, London,1999.
    [3-14]Ishida T, IqbaL Pon, Anh Htl. Modeling of chloride diffusivity coupled with non-linear binding capacity in sound and cracked concrete[J]. Cement and Concrete Research,2009, 39(10):913-923.
    [3-15]Koichi Maekawa, Rajesh Chaube, Toshiharu Kishi. Modeling of Concrete Performance[M]. E&FN Spon, London,1999.
    [3-16]金伟良,张奕,卢振勇.非饱和状态下氯离子在混凝土中的渗透机理及计算模型[J].硅酸盐学报,2008,36(10):1362-1369.
    [3-17]Chaube R P, Shimomura T, Maekawa K. Multiphase water movement in concrete as a multi-component system[C]. In Proceedings of the 5th RILEM International Symposium on Creep and Shrinkage in Concrete[C]. Barcelona, E&FN Spon, London,1993,139-144.
    [3-18]Robert M C, Gonnet G H., Hare D E G., Jeffrey D J, and Knuth D E. On the Lambert W Function[J]. Advances in Computational Mathematics,1996 (5):329-359.
    [3-19]Mohamed Boulfiza, Koji Sakai, Nemkumar banthia, Hidenori Yoshida. Prediction of chloride ions ingress in uncracked and cracked concrete[J]. ACI Materials Journal,2003,100(1): 38-48.
    [3-20]Anna V Saetta, Roberto V Scotta and Renato V Vitaliani.. Analysis of chloride diffusion into partially saturated concrete[J]. ACI Materials Journal,1993,90(5):441-451.
    [3-21]Mohammed T U, Hamada H. Relationship between free chloride and total chloride contents in concrete[J]. Cement and Concrete Research,2003,33(9):1487-1490.
    [3-22]Xinying Lu, Cuiling Li, Haixia Zhang. Relationship between the free and total chloride diffusivity in concrete[J]. Cement and Concrete Research,2002,32(2):323-326.
    [3-23]Djerbi A, Bonnet S, Khelidj A, Baroghel-bouny. Influence of traversing crack on chloride diffusion into concrete[J]. Cement and Concrete Research.2008,38(6):877-883.
    [3-24]李治平.偏微分方程数值解讲义[M].北京:北京大学出版社,2010.
    [3-25]Mills R. and Lobo M M. Self-diffusion in electrolyte solutions[J]. Elsevier. New York.
    [4-1]巴恒静,杨少伟.钢纤维混凝土高温应力损伤性能[J].混凝土,2009,1:15-17.
    [4-2]吕天启,赵国藩,林志伸,岳清瑞.高温后静置混凝土的微观分析]J].建筑材料学报,2003,6(2):135-141.
    [4-3]Escalante Grarcia J I, Sharp J H. The microstructure and mechanical properties of blended cements hydrated at various temperatures[J]. Cement and Concrete Research,2001,31(5): 695-702.
    [4-4]Paul M, Glasser F P. Impact of prolonged warm (85℃)moist cure on Portland cement pasteVJ]. Cement and Concrete Research,2000,30(12):1869-1877.
    [4-5]Verbeck G J, Helmuth R H. Structure and physical properties of cement paste[A]. Proceeding of the 5th International Congress on the Chemistry of Cement[C]. Tokyo:[sn], 1968.184-193.
    [4-6]Older I, Skalny J. Hydration of tricalcium silicate at elevated temperatures[J]. Journal of Applied Chemistry, Biotechnology,1973, (23):37-43.
    [4-7]Regourd K M, Gautier E. Comportement des coments soumis au durcissement accelere[J]. Ciments, B6tons, Platres, Chaux,1980, (4):24-29.
    [4-8]谭克锋,刘涛.早期高温养护对混凝土抗压强度的影响[J].建筑材料学报,2006,9(4):473-476.
    [4-9]钱晓倩.詹树林,周富荣等.早期养护时间对混凝土早期收缩的影响[J].沈阳建筑大学学报(自然科学版).2007,23(4):610-614.
    [4-10]詹树林,钱晓倩.起始养护时间对混凝土早期收缩的影响[J].建筑材料学报,2007,10(3):359-363.
    [4-11]林辰,金贤玉,李宗津.不同养护条件下混凝土断裂性能的试验研究[J].混凝土.2004,7:5-6/15.
    [4-12]Cather B. How to get better curing. Concrete.1992, (9).
    [4-13]Older I, Skalny.J, Hydration of tricalcium silicate at elevated temperatures[J]. Journal of Applied Chemistry,1973, (23):661-667.
    [4-14]刘竟,邓德华,刘赞群.养护措施和湿养护时间对掺与未掺矿渣混凝土性能的影响[J].硅酸盐学报,2008,36(7):901-911.
    [4-15]黄煜镔,钱觉时.龄期和养护方式对高强混凝土力学性能的影响[J].硅酸盐通报,2007,26(3):427-430.
    [4-16]李关利,钱觉时,徐姗姗等.养护条件对混凝土表面层性能的影响[J].建筑材料学报,2009,12(6):724-728.
    [4-17]Guneyisi E, Ozturan T and Gesoglu M. Effect of initial curing on chloride ingress and corrosion resistance characteristics of concretes made with plain and blended cements[J]. Building and Environment 2007,42:2676-2685.
    [4-18]Lea F C. The effect of temperature on some of the properties of materials[J]. Engineering, 1920,110:293-298.
    [4-19]F.C. Lea, R. Stradling. The resistance to fire of concrete and reinforced concrete[J]. Journal of the Society of Chemical Industry.1922.41(18):395-396.
    [4-20]Larbi J, Nijland T G. Unraveling the temperature distribution in fire-damaged concrete by means of PFM microscopy:outline of the approach and review of potentially useful reactions[J], Heron,2001,46(4):253-264.
    [4-21]Crozier D A, Sanjayan J G. Chemical and physical degradation of concrete at elevated temperatures[J]. Concrete in Australia 1999,25 (1):18-20.
    [4-22]Lau A, Anson M. Effect of high temperatures on high performance steel fibre reinforced concrete[J]. Cement and Concrete Research:2006,36(9):1698-1707.
    [4-23]Neville A.M. Properties of Concrete,4th and final edn, Longman, London,1997.
    [4-24]姜福香,于奎峰,赵铁军,鲁统春.高温后混凝土耐久性能试验研究[J].四川建筑科学研究,2010,36(2):32-34.
    [4-25]Jin Weiliang, Zhang Yi. Fire's effect on chloride ingress related durability of concrete structure [J]. Journal of Zhejiang University SCIENCE A,2007,8(5):675-681
    [4-26]王爱国,孙道胜,邓敏,白洪涛,唐明述.聚丙烯纤维和膨胀剂对混凝土微结构的影响[J].武汉理工大学学报,2010,32(7):31-34.
    [4-27]Sun Wei, Chen Dongtong. The Flexural Performance and the Interfacial Effect on the fiber hybrid reinforced cement matrix[C]//Voll The International Conference on Concrete Engineering. Symposium:[s. n.],1991:654-659.
    [4-28]王丹芳,施养杭.混杂纤维混凝土高温性能研究[J].安全与环境工程,2010,17(2):119-122.
    [4-29]张鹏,郭平功,赵铁军.聚丙烯纤维混凝土的收缩抗裂性能[J].低温建筑技术,2008(1):4-6.
    [4-30]秦鸿根,刘斯凤,孙伟等.钢纤维掺量和类型对混凝土性能的影响[J].建筑材料学报,2003,6(4):364-368.
    [4-31]Yining Ding, Wolfgang Kusterle. Compressive stress±strain relationship of steel fibre-reinforced concrete at early age[J]. Cement and Concrete Research.2000.30(10): 1573-1579.
    [4-32]董香军,王岳华,高淑玲.钢纤维和聚丙烯纤维混凝土的试验研究[J].混凝土,2003,11:14-15/47.
    [4-33]李佩珍,谢慧才.RCT快速氯离子检测方法及其应用[J].混凝土,2000(12):46-48.
    [4-34]LIFECON. Service Life Models:Instructions on methodology and application of models for the prediction of the residual service life for classified environmental loads and types of structures in Europe [R]. Life Cycle Management of Concrete Infrastructures for Improved Sustainability.2003.
    [4-35]王传坤,高祥杰,赵羽习,金伟良,徐巧玲.混凝土表层氯离子含量峰值分布和对流区深度[J].硅酸盐通报,2010,29(2):262-267.
    [4-36]Neville A (1995) Chloride attack of reinforced concrete:a overview[j]. Materials and Structures,28(2):63-70.
    [4-37]姜福香,赵铁军,苏卿等.火灾后混凝土抗氯离子侵蚀性及表面防水效果研究[J].混凝土,2009,8:40-42.
    [4-38]钱春香,游有鲲.李敏.再养护液对受高温后高强混凝土的渗透性能的影响[J].硅酸盐学报,2006.34(2):210-214.
    [4-39]刘利先,时旭东,过镇海.混凝土高温损伤后水中养护的愈合功能试验研究[J].工业建筑,2003,33(5):50-52/77.
    [4-40]鞠丽艳,张雄.混杂纤维对高性能混凝土高温性能的影响[J].同济大学学报(自然科学版),2006,34(1):89-92/101.
    [5-1]李金玉,曹建国.水工混凝土耐久性的研究和应用[M].北京:中国电力出版社,2004.
    [5-2]宋恩来.东北地区大坝溢流面冻融和冻胀破坏[J].东北电力技术.2000,3:22-26
    [5-3]龚洛书,刘春圃.混凝土的耐久性及其防护修补[M].北京:中国建筑工业出版社,1990.
    [5-4]施士升.冻融循环对混凝土力学性能的影响[J].土木工程学报,1997,30(4):35-42.
    [5-5]邹超英,赵娟,梁锋.冻融作用后混凝土力学性能的衰减规律[J].建筑结构学报,2008,29(1):117-123.
    [5-6]段安,钱稼茹.受冻融环境混凝土的应力-应变全曲线试验研究[J].混凝土,2008,8:13-16.
    [5-7 于孝民,任青文.冻融循环作用下普通混凝土断裂能试验[J].河海大学学报(自然科学版),2010,38(1):80-82.
    [5-8]宁作君,巴恒静,杨英姿.冻融环境下混凝土的断裂损伤试验研究[J].哈尔滨工程大学学报,2009,30(1):27-32.
    [5-9]Agnieszka Litorowicz. Identification and quantification of cracks in concrete by optical fluorescent microscopy[J]. Cement and Concrete Research,2006,36(8):1508-1515.
    [5-10]何世钦,贡金鑫,赵国藩.冻融循环下混凝土中氯离子的扩散性[J].水利水运工程学报,2004,4:32-36.
    [5-11]洪锦祥,缪昌文,黄卫.冻融损伤对混凝土氯离子扩散性能的影响[J].混凝土,2006,1:36-38.
    [5-12]Zhao TJ, Zhang P, and Wittmann FH, Influence of freeze-thaw cycles and carbonation on chloride penetration[C]. Proceedings of International Workshop on Life Cycle Management of Coastal Concrete Structures,2006, Nagaoko University, Japan. H. Yokota and T. Shimomura, editors,37-42.
    [5-13]关宇刚,孙伟,缪昌文.基于可靠度与损伤理论的混凝土寿命预测模型Ⅰ:模型阐述与建立[J].硅酸盐学报,2001,29(6):530-534.
    [5-14]唐光普,刘西拉,施士升.冻融条件下混凝土破坏面演化模型研究[J].岩石力学与工程学报,2006,25(12):2572-2578.
    [5-15]刘大鹏,霍俊芳.纤维轻骨料混凝土冻融损伤模型研究[J].硅酸盐通报,2009,28(3):568-571.
    [5-16]牛荻涛,肖前慧.混凝土冻融损伤特性分析及寿命预测[J].西安建筑科技大学学报(自然科学版),2010,42(3):319-322/328.
    [5-17]陆宏轮.饱和多孔介质冻融过程的混合物连续介质理论[J].西南交通大学学报,2001,36(6):599-603.
    [5-18]段安,钱稼茹.混凝土冻融过程数值模拟与分析[J].清华大学学报(自然科学版),2009,49(9):1441-1445,
    [5-19]刘卫东,苏文悌,王依民.冻融循环作用下纤维混凝土的损伤模型研究[J].建筑结构学报,2008,29(1):124-128.
    [5-20]Wang L and Ueda T. Mesoscopic simulation of chloride ions diffusion in frost-damaged concrete[J]. International Journal of Modelling, Identification and Control,2009,7(2): 148-154.
    [5-21]中华人民共和国国家标准,普通混凝土长期性能和耐久性能试验方法(GBJ-82 85)[S].北京:城乡建设环境保护部,1985.
    [5-22]中华人民共和国国家标准,普通混凝土力学性能试验方法(GBJ 81-85)[S].北京:城乡建设环境保护部,1985.
    [5-23]Hailong Wang, Weiliang Jin, Qingbin Li. Saturation Effect on Dynamic Tensile and Compressive Strength of Concrete. Advances in Structural Engineering.2009,12 (2): 279-286.
    [5-24]方璟,王宏,武世翔.混凝土冻融破坏后的养护自愈[J].混凝土与水泥制品,2003,6:14-]5.
    [5-25]张连水,张鹏,赵铁军.冻融环境下混凝土内外损伤特性的研究[J].公路,2010,5:144-148.
    [5-26]Bruno Gerard, Gilles Pijaudier-cabot, Christian Laborderie. Coupled diffusion-damage modeling and the implications on failure due to strain localization[J]. International Journal of Solids and Structures,1998,35(31/32):4107-4120.
    [6-1]P.Kumar Mehta, Paulo J.M.Monteiro著,覃维祖,王栋明,丁建彤译.混凝土—微观结构,性能和材料[M].北京:中国电力出版社,2008:54-56.
    [6-2]贡金鑫,魏巍巍,赵尚传.现代混凝土结构基本理论及应用[M].北京:中国建筑工业出版社,2009:10-11.
    [6-3]Takafumi Sugiyama, Theodore W. Bremner, and Thoms A. Holm. Effect of stress on gas permeability in concrete[J]. ACI Materials journal,1996,93(5):443-450.
    [6-4]N. Hearn, G. Lok. Measurement of permeability under uniaxial compression-A test method[J]. ACI Materials Journal,1998,95:691-694.
    [6-5]Kermani A. Permeability of stressed concrete[J]. Building research and information,1991, 19(6):360-366.
    [6-6]N. Hearn. Effect of shrinkage and load-induced cracking on water permeability of concrete[J]. ACI Materials Journal,1999,96(3):234-241.
    [6-7]Vincent Picandet, Abdelhafid Khelidj, Guy Bastian. Effect of axial compressive damage on gas permeability of ordinary and high-performance concrete[J]. Cement and Concrete Research,2001,31(11):1525-1532.
    [6-8]Choinska M. et al. Effects and interactions of temperature and stress-level related damage on permeability of concrete[J]. Cement and Concrete Research.2007.37(1):79-88.
    [6-9]N. Banthia. A. Biparva, S. Mindess. Permeability of concrete under stress[J]. Cement and Concrete Research,2005,35(10):1651-1655.
    [6-10]Masatoshi Yamakawa. Chloride permeability of distressed concrete[D]. University of Colorado,1996.
    [6-11]C.C.Lim, N.Gowripalan. V.Sirivvatnanon. Influence of microcracks on chloride ion penetration of concrete subjected to compressive loads[R]. Concrete99:Our concrete environment. Sydney,1999:155-161.
    [7-1]Choinska M, Khelidj A, Chatzigeorgiou G, Pijaudier-Cabot G. Effects and interactions of temperature and stress-level related damage on permeability of concrete[J]. Cement and Concrete Research,2007,37(1):79-88.
    [7-2]Wang K, Jansen DC, Shah SP. Karr A. Permeability study of cracked concrete[J]. Cement and Concrete Research.1997,27(3):381-93.
    [7-3]Aldea C-M, Shah SP. Karr A. Permeability of cracked concrete[J]. RILEM. Material and Structures,1999,32:370-376.
    [7-4]Lawler JS, Zampini D, Shah SP. Permeability of cracked hybrid fiber-reinforced mortar under load[J]. ACI Materials Journal,2002;99(4):379-85.
    [7-5]Tsukamoto M. Tightness of fiber concrete[J]. Darmstadt Concrete:Annual Journal on Concrete and Concrete Structures,1990:215-225.
    [7-6]Yang Yang, et al. Effects of load level on water permeability of concretefC].1st International Conference on microstructure related durability of cementitious composites, Nanjing,2008: 545-552.
    [7-7]Aldea C M, Ghandehari M, Shah SP, Karr A. Estimation of water flow through cracked concrete under Ioad[J]. ACI Materials Journal,2000,97(5):567-75.
    [7-8]Gerard B, et al. Cracking and permeability of concrete under tension[J]. Materials and Structures,29,1996:141-151.
    [7-9]Carola Edvardsen. Water permeability and autogenous healing of cracks in concrete[J]. ACI Materials Journal,1999,96(4):448-454.
    [7-10]Wang K, Jansen DC, Shah SP, Karr A. Permeability study of cracked concrete[J]. Cement and Concrete Research,1997,27(3):381-393.
    [7-11]东南大学.拉应力作用下混凝土渗透系数测试装置及测试方法:中国,200910024476.8[P].2009-7-15.
    [7-12]Sanchun Yoon, Kejin Wang et. al. Interaction between loading, corrosion, and serviceability of reinforced concrete[J]. ACI Materials journal,2000,97(6):637-644.
    [7-13]R. Francois, J. C. Maso. Effect of damage in reinforced concrete on carbonation or chloride penetration[J]. Cement and Concrete Research,1988,18(6):961-970.
    [7-14]Chunqing Li. Corrosion initiation of reinforcing steel in concrete under natural salt spray and service loading-results and analysis[J]. ACI Materials journal,2000,97(6):690-697.
    [7-15]Gowripalan N, Sirivivatnanon V, Lim C C. Chloride diffusivity of concrete cracked in flexure[J]. Cement and Concrete Research,2000,30(5):725-730.
    [7-16]赵尚传,贡金鑫,水金锋.弯曲荷载作用下混凝土氯离子扩散规律的试验研究[J].第四届混凝土结构耐久性科技论坛《混凝土结构耐久性设计与评估方法》.杭州,2006:227-246.
    [7-17]Francois R, Maso J C. Effect of damage in reinforced concrete on carbonation or chloride penetration[J]. Cement and Concrete Research,1988,18(6):961-970.
    [7-18]Sanchun Yoon. Kejin Wang. W.jason Weiss and Surendra P. Shah. Interaction between loading, corrosion and serviceability of reinforced concrete[J]. ACI Materials Journal,2000, 97(6):637-644.
    [7-19]Konin A, Franfois R, Arliguie G. Penetration of chlorides in relation to the micro cracking state into reinforced ordinary and high strength concrete[J]. Materials and Structures,1998. 31(5):310-316
    [7-20]Francois R, Arliguie G and Castel A. Influence of service cracking on service life of reinforced concrete[J]. Concrete under severe conditions 2:environment and loading,1998. 143-152
    [7-21]Vidal T, Castel A, Francois R. Corrosion process and structural performance of a 17 year old reinforced concrete beam stored in chloride environment[J]. Cement and Concrete Research, 2007,37(11):1551-1561.
    [7-22]Schiessl P, Raupach M. Laboratory studies and calculations on the influence of crack width on chloride-induced corrosion in concrete[J]. ACI Materials Journal,94(1).1997:56-62.
    [7-23]Mangat P S, Gurusamy K. Chloride diffusion in steel fibre reinforced marine concrete[J]. Cement and Concrete Research,1987,17(3):385-396.
    [7-24]李佩珍.谢慧才.RCT——快速氯离子检测方法及其应用[J].混凝土,2000(12):46-48.
    [7-25]范庆新,邓春林.韦江雄.混凝土中钢筋锈蚀的电化学无损检测技术[J].武汉理工大学学报,2005,30(3):70-73.
    [8-1]M P Enright, D M Frangopol. Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion[J]. Engineering Structures,1998,20 (11):960-971.
    [8-2]K A Vu, M G Stewart. Structural reliability of concrete bridges including improved chloride-induced corrosion models[J]. Structural Safety,2000,22 (4):313-333.
    [8-3]F Duprat. Reliability of RC beams under chloride-ingress[J]. Construction and Building Materials,2007,21 (8):1605-1616.
    [8-4]D V Val, P A Trapper. Probabilistic evaluation of initiation time of chloride-induced corrosion[J]. Reliability Engineering and System Safety,2008,93 (3):364-372.
    [8-5]ACI 365.1R. Service Life Prediction-State-of-the-Art Report[S], ACI Manual of Concrete Practice-Part 5, Farmington Hills,2002.
    [8-6]金伟良,吕清芳,赵羽习,干伟忠.混凝土结构耐久性设计方法与寿命预测研究进展[J].建筑结构学报,2007,28(1):7-13.
    [8-7]Ahmad Shamsad. Reinforcement corrosion in concrete structures, its monitoring and service life prediction- A review[J]. Cement and Concrete Composites,2003,25(4-5):459-471.
    [8-8]T J Kirkpatrick. R E Weyers. M M Sprinkel, C M Anderson-Cook. Impact of specification changes on chloride-induced corrosion service life of bridge decks[J]. Cement and Concrete Research,2002,32 (8):1189-1197.
    [8-9]E C Bentz. Probabilistic modeling of service life for structures subjected to chlorides[J]. ACI Materials Journal,2003,100 (5):391-397.
    [8-10]Zhao-Hui Lu, Yan-Gang Zhao, Zhi-Wu Yu, Fa-Xing Ding. Probabilistic evaluation of initiation time in RC bridge beams with load-induced cracks exposed to de-icing salts[J]. Cement and Concrete Research,2011,41 (3):365-372.
    [8-11]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社.2000.79-80.
    [8-12]R.E. Melchers. Structural Reliability Analysis and Prediction[M]. Wiley, Chichester, UK, 1999.
    [8-13]R.E. Weyers, W. Pyc, M.M. Sprinkel, T.J. Kirkpatrick. Bridge deck cover depth specifications[J]. Concrete International,2003,25 (2):61-64.
    [8-14]General Guidelines for Durability Design and Redesign [M], DuraCrete, Feb,2000.
    [8-15]中国土木工程学会标准.混凝土结构耐久性设计与施工指南(CCES 01-2004) [S]北京:中国建筑工业出版社,2005.
    [8-16]Poulsen E. On a model of chloride ingress into concrete, Nordic Miniseminar-Chloride Transport. Department of Building Materials[D]. Chalmers University of Technology, Gothenburg; 1993.
    [8-17]Thomas MDA, Bentz EC. Computer program for predicting the service life and life-cycle costs of reinforced concrete exposed to chlorides[R]. Life365 Manual, SFA,2002.
    [8-18]LIFECON. Service Life Models:Instructions on methodology and application of models for the prediction of the residual service life for classified environmental loads and types of structures in Europe [R]. Life Cycle Management of Concrete Infrastructures for Improved Sustainability.2003.
    [8-19]P. S. Mangat, B.T.Molloy. Prediction of long term chloride concentration in concrete [J]. Materials and Structures,1994,27(6):338-346.
    [8-20]Chunhua Lu, Hailong Wang. Weiliang Jin. Modeling the influence of stress level on chloride transport in prestressed concrete[C]. Proceedings of the international conference on durability of concrete structures,Hangzhou,2008:239-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700