层布式混杂纤维混凝土干缩、抗冻性能试验研究及分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1997年以来,多次试验研究证明,层布式钢纤维混凝土和层布式混杂纤维混凝土在抗弯拉、延性、阻裂及韧性等多方面都具有优良的性能,与钢纤维混凝土路面相比,真正实现了“好钢用在刀刃上”。同时,层布式钢纤维与合成纤维的“正混杂效应”又为层布式混杂纤维混凝土路面开创了广阔的发展应用前景。
     本文在课题组前期研究的基础上,对层布式混杂纤维混凝土其中最重要的路用性能—干缩性能和抗冻性能进行了试验研究。通过24个试件的标准试验研究,对普通混凝土、层布式钢纤维混凝土、层布式混杂纤维混凝土以及掺有粉煤灰和磨细矿渣的层布式混杂纤维混凝土四组试件的干缩率、失水率和动弹性模量进行了分析。据干缩试验结果,层布式混杂纤维混凝土各个龄期的干缩率均明显低于普通混凝土,并在龄期180天时,层布式混杂纤维混凝土的干缩率低于普通混凝土达0.021%,相对降低了26.9%,而层布式钢纤维混凝土的干缩率与普通混凝土相差很小。据冻融试验结果,冻融初期层布式混杂纤维混凝土与普通混凝土的相对动弹性模量几乎有着相同的下降趋势,而在冻融损伤发展阶段层布式混杂纤维混凝土相对动弹性模量降低趋势较缓。显然,层布式混杂纤维混凝土干缩和抗冻性能优于普通混凝土和层布式钢纤维混凝土。同时,本文对层布式混杂纤维混凝土干缩机理及抗冻机理也进行了详尽的分析。最后,基于最小二乘原理和混凝土损伤变量的定义,本文建立了层布式混杂纤维混凝土在冻融疲劳作用下的损伤模型,依据冻融试验数据精确地回归得出其损伤演变方程。得出如下结论:层布式混杂纤维混凝土和普通混凝土的初劣点值相同,且在劣化初始阶段具有相同的损伤演变方程;在劣化扩展阶段,层布式混杂纤维混凝土和普通混凝土具有不同的损伤演变方程。层布式混杂纤维混凝土抗冻耐久性明显优于普通混凝土,其主要原因是钢纤维和聚丙烯纤维在混凝土劣化扩展阶段有效地抑制了混凝土内部裂缝的发展,降低了混凝土损伤变量D。
Our researchers have accomplished lots of test since 1997, it is indicated that Layered Steel Fiber Reinforced Concrete (LSFRC) and Layered Hybrid Fiber Reinforced Concrete (LHFRC) have excellent properties of flexural strength, fatigue resistance, crack resistance and durability. Compared with steel fiber concrete pavement, LHFRC has realized "using resources where they are needed mostly ". At the same time, the layered steel fiber and synthetic fiber combined in the LHFRC have realized "positive intermixing effect", which will open new vision for the LHFRC pavement.
     On the basis of the test in the previous stage, this paper presents experimental investigation on the dry-shrinkage and freeze-thaw resistance which are two of most important properties of the LHFRC pavement. By the standard test methods for 24 test specimens, the dry-shrinkage and freeze-thaw durability have been analyzed on ordinary concrete (OC), LSFRC, LHFRC and LHFRC with grinding slag and fly ash. The dry-shrinkage test indicates that at the age of 180 days, the dry-shrinkage ratio of LHFRC is 0.021% smaller than those of OC and LSFRC, namely relatively 26.9%, and the dry-shrinkage ratio of LHFRC with grinding slag and fly ash decreases 40.2%. However, there is minute difference between the dry-shrinkage ratio of the LSFRC and the OC. The freeze-thaw durability test indicates that relative dynamic modulus of elasticity of LHFRC and OC have nearly identical falling trend in the initial freeze-thaw phase, while the falling trend of LHFRC is slower than that of OC in the freeze-thaw damage propagation phase. Obviously, dry-shrinkage and resistance freeze-thaw properties of LHFRC are better than those of OC and LSFRC. At the same time, the mechanism of the dry-shrinkage and resistance freeze-thaw of the LHFRC has been investigated. In the end, a damage model has been formulated for the freeze-thaw resistance degradation of LHFRC. The damage model is based on the least squares theory and a damage variable D . Degradation equations for the LHFRC and OC have been regressed with the experimental data. They are identical in the initial phase, but different in the damage propagation phase. Furthermore, Steel fibers and polypropylene fibers are major factors that greatly increase the freeze-thaw resistance of concrete. The freeze-thaw resistance of LHFRC is better than that of the OC because steel fibers and polypropylene fibers have depressed deterioration of concrete.
引文
[1] 卢哲安,罗国荣,陈应波,等.上下层布式钢纤维混凝土的抗折强度和增强机理研究[J].武汉理工大学学报,2001,23(1):55~59
    [2] 袁海庆,陈景涛等.层布式钢纤维-聚丙烯腈纤维混凝土力学性能试验研究[J].武汉理工大学学报,2003,25(4):31~34
    [3] 陈应波,胡继洪,卢哲安.层布式混杂纤维混凝土渗透性及孔隙率试验研究.混凝土与水泥制品,2004,(4):34~36
    [4] 黄承奎.纤维混凝土结构.北京:机械工业出版社,1999
    [5] Walton P L, Majumdar. Cement-Based Composites with Mixtures of Different Types of Fibres. Composites, 1975, 6 (5): 201~216
    [6] Kobayashi K, Cho R. Flexural Characteristics of Steel Fiber and Polyethylene Fiber Hybrid-Reinforced Concrete. Composites, 1982, 13: 164~168
    [7] Retiver System: An Exclusive Technology for Building Construction Material Industry. Fibronit srl. 1991
    [8] 陈润锋、张国防、顾国芳.我国合成纤维混凝土研究与应用现状[J].建筑材料学报,2001,4(2):167~173
    [9] 赵景海,易成,樊承谟.尼龙、高密度聚乙烯纤维增强混凝土的弯曲性能.全国第三届纤维水泥制品与纤维混凝土学术会议论文集(一),1992:163~170
    [10] 华渊,姜稚清,王志宏.混杂纤维增强水泥基复合材料的疲劳损伤模型[J].建筑材料学报,1998,(6):12~16
    [11] 姚武,蔡江宁,陈兵.混杂纤维增韧高性能混凝土的研究.三峡大学学报,2002,24(1):42~44
    [12] 孙伟,钱红萍,陈惠苏.纤维混杂及其膨胀剂复合对水泥基材料的物理的影响[J].硅酸盐学报,2002,(2):13~18
    [13] 邓宗才著.高性能合成纤维混凝土[M].北京:科学出版社,2003
    [14] M. Sarigaphuti, S.EShah and K.D.Vinson. Shrinkage Cracking and Durability Characteristics of Cellulose Fiber Reinforced Concrete. ACI Materials Journal, No.(7-8), 1993, pp.309~318
    [15] O. Kayali, M.N.Haque, B.Zhu. Drying Shrinkage of Fiber-reinforced Lightweight Aggregate Concrete Containing Fly Ash (J]. Cement and Concrete Research, Vol.29, 1999, pp. 1835~1840
    [16] B.Barr, S.B.Hoseinian, M.A.Beygi.Shrinkage of Concrete Stored in Natural Environments. Cement & Composites, Vol. 2, 2003, pp. 1929~1934
    [17] 沈荣熹,崔琪,李清海.新型纤维增强水泥基复合材料[M].北京:建材工业出版社2004.224~232
    [18] 李光伟.聚丙烯纤维对混凝土抗裂性能的影响[J].水电站设计,2002,(2):98~101
    [19] 葛其荣,郑子祥,高翔,等.宁波白溪水库二期面板聚丙烯纤维混凝土试验研究.建筑结构[J],2001(9):33-36
    [20] 李迎春,游有鳅,钱春香等.混凝土组成成分对收缩性能的影响[J].混凝土,2003(2):40-43
    [21] H A Mesbah, F Buyle-Bodin. Efficiency of polypropylene and metallic fiber on control of shrinkage and cracking of recycled aggregate mortar[J].Construction and Building matrrials, 1999 (13): 439-447
    [22] Yun Mook Lim, Hwai-chung Wu, Victor C Li. Development of flexural composite properties and drying shrinkage behavior of high performance fiber reinforced cementitious composites at early ages. ACI Materials Journal, 1999, 96 (1): 20~26
    [23] 冷发光,刘江山,邢锋.克裂速纤维增强混凝土收缩性能试验研究[J].混凝土,2001(4):34~37
    [24] Hwai-Chung Wu, Yun Mook Lim V C. Li. Application of Recycled Tyrecord in Concrete for Shrinkage Crack Control. Journal of material Science Letters, 1996
    [25] 中国国家建筑材料测试中心,检测报告(编号:98260040),1998
    [26] 马一平,谈慕华,吴科如.聚丙烯纤维几何形态对水泥砂浆塑性干缩开裂性能的影响[J].混凝土与水泥制品,2001(2),38~40
    [27] Akihama S, Suenaga T, Banno T. Mechanical Properties of Carbon Reinforced Cement Composites. International Journal of Cement Composites and Lightweight Concrete, 1986, 8 (1): 21~33
    [28] Law Engineering, Inc. A Materials Engineering Study of Durafiber Concrete. Oct. 2, 1989
    [29] Luigi Biolzi, Gian Luca Garrini, Gianpaolo Rosati. Frost Durability of Very High Performance Cement-Based Materials. Journal of Materials in Civil Engineering, May, 1999: pp. 167~170
    [30] 华渊,姜稚清,王志宏.混杂纤维增强水泥基复合材料的疲劳损伤模型[J].建筑材料学报,1998,(6):35~40
    [31] 陈惠苏,孙伟,穆儒.掺不同品种混合材高强混凝土和钢纤维高强混凝土在冻融、冻融-氯盐同时作用下的耐久性能[J].混凝土与水泥制品,2000(2):23~27
    [32] 孙伟,钱红萍,陈惠苏.纤维混杂及其膨胀剂复合对水泥基材料的物理的影响[J].硅酸盐学报,2002,(2):57~63
    [33] 姚武,冯伟.聚丙烯腈纤维混凝土抗冻融耐久性的研究[J].工业建筑,2003(11):37~40
    [34] 《公路工程水泥及水泥混凝土试验规程》(JTG E30—2005)[S].北京:人民交通出版社,1994
    [35] 《公路水泥混凝土路面施工技术规范》(JTG F30-2003)[S].北京:人民交通出版社,2003
    [36] 中国工程建设标准化协会标准.《钢纤维混凝土试验方法》(CECS 13:89)[S].北京:中国计划出版社,1996:31~33
    [37] 中国工程建设标准化协会.《钢纤维混凝土结构设计与施工规程》(CECS38:92)[S].北京:中国建筑工业出版社,1992
    [38] 中国工程建设标准化协会.《纤维混凝土结构技术规程》(CECS38:2004)[S].北京:中国建筑工业出版社,2004
    [39] 颜海.复合双掺矿质超细粉高性能路面混凝土研究[D].长按大学硕士学位论文,2006,6
    [40] 王强,陈志诚,阎培渝.等强度条件下水胶比与粉煤灰掺量对混凝土自收缩的影响[J].混凝土,2006,(12):32~36
    [41] 郭丽萍,孙伟,郑克仁等.磨细矿渣与粉煤灰掺量对混凝土弯曲疲劳性能的影响.东南大学学报(自然科学版),2006(1):45~48
    [42] 罗金,余本胜,查进.磨细矿渣配制大体积混凝土和高强混凝土的试验研究[J].煤炭工程,2006(1):15~19
    [43] Bazant Z P, Xi Y. Drying creep of concrete: constitutive model and experiments separating its mechanisms[J]. Materials and Structure, 1994, 27: 3~14.
    [44] Gardner N J, Zhao J W. Creep and shrinkage revisited[J]. ACI Materials Journal, 1993, 90 (3): 236~246
    [45] 李顺凯.泥砂浆的干缩研究[D]:[硕士学位论文].南京:南京工业大学,2004
    [46] 黄国兴,惠荣炎.混凝土的收缩[M].北京:中国铁道出版社,1990,1~79
    [47] 申爱琴.水泥与水泥混凝土[M].北京:人民交通出版社,2000
    [48] 王玲.水泥混凝土路面冻害分析与补强研究:[硕士学位论文].天津:河北工业大学,2002
    [49] Cohen M D, Zhou Yixia, Dolch W L, Non-air-entrained Concrete-is It Frost Resistant. AC1 Materials Journal, 1992, 89 (2): 406~415
    [50] Christiane Foy, Michel Pigeon and Nemkumar Banthia. Freeze-thaw Durability and Deicer Salt Scaling Resistance of a 0.25 Water-cement Ratio Concrete. Cement and Concrete Research, 1988, 18 (4): pp. 1234~1242
    [51] Powers TC, Void spacing as a basis for producing air-entrained concrete, AC1 lournai, Proceedings, 1954, 50 (9): 741~760
    [52] Powers T C, Helmuth R A, Theory of Volume Changes in Hardened Portland Cement Paste During Freezing, Proceedings of Highway Research Board, 1953, 32: 285~297
    [53] Fagerlund G, the Critical Degree of Saturation Method of Assessing the Freeze-thaw Durability of Concrete, Materials and Structures, 1977, (10): 58~65
    [54] 李金玉,曹建国,徐文雨等.混凝土冻融破坏机理的研究.混凝土与水泥制品[J],1997年学术年会论文集.北京:混凝土与水泥制品编辑部,1997:58~69
    [55] 邓正刚,李金玉.安全性抗冻混凝土技术条件的研究.中国水利水电科学研究院结构材料所,1999
    [56] 黄士元,蒋家奋,杨南如,周兆桐等.近代混凝土技术[M].陕西科学技术出版社,1998
    [57] 杜庆檐,谭洪光,唐祥正.磨细矿渣粉在混凝土中的应用试验研究[M].混凝土[J],2006,(6):23~27
    [58] LI Yongxin, CHEN Yimin. Influence of Ground Mineral Admixtures on Pore Structure of Hardened Cement Paste and Strength of Cement mortar. Journal of Chinese Ceramic Society. May 2006:pp.575~579
    [59] 蒋元酮,韩素芳.混凝土工程病害与修补加固[M].北京:海洋出版社,1996.317~324
    [60] 杨光松,损伤力学与复合材料损伤[M].国防工业出版社,1995.12~18
    [61] 谢依金,A.E等著,胡春芝等译.水泥混凝土的结构与性能[M].北京:中国建筑工业出版,1984.123~130
    [62] Susanta Chatterji, Aspect of Freezing Process in a Porous Material Water System Part Ⅰ: Freezing and the Properties of Water and Ice, Cement and Concrete Research 1999, 29(4):627-630
    [63] Susanta Chatterji, Aspect of Freezing Process in a Porous Material Water System Part Ⅱ: Freezing and the Properties of Water and Ice, Cement and Concrete Research 1999, 29:(6)781~784
    [64] 孙训方,方孝淑,关来泰.材料力学[M].高等教育出版社,1987
    [65] Rostam S. Service life design—the European approach. Concrete International, 1993, 15(7): 24~32
    [66] Powers T C et al. Theory of Volume Change in Hardened Portland Cement Paste During Freezing. Highway Research Board, 1953, 32(2):32~36.
    [67] 关宇刚,孙伟.冻融疲劳作用下高强混凝土劣化特征点的分析[J].东南大学学报(自然科学版)2001,11(6):25~29.
    [68] 罗昕,卫军.冻融条件下混凝土损伤演变与强度相关性研究.华中科技大学学报(自然科学版),2006,34(1):98~100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700