载流子色散型硅基光波导器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光通信技术的高速发展对光电子器件的要求越来越高,半导体光电子集成技术是实现高性能、低成本的光电子器件的有效途径。目前光电子器件所采用的材料主要是Ⅲ-Ⅴ族材料及宽带隙Ⅲ-Ⅴ族氮化物如AlN. GaN和InN等。这些材料与广泛使用的硅技术无法兼容且制作成本很高,因而限制了它们的应用领域。硅基光子学(Silicon photonics)将硅技术及光电子集成技术相结合,使硅技术的应用从微电子领域扩展到光电子领域。这是值得深入研究的课题。
     硅材料虽然由于其结构上的对称性,不具备一阶电光效应(Pockles效应),但是可以通过载流子色散效应对其进行电光调制,且可以获得良好的调制效果。SOI材料的大折射率差的特性可以大大缩小器件的尺寸。而微电子制作工艺经过几十年的发展,最小线宽可以做到只有三四十纳米,能够很好的应用于硅基光子器件的制作。本论文对载流子色散效应型硅基光波导器件进行理论及实验上的研究,目的是探索利用CMOS工艺制作载流子色散型硅基光波导器件的可行性。本论文的主要创新和贡献在于:
     (1)结合SOI材料结构、pin电学结构和商业的CMOS工艺线的要求,设计了研制硅基光波导器件的可行工艺流程,并成功制作了基于载流子色散效应的硅基光波导器件。在国内,我们最先尝试采用商业的CMOS工艺线方式来制作载流子色散型硅基光波导器件。
     (2)在理论和实验上分析了基于载流子色散效应的马赫-曾德尔干涉仪(Mach-Zehnder-interferometer, MZI)型硅基光波导器件的特性。详细分析了pin结的重掺杂区位置对器件的吸收损耗、散热、消光比、速度等的影响。为消除自由载流子吸收对器件的影响,分析了一种动态调整分束比以提高器件消光比的方法,理论上可以将消光比提高到45 dB以上。
     (3)对硅光波导中1550 nm波段的光电流效应进行了实验研究。利用pin硅波导中存在较宽的雪崩加速区域,观测到明显的雪崩放大电流,实验得到了接近于5的倍增因子。根据反偏pn结硅波导的光场与耗尽区的交迭特性和强电场作用下的隧穿效应,解释了在1550 nm波段pn结硅波导中光电流的增强,讨论了光生载流子对基于pn-MZI结构的硅光调制器的影响和消除方法。
Optical communication advances so fast that higher and higher performance optoelectronic devices are demanded. High performance and low cost optoelectronic devices can be effectively implemented by utilizing semiconductor integration technology. The primary optoelectronic materials include III-V compounds and wide band gapⅢ-Ⅴnitride such as AIN, GaN and InN. However, the application areas of these materials are limited due to their incompatibility with silicon material and high fabrication costs. Silicon photonics, which combines the silicon technology with the integrated optoelectronic technology and makes the silicon technology be applied from microelectronics to optoelectronics, is worthy of intensive investigation.
     It is well known that silicon exhibits no linear electro-optic (Pockels) effect because of its centrosymmetric crystal structure. However, efficient electro-optic modulation can be achieved by employing free carrier dispersion (FCD) effect. Additionnally, device size can greatly shrink due to the large difference of refractive index in silicon-on-insulator (SOI). Minimum line width of 30 or 40 nm can be fabricated by the microelectronic process, which has advanced for decades and can be well applied to the fabrication of silicon photonic devices. In this thesis, silicon optical waveguide device based on the FCD effect is theoreticly and experimentally investigated, to explore the feasibility of fabricating this kind of device by utilizing the CMOS process. This thesis makes innovative works mainly in the following three aspects:
     (1) The characteristic of SOI material, the electric structure of the pin diode and the requirements of the CMOS process are considered together to design feasible process flows. By using these process flows, silicon optical waveguide devices based on the FCD effect were successfully fabricated. In China, we are the first group to fabricate this kind of device by employing a commercial CMOS process.
     (2) pin-MZI based silicon optical waveguide devices are theoreticly and experimentally analyzed. Analysis shows that the heavily doping position can influence absorption loss, heat dissipation, extinction ratio (ER) and speed of the device. Moreover, a method to improve the ER is analyzed by adjusting dynamically the splitting coefficient. By employing this method, the ER can be improved to more than 45 dB in theory.
     (3) The photocurrent effect in silicon waveguides at 1550 nm wavelength is experimentally investigated. Obvious avalanche photocurrent due to the wide avalanche impacting region in the pin diode is measured, with multiplication factor of about 5. On the other hand, the enhancement of the photocurrent in the pn silicon waveguide is mainly attributed to (ⅰ) the overlap between the optical field and the depletion layer and (ⅱ) the strong electric field induced tunnelling effect. Finally, the influence of the photocarriers to a pn-MZI silicon optical modulator and methods to alleviate this influence are also discussed.
引文
[1]任海兰,刘德明.光通信信号处理.北京:电子工业出版社,2006.
    [2]M. M. Forrest, Ⅲ. "Alexander Graham Bell and the photophone:the centennial of the invention of light-wave communications,1880-1980," Opt. News,1980,6(1): 8-16.
    [3]T. H. Maiman, "Stimulated optical radiation in ruby," Nature,1960,187:493-494.
    [4]R. G. Hunsperger, "Integrated optics:theory and technology," fifth edition, Springer-Verlag,2002.
    [5]C. Kao and G. Hockham, "Dielectric-fiber surface waveguide for optical frequency," Proceedings of the Institution of Electrical Engineers (IEE),1986, 133(3):191-198.
    [6]E. Lach and K. Schuh, "Recent advances in ultrahigh bit rate ETDM transmission systems," J. Lightwave Technol,2006,24(12):4455-4467.
    [7]K. Wang, J. Li, A. Djupsjobacka, M. Chaciriski, U. Westergren, S. Popov, G. Jacobsen, V. Hurm, R. E. Makon, R. Driad, H. Walcher, J. Rosenzweig, A. G. Steffan, G. G. Mekonnen and H. G. Bach, "100 Gb/s complete ETDM system based on monolithically integrated transmitter and receiver modules," OSA/OFC/NFOEC 2010, NME1.
    [8]A. Mokhtar and M. Azizoglu, "Adaptive wavelength routing in all-optical networks," IEEE/ACMTransactions on Networking,1998,6(2):197-206.
    [9]A. Kocyigit, D. Gokisik and S. Bilgen, "All-optical networking," Turk J. Elec. Engin.,2001,9(2):72-121.
    [10]D. K. Hunter and D. G. Smith, "New architectures for optical TDM switching," J. Lightwave Technol,1993,11(3):495-511.
    [11]H. G. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner and C. Schubert, "Ultrahigh-speed OTDM-transmission technology," J. Lightwave Technol.,2006,24(12):4616-4627.
    [12]M. J. O'Mahnoy, "WDM technology applications," Opt. and Photon. News, January,1992.
    [13]G. E. Keiser, "A review of WDM technology and applications," Opt. Fiber Technology,1999,5(1):3-39.
    [14]B. Mukherjee, "WDM optical communication networks:progress and challenges," IEEE J. Selected Areas in Commun.,2000,18(10):1810-1824.
    [15]S. V. Maric and V. K. N. Lau, "Multirate fiber-optic CDMA:system design and performance analysis," J. Lightwave Technol.,1998,16(1):9-17.
    [16]A. Stok and E. H. Sargent, "The role of optical CDMA in access networks," IEEE Commun. Magazine, September 2002:83-87.
    [17]M. Hajduczenia, H. J. A. da Silva and P. P.Monteiro, "EPON versus APON and GPON:a detailed performance comparison," J. Opt. Networking,2006,5(4): 298-319.
    [18]B. Miah and L. Cuthbert, "An economic ATM passive optical network," IEEE Commun. Magazine, March 1997:62-68.
    [19]G. Kramer and G. Pesavento, "Ethernet passive optical network (EPON):building a next-generation optical access network," IEEE Commun. Magazine, February 2002:66-73.
    [20]I. Cale, A. Salihovic and M. Ivekovic, "Gigabit passive optical network-GPON,' Proceedings of the ITI 2007 29th Int. Conf. on Information Technology Interfaces, 2007:679-684.
    [21]M. Maier, "WDM passive optical networks and beyond:the road ahead," J. Opt. Commun. Netw.,2009,1(4):C1-C16.
    [22]王启明,“高速率、低价位、智能化“3C”光网络呼唤Si基化、集成化SOC芯片,”光电子激光,2007,18(3):257-262.
    [23]S. E. Miller, "Integrated optics:an introduction," Bell Syst. Tech. J.,1969,48: 2059-2069.
    [24]余金中,“支撑光网络发展的硅基光电子技术研究,”物理,2003,32(12):810-815.
    [25]R. A. Soref and J. P. Lorenzo, "Single-crystal silicon:a new material for 1.3 and 1.6 μm integrated-optical components," Electron. Lett.,1985,21:953-954.
    [26]G. T. Reed, "The optical age of silicon," Nature,2004,427(12):595-596.
    [27]A. Koster, E. Cassan, S. Laval, L. Vivien and D. Pascal, "Ultracompact splitter for submicrometer silicon-on-insulator rib waveguides," J. Opt. Soc. Am. A,2004, 21(11):2180-2185.
    [28]M. R. T. Pearson, A. Bezinger, A. Delage, J. W. Fraser, S. Janz, P. E. Jessop and D. Xu, "Arrayed waveguide grating demultiplexers in silicon-on-insulator," Proc. SPIE,2000,3953:11-18.
    [29]S. Xiao, M. H. Khan, H. Shen and M. Qi, "A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion," Opt. Express,2007,15(22):14765-14771.
    [30]D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman and R. Baets, "Grating couplers for coupling between optical fibers and nanophotonic waveguides," Japanese J. Appl. Phys.,2006,45(8A):6071-6077.
    [31]I. Rendina and G. Cocomilo, "All-silicon Fabry-Perot modulator based on thermo-optic effect," Integrated Optical Circuits,1991,1583:338-343.
    [32]G. Cocorullo and I. Rendina, "Thermo-optical modulation at 1.5μm in silicon etalon," Electron. Lett.,1992,28(1):83-85.
    [33]T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala and M. Leppihalme, "Fast thermo-optical switch based on SOI waveguides," Proc. SPIE,2003,4987: 149-159.
    [34]T. Chu, H. Yamada, S. Ishida and Y. Arakawa, "Compact 1×N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express,2005,13(25): 10109-10114.
    [35]M. Willander, "Carrier dependent parameters in a silicon optical waveguide," J. Appl. Phys.,1983,54(8):4660-4663.
    [36]R. A. Soref and J. P. Lorenzo, "All-silicon active and passive guided-wave components for λ=1.3 and λ=1.6μm," IEEE J. Quantum Electron.,1986, 22(6):873-879.
    [37]R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron.,1987,23(1):123-129.
    [38]S. R. Giguere, L. Friedman, R. A. Soref and J. P. Lorenzo, "Simulation studies of silicon electro-optic waveguide devices,"J. Appl. Phys.,1990,68(10):4964-4970.
    [39]J. P. Lorenzo and R. A. Soref, "1.3 μm electro-optic silicon switch," Appl. Phys. Lett.,1987,51(1):6-8.
    [40]J. F. Reintejs and J. C. Mcgroddy, "Indirect two-photon transitions in Si at 1.06 μm," Phys. Rev. Lett.,1973,30(19):901-903.
    [41]S. Fathpour, K. K. Tsia and B. Jalali, "Two-photon photovoltaic effect in silicon,' IEEE J. Quantum Electron.,2007,43(12):1211-1217.
    [42]V. Raghunathan, R. Claps, D. Dimitropoulos and B. Jalali, "Wavelength conversion in silicon using Raman induced four-wave mixing," Appl. Phys. Lett., 2004,85:34-26.
    [43]M. Dinu, F. Quochi and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths,Appl. Phys. Lett.,2003,82:2954.
    [44]D. Dimitropoulos, B. Houshmand, R.Claps and B. Jalali, "Coupled-mode theory of the Raman effect in silicon on-insulator waveguides," Opt. Lett.,2003,28(20): 1954-1956.
    [45]R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab and Y. A. Vlasov, "Raman amplification in ultrasmall silicon-on-insulator wire waveguides," Opt. Express,2004,12 (16):3713-3718.
    [46]A. Liu, R. Jones, L. Liao, D. Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature,2004,427:615-618.
    [47]A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express,2007,15(2):660-668.
    [48]H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A Fang and M. Paniccia, "An all silicon Raman laser," Nature,2005,433:292-294.
    [49]H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A Fang and M. Paniccia, "A continuous-wave silicon Raman laser," Nature,2005,433:725-728.
    [50]A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express, 2006,14(20):9203-9210.
    [51]J. V. Campenhout, L. Liu, P. R. Romeo, D. V. Thourhout, C. Seassal, P. Regreny, L. D. Cioccio, J. M. Fedeli and R. Baets, "A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks," IEEE Photon. Technol. Lett.,2008,20(16):1345-1347.
    [52]D. Ahn, C. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J, Michel, J. Chen and F. X. Kartner, "High performance, waveguide integrated Ge photodetectors," Opt. Express,2007,15(7):3916-3920.
    [53]L. Vivien, M. Rouviere, J. M. Fedeli, D. M. Morini, J. F. Damlencourt, J. Mangeney, P. Crozat, L. E. Melhaoui, E. Cassan, X. Le Roux, D. Pascal and S. Laval, "High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide," Opt. Express,2007,15(15):9843-9848.
    [54]Y. Kang, H. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng and J. C. Campbell, "Monolithic germanium-silicon avalanche photodiodes with 340 GHz gain-bandwidth product," Nature Photon.,2009,3: 59-63.
    [55]"The 50Gbps Si Photonics Link," www.intel.com,2010.
    [56]周海峰,新型硅基集成光子器件的研究[博士学位论文].杭州:浙江大学,2009.
    [57]M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, Rhys Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton and A. Scherer, "Terahertz all-optical modulation in a silicon-polymer hybrid system," Nature materials,2006,5:703-709.
    [58]A. Shinya, S. Mitsugi, E. Kuramochi and M. Notoni, "Ultrasmall multi-port channel drop filter in two-dimensional photonic crystal on silicon-on-insulator substrate," Opt. Express,2006,14(25):12394-12400.
    [59]A. Liu, L. Liao, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, D. W. Kima, A. Barkaib, R. Jonesa, N. Elekb, R. Cohenb, N. Izhakyb and M. Panicciaa, "Silicon photonic integration for high-speed applications," Proc. SPIE,2008,6898:1-10.
    [60]Y. Qian, J. Song, S. H. Kim, W. Hu and G. P. Nordin, "Compact waveguide splitter networks," Opt. Express,2008,16(7):4981-4990.
    [61]S. Tao, Q. Fang, J. Song, M. Yu, G. Q. Lo and D. L. Kwong, "Cascade wide-angle Y-junction 1×16 optical power splitter based on silicon wire waveguides on silicon-on-insulator," Opt. Express,2008,16(26):21456-21461.
    [62]A. W Fang, E. Lively, Y. Kuo, D. Liang and J. E. Bowers, "A distributed feedback silicon evanescent laser," Opt. Express,2008,16(7):4413-4419.
    [63]W. Bogaerts, S. K. Selvaraja and P. Dumon, "ePIXfab, the silicon photonics platform," Technology paper IMEC_193_01,2008.
    [I]L. Pavesi and G. Guillot, "Optical interconnects:the silicon approach,' Springer-Verlag, Berlin Herdeberg,2006.
    [2]R. A. Soref and J. P. Lorenzo, "All-silicon active and passive guided-wave components for λ=1.3 and λ=1.6μm," IEEE J. Quantum Electron.,1986, 22(6):873-879.
    [3]R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron.,1987,23(1):123-129.
    [4]S. R. Giguere, L. Friedman, R. A. Soref and J. P. Lorenzo, "Simulation studies of silicon electro-optic waveguide devices," J. Appl. Phys.,1990,68(10):4964-4970.
    [5]J. P. Lorenzo and R. A. Soref, "1.3μm electro-optic silicon switch," Appl. Phys. Lett.,1987,51(1):6-8.
    [6]A. Cutolo, M. Iodic, P. Spirito and L. Zeni, "Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide," J. Lightwave Technol.,1997,15(3):505-518.
    [7]G. V. Treyz, P. G. May and J. M. Halbout, "Silicon optical modulators at 1.3 μm based on free-carrier absorption," IEEE Electron Dev. Lett.,1991,12(6):276-278.
    [8]Q. Yan, J. Yu, J. Xia and Z. Liu, "High-speed electrooptical VOA integrated in silicon-on-insulator," Chin. Opt. Lett.,2003,1(4):217-219.
    [9]G. Treyz, P. May and J. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett.,1991, 59(7):771-773.
    [10]Y. Liu, E. Liu, S. Zhang, G. Z. Li and J. S. Luo, "Silicon 1×2 digital optical switch using plasma dispersion," Electron. Lett.,1994,30(2):130-131.
    [11]P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud and Ph. Robert, "CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett., 2000,12(6):660-662.
    [12]Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature,2005,435:325-327.
    [13]S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya and M. Lipson, "High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator," Lasers and Electron-Optics Society,2007:537-538.
    [14]A. Sciuto, S. Libertino, A. Alessandria, S. Coffa and G. Coppola, "Design, fabrication, and testing of an integrated Si-based light modulator," J. Lightwave Technol.,2003,21(1):228-235.
    [15]A. Liu, R. Jones, L. Liao, D. Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature,2004,427:615-618.
    [16]L. Liao, D. Rubio, M. Morse, A. Liu and D. Hodge, "High speed silicon Mach-Zehnder modulator," Opt. Express,2005,13(8):3129-3135.
    [17]F. Gardes, G. T. Reed, N. G. Emerson and C. E. Png, "A sub-micron depletion-type photonic modulator in silicon-on-insulator," Opt. Express,2005, 13(22):8845-8854.
    [18]A. Huang, C. Gunn, G. Li, Y. Liang, S. Mirsaidi, A. Narasimha and T. Pinguet, "A 10Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13μm SOI CMOS," 2006 IEEE International Solid-State Circuits Conferenc, 2006:922-929.
    [19]A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express,2007,15(2):660-668.
    [20]A. Liu, L. Liao, D. Rubin, J. Basak, H. Nguyen, Y. Chetrit, R. Cohen, N. Izhaky and M. Paniccia, "High-speed silicon modulator for future VLSI interconnect," Integrated Photonics and Nanophotonics Research and Applications, OSA Technical Digest (CD) (Optical Society of America,2007), IMD3.
    [21]J. Basaka, L. Liao, A. Liu, D. Rubin, Y. Chetrit, H. Nguyen, D. Samara-Rubio, R. Cohen, N. Izhaky and M. Paniccia, "Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms," Advances in Opt. Technol., 2008, Article ID 678948 (lOpp).
    [22]S. P. Pogossian, L. Vescan and A. Vonsovici, "The single mode condition for semiconductor rib waveguides with large cross section," J. Lightwave Technol., 1998,16(10):1851-1853.
    [23]S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed and V. M. N. Passaro, "Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section,"J.Lightwave Technol.,2005,23(6):2103-2111.
    [24]www.rsoft.com
    [25]www.silvaco.com
    [26]www.matlab.com
    [1]L. Pavesi and G. Guillot, "Optical interconnects:the silicon approach," Springer-Verlag, Berlin Herdeberg,2006.
    [2]G. Treyz, P. May and J. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett.,1991, 59(7):771-773.
    [3]L. Liao, D. Rubio, M. Morse, A. Liu and D. Hodge, "High speed silicon Mach-Zehnder modulator," Opt. Express,2005,13(8):3129-3135.
    [4]C. Zhao, G. Li, E. Liu, Y. Gao and X. Liu, "Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 μm," Appl. Phys. Lett.,1995,67 (17): 2448-2449.
    [5]何赛灵,戴道锌.微纳光子集成.北京:科学出版社,2010.
    [6]Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators," Opt. Express,2007, 15(2):430-436.
    [7]P. Dong, R. Shafiiha, S. Liao, H. Liang, N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy and M. Asghari, "Wavelength-tunable silicon microring modulator," Opt. Express,2010,18(11):10941-10946.
    [8]H. Simos, A. Bogris, N. Raptis and D. Syvridis, "Dynamic properties of a WDM switching module based on active microring resonators," IEEE Photon. Technol. Lett.,2010,22(4):206-208.
    [9]M. A. Popovic, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, E. P. Ippen, F. X. Kartner and H. I. Smith, "Multistage high-order microring-resonator add-drop filters," Opt. Lett.,2006,31(17):2571-2573.
    [10]H. Takahashi, R. Inohara, K. Nishimura and M. Usami, "Expansion of bandwidth of tunable dispersion compensator based on ring resonators utilizing negative group delay," J. Lightwave Technol,2006,24(6):2276-2286.
    [11]H. Zhou, X. Jiang, J. Yang, Q. Zhou, T. Yu and M. Wang, "Wavelength-selective optical waveguide isolator based on nonreciprocal ring-coupled Mach-Zehnder interferometer," J. Lightwave Technol.,2008,26(17):3166-3172.
    [12]G. T. Paloczi, J. Scheuer and A. Yariv, "Compact microring-based wavelength-selective inline optical reflector," IEEE Photon. Technol. Lett.,2005, 17(2):390-392.
    [13]M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange and S. S. Patel, "Integrated resonance-enhanced variable optical delay lines," IEEE Photon. Technol. Lett.,2005,17(4):834-836.
    [14]M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature,2004,432:206-209.
    [15]Z. Xia, Y. Chen and Z. Zhou, "Dual waveguide coupled microring resonator sensor based on intensity detection," IEEE J. Quantum Elect.,2008,44(1): 100-107.
    [16]K. Suzuki, K. Takiguchi and K. Hotate, "Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit," J. Lightwave Technol.,2000, 18(1):66-72.
    [17]D. G. Rabus, Z. X. Bian and A. Shakouri, "A GaInAsP-InP double-ring resonator coupled laser," IEEE Photon. Technol. Lett.,2005,17(9):1770-1772.
    [18]M. Rangaraj and S. Kawakami, "Low loss integrated optical Y-branch," J. Lightwave Technol.,1989,7(5):753-758.
    [19]S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. El-Mougy, I. Golub, J. He, S. Janz, R. McKinnon, P. Poole, S. Raymond, T. J. Smy and B. Syrett, "Carrier injection-based digital optical switch with reconfigurable output waveguide arms," IEEE Photon. Technol. Lett.,2004,16(4):1038-1040.
    [20]Y. Sakamaki, T. Saida, T. Hashimoto and H. Takahashi, "Low-loss Y-branch waveguides designed by wavefront matching method," J. Lightwave Technol., 2009,27(9):1128-1134.
    [21]L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging:principles and applications," J. Lightwave Technol.,1995, 13(4):615-627.
    [22]J. Xiao, X. Liu and X. Sun, "Design of an ultracompact MMI wavelength demultiplexer in slot waveguide structures," Opt. Express,2007,15(13): 8300-8308.
    [23]S.-Y. Tseng, C. Fuentes-Hernandez, D. Owens and B. Kippelen, "Variable splitting ratio 2×2 MMI couplers using multimode waveguide holograms," Opt. Express,2007,15(14):9015-9021.
    [24]R. Yin, J. Teng and S. Chua, "A 1×2 optical switch using one multimode interference region," Opt. Commun.,2008,281(18):4616-4618.
    [25]S. Somekh, E. Garmire, A. Yariv, H. L. Garvin and R. G. Hunsperger, "Channel optical waveguide directional couplers,"Appl. Phys. Lett.,1973,22(2):46-47.
    [26]A. M. Streltsov and N. F. Borrelli, "Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses," Opt. Lett.,2001, 26(1):42-43.
    [27]M. Thorhauge, L. H. Frandsen and P. I. Borel, "Efficient photonic crystal directional couplers," Opt. Lett.,2003,28(17):1525-1527.
    [28]T. Tamir and S. T. Peng, "Analysis and design of grating couplers," Appl. Phys., 1977,14:235-254.
    [29]D. Taillaert, P. Bienstman and R. Baets, "Compact efficient broadband grating coupler for silicon-on-insulator waveguides," Opt. Lett.,2004,29(23):2749-2751.
    [30]D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman and R. Baets, "Grating couplers for coupling between optical fibers and nanophotonic waveguides," Japanese J. Appl. Phys.,2006,45(8A):6071-6077.
    [31]W. Bogaerts, S. K. Selvaraja and P. Dumon, "ePIXfab, the silicon photonics platform," Technology paper IMEC_193_01,2008.
    [32]Y. Tang, Z. Wang, L. Wosinski, U. Westergren and S. He, "Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits," Opt. Lett.,2010,35(8):1290-1292.
    [33]P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, M. K. Smit, "Optical bandwidth and fabrication tolerances of multimode interference couplers," J. Lightwave Technol.,1994,12(6):1004-1009.
    [34]周海峰,新型硅基集成光子器件的研究[博士学位论文].杭州:浙江大学,2009.
    [35]严清峰,余金中,“载流子吸收对SOI Mach-Zehnder干涉型电光调制器性能的影响,”半导体学报,2002,23(12):1308-1312.
    [1]S P. Pogossian, L. Vescan and A. Vonsovici, "The single mode condition for semiconductor rib waveguides with large cross section," J. Lightwave Technol., 1998,16(10):1851-1853.
    [2]S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed and V. M. N. Passaro, "Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section," J. Lightwave Technol.,2005,23(6):2103-2111.
    [3]C. E. Png, S. P. Chan, S. T. Lim and G. T. Reed, "Optical phase modulators for MHz and GHz modulation in silicon-on-insulator (SOI)," J. Lightwave Technol., 2004,22(6):1573-1582.
    [4]X. Xu, S. Chen, H. Xu, Y. Sun, Y. Yu, J. Yu and Q. Wang, "High-speed 2×2 silicon-based electro-optic switch with nanosecond switch time," Chin. Phys. B, 2009,18(9):3900-3904.
    [5]赵佳特,硅基载流子注入型全内反射光波导开关的研究[硕士学位论文].杭州:浙江大学,2010.
    [6]J. Zhao, Y. Zhao, W. Wang, Y. Hao, Q. Zhou, M. Wang and X. Jiang, "The analysis of the thermo-optic effect in the lateral-carrier-injection SOI ridge waveguide devices," Chinese J. Semicond.,2010,31(6):064009 (5pp).
    [7]孙阳,徐学俊,陈少武,“载流子寿命对Si基光电子器件性能的影响,”微纳电子技术,2009,46(6):335-340.
    [8]R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron.,1987,23(1):123-129.
    [9]S. R. Giguere, L. Friedman, R. A. Soref and J. P. Lorenzo, "Simulation studies of silicon electro-optic waveguide devices," J. Appl. Phys.,1990,68(10):4964-4970.
    [10]A. Sciuto, S. Libertino, A. Alessandria, S. Coffa and G. Coppola, "Design, fabrication, and testing of an integrated si-based light modulator," J. Lightwave Technol.,2003,21(1):228-235.
    [11]A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia. "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature,2004,427:615-618.
    [12]F. Sun, J. Yu and S. Chen, "A 2×2 optical switch based on plasma dispersion effect in silicon-on-insulator," Opt. Commun.,2006,262(2):164-169.
    [13]A. Liu, L. Liu, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express,2007,15(2):660-668.
    [14]D. M. Morini, L. Vivien, J. M. Fedeli, E. Cassan, P. Lyan and S. Laval, "Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure," Opt. Express,2008,16(1):334-339.
    [15]J. V. Campenhout, W. M. J. Green, S. Assefa and Y. A. Vlasov, "Low-power,2×2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks," Opt. Express,2009,17(26):24020-24029.
    [16]I. Rendina and G. Cocomilo, "All-silicon Fabry-Perot modulator based on thermo-optic effect," Proc. SPIE,1991,1583:338-343.
    [17]G. Cocorullo and I. Rendina, "Thermo-optical modulation at 1.5 μm in silicon etalon," Electron. Lett.,1992,28(1):83-85.
    [18]www.rsoft.com
    [19]J. V. Campenhout, P. Rojo-Romeo, D. V. Thourhout, C. Seassal, P. Regreny, L. D. Cioccio, J.-M. Fedeli and R. Baets, "Thermal characterization of electrically injected thin-film InGaAsP microdisk lasers on Si," J. Lightwave Technol.,2007, 25(6):1543-1548.
    [20]刘恩科,朱秉生,罗晋生.半导体物理学.北京:国防工业出版社,1994.
    [21]www.silvaco.com
    [22]Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators," Opt. Express,2007, 15(2):430-436.
    [23]S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya and M. Lipson, "High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator," Lasers and Electron-Optics Society,2007:537-538.
    [24]L. Zhang, J. Y. Yang, M. Song, Y. Li, B. Zhang, R. G. Beausoleil and A. E. Willner, "Microring-based modulation and demodulation of DPSK signal," Opt. Express,2007,15(18):11564-11569.
    [25]P. Dong, R. Shafiiha, S. Liao, H. Liang, N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy and M. Asghari, "Wavelength-tunable silicon microring modulator," Opt. Express,2010,18(11):10941-10946.
    [26]S. Manipatruni, L. Chen and M. Lipson, "Ultra high bandwidth WDM using silicon microring modulators," Opt. Express,2010,18(16):16858-16867.
    [27]F. Gardes, G. T. Reed, N. G. Emerson and C. E. Png, "A sub-micron depletion-type photonic modulator in silicon-on-insulator," Opt. Express,2005, 13(22):8845-8854.
    [28]A. Huang, C. Gunn, G. Li, Y. Liang, S. Mirsaidi, A. Narasimha and T. Pinguet, "A 10Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13μm SOI CMOS," 2006 IEEE International Solid-State Circuits Conferenc, 2006:922-929.
    [29]A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express,2007,15(2):660-668.
    [30]A. Liu, L. Liao, D. Rubin, J. Basak, H. Nguyen, Y. Chetrit, R. Cohen, N. Izhaky and M. Paniccia, "High-speed silicon modulator for future VLSI interconnect," Integrated Photonics and Nanophotonics Research and Applications, OSA Technical Digest (CD) (Optical Society of America,2007), IMD3.
    [31]N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy and M. Asghari, "High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25μm silicon-on-insulator waveguides," Opt. Express,2010,18(8):7994-7999.
    [1]M. Casalino, G. Coppola, M. Iodice, I. Rendina and L. Sirleto, "Near-infrared sub-bandgap all-silicon photodetectors:state of the art and perspectives," Sensors, 2010,10:10571-10600.
    [2]刘恩科,朱秉生,罗晋生.半导体物理学.北京:国防工业出版社,1994.
    [3]H. C. Lee and B. V. Zeghbroeck, "A novel high-speed silicon MSM photodetector Operating at 830 nm Wavelength," IEEE Electron Dev. Lett.,1995,16(5): 175-177.
    [4]B. Yang, J. D. Schaub, S. M. Csutak, D. L. Rogers and J. C. Campbell, "10-Gb/s all-silicon optical receiver," IEEE Photon. Technol. Lett.,2003,15(5):745-747.
    [5]B. Ciftcioglu, L. Zhang, J. Zhang, J. R. Marciante, J. Zuegel, R. Sobolewski and H. Wu, "Integrated silicon PIN photodiodes using deep N-well in a standard 0.18-μm CMOS technology," J. Lightwave Technol.,2009,27 (15):3303-3313.
    [6]W. C. Dash and R. Newman, "Intrinsic optical absorption in single-crystal germanium and silicon at 77° and 300°," Phys. Rev.,1955,99(4):1151-1155.
    [7]T. Baehr-Jones, M. Hochberg and A. Scherer, "Photodetection in silicon beyond the band edge with surface states," Opt. Express,2008,16(3):1659-1668.
    [8]H. Chen, X. Luo and A. W. Poon, "Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator," Appl. Phys. Lett.,2009,95:171111 (3pp).
    [9]M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner and T. M. Lyszczarz, "CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett.,2007,19(3):152-154.
    [10]M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon and T. M. Lyszczarz, "Silicon waveguide infrared photodiodes with>35 GHz bandwidth and phototransistors with 50 AW-1 response," Opt. Express,2009,17(7):5193-5204.
    [11]K. Preston, Y. H. D. Lee, M. Zhang and M. Lipson, "Waveguide-integrated telecom-wavelength photodiode in deposited silicon," Opt. Lett.,2011,36(1): 52-54.
    [12]M. Casalino, L. Sirleto, L. Moretti, F. Della Corte and I. Rendina, "Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 μm," J. Opt. A:Pure Appl. Opt.,2006,8:909-913.
    [13]M. Casalino,L. Sirleto, M. Iodice, N. Saffioti, M. Gioffre, I. Rendina and G. Coppola, "Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide," Appl. Phys. Lett.,2010,96:241112 (3pp).
    [14]S. Fathpour, K. K. Tsia and B. Jalali, "Two-photon photovoltaic effect in silicon," IEEE J. Quantum Electron.,2007,43(12):1211-1217.
    [15]J. Bravo-Abad, E. P. Ippen and M. Soljacic, "Ultrafast photodetection in an all-silicon chip enabled by two-photon absorption," Appl. Phys. Lett.,2009,94: 241103 (3pp).
    [16]N. M. Johnson, W. B. Jackson and M. D. Moyer, "Optical spectroscopy of the trivalent silicon defect at the Si-SiO2 interface," Phys. Rev. B,1985,31(2): 1194-1197.
    [17]H. Y. Fan and A. K. Ramdas, "Infrared absorption and photoconductivity in irradiated silicon," J. Appl. Phys.,1959,30:1127-1134.
    [18]L. J. Cheng, J. C. Corelli, J. W. Corbett and G. D. Watkins, "1.8-,3.3-, and 3.9-μ bands in irradiated silicon:correlations with the divacancy," Phys. Rev.,1966, 152 (2):761-774.
    [19]D. H. Reitze, T. R. Zhang, W. M. Wood and M. C. Downer, "Two-photon spectroscopy of silicon using femtosecond pulses at above-gap frequencies," J. Opt. Soc. Am. B,1990,7(1):84-89.
    [20]J. F. Reintjes and J. C. McGroddy, "Indirect TPA-transitions in silicon at 1.06 μm," Phys. Rev. Lett.,1973,30(19):901-903.
    [21]V. Nathan, A. H. Guenther and S. S. Mitra, "Review of multiphoton absorption in crystalline solids," J. Opt. Soc. Am. B,1985,2(2):294-316.
    [22]A. D. Bristow, N. Rotenberg and H. M. van Driel, "Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm," Appl. Phys. Lett.,2007,90:191104 (3pp).
    [23]T. F. Boggess, K. M. Bohnert, K. Mansour, S. C. Moss, I. W. Boyd and A. L. Smirl, "Simultaneous measurement of two-photon coefficient and free-carrier cross section above the bandgap of crystalline silicon," IEEE J. Quantum Electron.,1986,22(2):360-368.
    [24]T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights and M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,"Appl. Phys. Lett.,2002,81(7):1323-1325.
    [25]T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley and M. R. Josey, "Effects of grating heights on highly efficient unibond SOI waveguide grating couplers," IEEE Photon. Technol. Lett.,2000,12(1):59-61.
    [26]H. Kanbe, Y. Mizushima, T. Kimura and K. Kajiyama, "High-speed silicon avalanche photodiodes with built-in field," J. Appl. Phys.,1976,47(8): 3749-3751.
    [27]H. Kang, M. Lee and W. Choi, "6.25-Gb/s optical receiver using a CMOS-compatible Si avalanche photodetector," J. Opt. Society of Korea,2008, 12(4):217-220.
    [28]施敏,伍国珏.半导体器件物理(第三版).西安:西安交通大学出版社,2007.
    [29]P. H. Wendland and M. Chester, "Electric field effects on indirect optical transitions in silicon," Phys. Rev.,1965,140 (4A):1384-1390.
    [30]R. H. Fowler and L. Nordheim, "Electron emission in intense electric fields," Proc. R. Soc. London A,1928,119:173-181.
    [31]T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights and M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements," Appl-Phys. Lett.,2002,81:1323 (3pp).
    [32]H. Zhou, Y. Zhao, W. Wang, J. Yang, M. Wang and X. Jiang, "Performance influence of carrier absorption to the Mach-Zehnder-interference based silicon optical switches," Opt. Express,2009,17(9):7043-7051.
    [33]http://www.silvaco.com.
    [34]H. Chen and A. W. Poon, "Two-photon absorption photocurrent in p-i-n diode embedded silicon microdisk resonators," Appl. Phys. Lett.,2010,96:191106 (3pp).
    [35]J. Bravo-Abad, E. P. Ippen and M. Soljacic, "Ultrafast photodetection in an all-silicon chip enabled by two-photon absorption," Appl. Phys. Lett.,2009,94: 241103 (3pp).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700