扫频激光光源的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学相干层析成像(Optical Coherence Tomography, OCT)技术是一种微米级分辨率的成像技术,通过测量散射光的振幅和回波时延,从而获得生物样品内部层析结构信息。本文的研究工作主要解决了光学相干层析实时成像系统研究的一个关键技术问题——高性能快速扫频激光光源的设计与搭建。提出三种不同调谐滤波设计新方案,研制了四套扫频激光光源,并将该扫频激光光源应用于光学频域成像(optical frequency domain imaging, OFDI)系统,实现了对生物组织内部高分辨实时成像研究。具体研究内容以及创新性研究成果包括:
     1、研制基于光纤法布里珀罗调谐滤波器(fiber Fabry-Perot tunable filter, FFP-TF)的全光纤型环形腔扫频激光光源。该扫频激光光源中心波长为1320 nin,整个扫频范围为120 nm,光谱半高全宽为65 nm,瞬时线宽的3 dB带宽为0.08nm,扫频速度8 kHz,平均光功率输出9 mW。全光纤型扫频激光光源具有结构紧凑,抗干扰能力强,易于便携等特点。
     2、光纤法布里珀罗全光纤型扫频激光光源应用于光学频域成像,得到轴向分辨率为13.6μm(空气中),最大成像深度为3.4 mm(空气中),最大灵敏度为112 dB,实时获得了生物组织和散射样品的高分辨率实时在体成像。通过改变法布里珀罗调谐滤波器不同驱动函数,研究OCT成像变化,同时还实验研究了腔的长度与扫频速度和光功率关系,为优化扫频激光光源提供参考意义。
     3、研制基于光栅/多面镜调谐滤波器的短腔宽带快速扫频激光光源,中心波长为1312 nm,扫频速度50 kHz,扫频范围为170 nm,半高全宽为116 nm,平均光功率输出2 mW。调谐滤波器由光栅和旋转多面镜组成,采用了非望远镜型利特罗结构,以简化滤波光学系统。在激光谐振腔中采用了放大自发辐射光谱范围互为拓展的双半导体光放大器为增益介质,并将二者并联使用以确保宽光谱范围。
     4、研制了基于光栅/多面镜调谐滤波器的傅里叶域锁模(Fourier domain mode locking, FDML)长腔线性扫频激光光源。激光谐振腔主要包含增益介质、调谐滤波器和延迟线。增益介质采用了两个串联的半导体光放大器以确保大的增益系数。FDML扫频激光光源的中心波长为1290 nm,扫频速度为14.8 kHz,扫频范围为108 nm,半高全宽为61 nm,输出平均功率达3 mW。
     5、研制基于组合型调谐滤波器的超宽带窄瞬时线宽线性扫频激光光源。组合型调谐滤波器由自由光谱范围宽、光谱分辨率低的光栅/多面镜调谐滤波器和工作在非谐振条件下的自由光谱范围窄、光谱分辨率高的法布里珀罗调谐滤波器级联而成,兼备宽的自由光谱范围和高光谱分辨率双重优势。研制的扫频激光光源的中心波长为1290 nm,扫频光谱范围为180 nm,半高全宽为114nm,瞬时线宽可达到0.03 nm,扫频速度为23.3 kHz,相应的激光输出平均功率为3 mW。
Optical coherence tomography (OCT) is a micrometer-resolution imaging technique that produces cross-sectional images of sample microstructure by measuring the amplitude and echo time delay of backscattered light. In this dissertation, the research is focused on development of high performance swept laser source which is the key technique of real-time optical coherence tomography imaging. Three different tuning filters design are proposed, four sets of swept laser source based on different methods are developed. Implementing the laser source in optical frequency domain imaging system, real-time and high resolution structural imaging of biological tissue is demonstrated. The main work and innovations are summarized as follows:
     1. All-fiber ring-cavity wavelength swept laser source based on fiber Fabry-Perot tunable filter is demonstrated. The developed laser source provides up to 8,000 sweeps per second over a full-width wavelength tuning range of 120 nm, full width at half maximum of 65 nm at center wavelength of 1320 nm.3 dB bandwidth of the instantaneous linewidth is about 0.08 nm and average power is 9 mW. All-fiber swept laser is compact, portable and easy to maintenance.
     2. Implementing the all-fiber Fabry-Perot tunable filter based swept laser source in optical frequency domain imaging system, the axial resolution is 13.6μm (in air), the axial range is 3.4 mm (in air) and maximum sensitivity is about 112 dB. Real-time in vivo structural imaging of biological tissue and scattering medium is obtained. For optimization consideration based on this custom-built swept laser, experimental study on imaging quality relevant parameters of the swept laser with sine and ramp driving waveforms to the FFP-TF is conducted, and investigation of the repetition rate and output power on the cavity length is done.
     3. A broad-band high-speed short-cavity swept laser source based on grating & polygon mirror tunable filter is reported. Center wavelength of the developed swept laser source is 1312 nm with a turning range of 170 nm and 3dB bandwidth of 116 nm. A repetition frequency up to 50 kHz with an average output power of 2 mW is realized. In order to facilitate the filtering system, the tunable filter consists of polygon scanner and grating in Littrow telescope-less configuration. Parallel implementation of two semiconductor optical amplifiers with different wavelength range is adopted in the laser resonator for broad-band light amplification.
     4. A Fourier domain mode locking (FDML) long-cavity linearized swept laser source is presented. The laser resonator includes gain medium, tunable filter and delay line. Serial implementation of two semiconductor optical amplifiers is adopted in the laser for gain amplification. The tunable speed of the FDML swept laser centered at 1290 nm is 14.8 kHz with an average output power of 3 mW. The turning range is 108 nm with 3dB bandwidth of 61 nm.
     5. A novel broad tunable bandwidth and narrow instantaneous line-width linear swept laser source using combined tunable filter is proposed. The combined filter consist of a fiber Fabry-Perot tunable filter working at the non-resonant frequency and a tunable filter based on diffractive grating with scanning polygon mirror. The trade-off between bandwidth and instantaneous line-width is alleviated. The swept laser working at 1290 nm center wavelength provides a tuning range of 180 nm with 3dB line-width of about 114 nm at sweeping rate of 23.3 kHz. The instantaneous linewidth can be reach to 0.03 nm and output power is 3 mW.
引文
1. D. Huang, E. A. Swanson, C. P. Lin et al., Optical coherence tomography.-Science,1.991, 254(5035):1178-1181
    2. Brett E. Bouma, Guillermo J. Tearney, Handbook of Optical Coherence Tomography, New York:Marcel Dekker, Inc.,2002,1-40
    3. P H Tomlins and R K Wang, Theory, developments and applications of optical coherence tomography. J. Phys. D:Appl. Phys.,2005,38:2519-2535
    4. X. Li, T. H. Ko, and J. G. Fujimoto, Intraluminal fiber-optic Doppler imaging catheter for structural and functional optical coherence tomography. Opt. Lett.,2001,26(23):1906-1908
    5. Andrew M R, Manish D K, Siavash Y et al., In vivo video rate optical coherence tomography. Optics Express,1998,3(6):219-229
    6. R. Leitgeb, M. Wojtkowski, A. Kowalczyk et al., Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. Opt. Lett.,2000,25(11): 820-822
    7. K. Wang, Z. Ding, T. Wu et al., Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system. Opt. Express,2009, 17(14):12121-12131
    8. F. Lexer, C. K. Hitzenberger, A. F. Fercher et al., Wavelength-tuning interferometry of intraocular distances. Appl. Opt.,1997,36(25):6548-6553
    9. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, Optical coherence tomography using a frequency-tunable optical source. Opt. Lett.,1997,22(5):340-342
    10. B. Golubovic, B. E. Bouma, G. J. Tearney et al., Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr^ 4+:forsterite laser. Opt. Lett.,1997,22(22): 1704-1706
    11. R. Forte, G L. Cennamo, M L. Finelli, G de Crecchio, Comparison of time domain Stratus OCT and spectral domain SLO/OCT for assessment of macular thickness and volume. Eye, 2009,23(11):2071-2078
    12. M. Choma, M. Sarunic, C. Yang et al., Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express,2003,11(18):2183-2189
    13. B. Liu, and M. E. Brezinski, Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography. J. Biomed. Opt.,2007,12(4):0440071-04400712
    14. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg et al., Optical coherence tomography:a review of clinical development from bench to bedside. J. Biomed. Opt.,2007,12(5): 0514031-05140321
    15. Y. Yasuno, V. D. Madjarova, S. Makita et al., Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. Opt. Express,2005,13(26):10652-10664
    16. V. J. Srinivasan, D. C. Adler, Y. Chen et al., Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. Investigative Ophthalmology & Visual Science,2008,49(11):5103-5110
    17. M. W. Jenkins, D. C. Adler, M. Gargesha et al., Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser. Optics Express,2007,15(10):6251-6267
    18. K. Wang and Z. Ding, Spectral calibration in spectral domain optical coherence tomography. Chin. Opt. Lett.,2008,6(12):902-904
    19. Y. Zhang, X. Li, L. Wei et al., Time-domain interpolation for Fourier-domain optical coherence tomography. Opt. Lett.,2009,34(12):1849-1851
    20.王玲,丁志华,史国华等,基于快速扫描延迟线相位调制的光纤型光学相干层析系统.中国激光,2008,35(3):472-476
    21. Chien-Chung Tsai, Ting-Hao Chen, Yen-Sheng Lin et al., Ce3+:YAG double-clad crystal-fiber-based optical coherence tomography on fish cornea. Opt. Lett.,2010,35(6): 811-813
    22. S. H. Yun, C. Boudoux, M. C. Pierce et al., Extended-cavity semiconductor wavelength-swept laser for biomedical imaging. IEEE Photon. Technol. Lett.,2004,16(1): 293-295
    23. A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, Speckle Reduction in OCT using Massively-Parallel Detection and Frequency-Domain Ranging. Opt. Express,2006, 14(11):4736-4745
    24. V. J. Srinivasan, R. Huber, I. Gorczynska et al., High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm. Opt. Lett., 2007,32(4):361-363
    25. S. H. Yun, C. Boudoux, G. J. Tearney et al., High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. Opt. Lett.,2003,28(20):1981-1983
    26. C. Chong, T. Suzuki, A. Morosawa et al., Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength-swept light source. Opt. Express,2008,16(25): 21105-21118
    27. S. H. Yun, G. Tearney, J. de Boer et al., Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts. Opt. Express,2004,12(23): 5614-5624
    28. H. Lim, J. F. De Boer, B. H. Park et al., Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range. Opt. Express,2006,14(13):5937-5944
    29. S. M. R. Motaghian Nezam, High-speed polygon-scanner-based wavelength-swept laser source in the telescope-less configurations with application in optical coherence tomography. Opt. Lett.,2008,33(15):1741-1743
    30. W. Y. Oh, S. H. Yun, G. J. Tearney et al.,115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser. Opt. Lett.,2005,30(23):3159-3161
    31. W. Y. Oh, S. H. Yun, G. J. Tearney et al., Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers. IEEE Photon. Technol. Lett.,2005,17(3):678-680
    32. E. C. Lee, J. F. de Boer, M. Mujat et al., In vivo optical frequency domain imaging of human retina and choroid. Opt. Express,2006,14(10):4403-4411
    33. R. Huber, M. Wojtkowski, K. Taira and J. G. Fujimoto, Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging:design and scaling principles. Opt. Express,2005,13(9):3513-3528
    34. J. Zhang, Q. Wang, B. Rao et al., Swept laser source at 1 μm for Fourier domain optical coherence tomography. Appl. Phys. Lett.,2006,89(073901):0739011-0739013
    35. M. A. Choma, K. Hsu, and J. A. Izatt, Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source. J. Biomed. Opt.,2005,10(4):0440091-0440096
    36. R. Huber, M. Wojtkowski, and J. G. Fujimoto, Fourier Domain Mode Locking (FDML):A new laser operating regime and applications for optical coherence tomography. Optics Express,2006,14(8):3225-3237
    37. B. R. Biedermann, W. Wieser, C. M. Eigenwillig et al., Dispersion, coherence and noise of Fourier domain mode locked lasers. Opt. Express,2009,17(12):9947-9961
    38. M. Y. Jeon, J. Zhang, and Z. Chen, Characterization of Fourier domain modelocked wavelength swept laser for optical coherence tomography imaging. Opt. Express,2008,16(6): 3727-3737
    39. R. Huber, D. C. Adler, and J. G. Fujimoto, Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Optics Letters,2006,31(20):2975-2977
    40. M. Y. Jeon, J. Zhang, Q. Wang and Z. P. Chen, High speed and wide bandwidth Fourier domain mode locked wavelength swept laser with multiple SOAs. Optics Express,2008, 16(4):2547-2554
    41. C. M. Eigenwillig, B. R. Biedermann, G. Palte et al., K-space linear Fourier domain mode locked laser and applications for optical coherence tomography. Opt. Express,2008,16(12): 8916-8937
    42. G. Y. Liu, A. Mariampillai, B. A. Standish et al., High power wavelength linearly swept mode locked fiber laser for OCT imaging. Opt. Express,2008,16(18):14095-14105
    43. C. M. Eigenwillig, W. Wieser, B. R. Biedermann and Robert Huber, Subharmonic Fourier domain mode locking. Optics Letters,2009,34(6):725-727
    44. S. K. Dubey, T. Anna, C. Shakher et al., Fingerprint detection using full-field swept-source optical coherence tomography. Appl. Phys. Lett.,2007,91(181106):1811061-1811063
    45. S. Y. Ryu, J. W. You, Y. K. Kwak et al., Design of a Prism to Compensate the Image-shifting Error of the Acousto-optic Tunable Filter. Opt. Express,2008,16(22):17138-17147
    46. T. Amano, H. Hiro-Oka, D. H. Choi et al., Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser. Appl. Opt.,2005,44(5):808-816
    47. M. Kourogi, Y. Kawamura, Y. Yasuno et al., Programmable high speed (-1MHz) Vernier-mode-locked frequency-swept laser for OCT imaging. Proc. of SPIE,2008,6847: 68470Z1-68470Z8
    48. S. Moon, and D. Y. Kim, Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source. Opt. Express,2006,14(24):11575-11584
    49. S. T. Sanders, Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy. Applied Physics B: Lasers and Optics,2002,75(6):799-802
    50.吴彤,丁志华,20kHz扫频光学相干层析系统.中国激光,2009,36(2):503-508
    51. S. Yun, G. Tearney, J. de Boer et al., High-speed optical frequency-domain imaging. Opt. Express,2003,11(22):2953-2963
    52. S. Yun, G. Tearney, J. de Boer et al., Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting. Opt. Express,2004,12(20):4822-4828
    53. Yoshiaki Yasuno, Violeta Dimitrova Madjarova, Shuichi Makita, Three dimensional and high speed swept source optical coherence tomography for in vivo investigation of human anterior eye segments. Opt. Express,2005,13(26):10652-10664
    54. R. Huber, D. C. Adler, V. J. Srinivasan et al., Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second. Opt. Lett.,2007,32(14):2049-2051
    55. L. Ai, F. Yuan, and Z. Ding, Measurement of spatial object's exterior attitude based on linear CCD. Chin. Opt. Lett.,2008,6(7):505-509
    56. G. J. Tearney, S. Waxman, M. Shishkov et al., Three-Dimensional Coronary Artery Microscopy by Intracoronary Optical Frequency Domain Imaging. J Am Coll Cardiol Img, 2008,1(6):752-761
    57. B. D. Goldberg, S. M. R. Motaghian Nezam, P. Jillella et al., Miniature swept source for point of care Optical Frequency Domain Imaging. Opt. Express,2009,17(5):3619-3629
    1. 周炳琨,高以智,陈倜嵘,陈家骅,激光原理.北京:国防工业出版社,2004,201-202
    2. 陈钰清,王静环,激光原理.杭州:浙江大学出版社,2002,32-39
    3. R. Huber, M. Wojtkowski, K. Taira et al., Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging:design and scaling principles. Opt. Express,2005, 13(9):3513-3528
    4. C. Dunsby and P. M. W. French., Techniques for depth-resolved imaging through turbid media including coherence-gated imaging. J. Phys. D:Appl. Phys.,2003,36:207-217
    5. J M Schmitt, A Knuttel, M Yadlowsky et al., Optical coherence tomography of a dense tissue: statistics of attenuation and backscattering. Phys. Med. Biol.,1994,42(7):1427-1439
    6. Benjamin R. Biedermann, Wolfgang Wieser, Christoph M. Eigenwillig, and Robert Huber, Recent developments in Fourier Domain Mode Locked lasers for optical coherence tomography:Imaging at 1310 nm vs.1550 nm wavelength. J. Biophoton.,2009,2(6-7): 357-363
    7. E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y.Jeon, W. Jung, and Z. P. Chen, Characterization of FBG sensor interrogation based on a FDML wavelength swept laser. Opt. Express,2008,16(21),16552-16560
    8. Yuichi Tohmori, Yuzo Yoshikuni, Hiroyuki Ishii, et al., B road-Rang e W aveleng th-Tunable Superstructure Grating (SSG) DBR Lasers. IEEE Journal of Quantum Electronics, 1993,29(6):1817-1823
    9. B. Potsaid, I. Gorczynska, V. J. Srinivasan, et al., Ultrahigh speed Spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second, Opt. Express,2008, 16:15149-15169.
    10. I. Grulkowski, M. Gora, M. Szkulmowski, et al., Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera, Opt. Express,2009,17:4842-4858.
    11. R. Huber, D. C. Adler, V. J. Srinivasan et al., Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second [J]. Opt. Lett.,2007,32(14):2049-2051
    12. Hideo Kakuma, DongHak Choi, Hiroyuki Furukawa, et al.,24 mm depth range discretely swept optical frequency domain imaging in dentistry. Proc. of SPIE,2009,7162:716208-1-8
    13. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, B. E. Bouma, High-speed optical frequency-domain imaging. Optics Express,2003,11(22):2953-2963
    14. R. Huber, K. Taira, M. Wojtkowski and J. G. Fujimoto, Fourier Domain Mode Locked Lasers for OCT imaging at up to 290 kHz sweep rates. Proc. of SPIE-OSA Biomedical Optics,2005,5861:58611B-1-6
    15. R. Huber, M. Wojtkowski, and J. G. Fujimoto, Fourier Domain Mode Locking (FDML):A new laser operating regime and applications for optical coherence tomography. Opt. Express, 2006,14(8):3225-3237
    16. Adler, Desmond C.; Chen, Yu; Huber, Robert; Schmitt, Joseph; Connolly, James; Fujimoto, James G, Three-dimensional endomicroscopy using optical coherence tomography. Nature Photonics,2007,1(12):709-716
    17. E. C. Lee, J. F. de Boer, M. Mujat et al.. In vivo optical frequency domain imaging of human retina and choroid [J]. Opt. Express,2006,14(10):4403-4411
    18. V. J. Srinivasan, D. C. Adler, Y. Chen et al.. Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head [J]. Investigative Ophthalmology & Visual Science,2008,49(11):5103-5110
    19. M. Y. Jeon, J. Zhang, and Z. P. Chen, Characterization of Fourier domain mode-locked wavelength swept laser for optical coherence tomography imaging. Opt. Express 16(6), 3727-3737 (2008).
    20. Wolfgang Wieser, Benjamin R. Biedermann, Thomas Klein, Christoph M. Eigenwillig and Robert Huber, Multi-Megahertz OCT:High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt. Express,2010,18(14):14685-14704
    21. Wang-Yuhl Oh, Benjamin J. Vakoc, Milen Shishkov, Guillermo J. Tearney, and Brett E. Bouma,>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging. Opt. Lett.,2010,35(17):2919-2921
    22. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto. Optical coherence tomography using a frequency-tunable optical source [J]. Opt. Lett.,1997,22(5):340-342
    23. S. H. Yun, C. Boudoux, G. J. Tearney et al., High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter [J]. Opt. Lett.,2003,28(20):1981-1983
    24. W. Y. Oh, S. H. Yun, G. J. Tearney et al..115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser [J]. Opt. Lett.,2005,30(23):3159-3161
    25. R. Huber, D. C. Adler, and J. G. Fujimoto. Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s [J]. Opt. Lett.,2006,31(20):2975-2977
    26. C. M. Eigenwillig, W. Wieser, B. R. Biedermann et al.. Subharmonic Fourier domain mode locking [J]. Opt. Lett.,2009,34(6):725-727
    27. Barry Cense, Nader Nassif, Teresa Chen, Mark Pierce, Seok-Hyun Yun, B. Park, Brett Bouma, Guillermo Tearney, and Johannes de Boer, Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography [J], Optics Express,2004, 12(11):2435-2447
    28. Nader Nassif, Barry Cense, B. Hyle Park, Seok H. Yun, Teresa C. Chen, Brett E. Bouma, Guillermo J. Tearney, and Johannes F. de Boer, In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography, Opt. Lett.2004,29(5): 480-482
    29. Zhang Y, Cense B, Rha J, Jonnal RS, Gao W, Zawadzki RJ, Werner JS, Jones S, Olivier S, Miller DT. High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography [J], Optics Express,2006,14(10):4380-4394
    1. R. Huber, M. Wojtkowski, and J. G. Fujimoto, Fourier domain mode locking (FDML):a new laser operating regime and applications for optical coherence tomography. Optics Express, 2006,14(8):3225-3237
    2. C. M. Eigenwillig, B. R. Biedermann, G. Palte et al., K-space linear Fourier domain mode locked laser and applications for optical coherence tomography. Opt. Express,2008,16(12): 8916-8937
    3. M. Y. Jeon, J. Zhang, Q. Wang, and Zh. P. Chen, High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs. Optics Express,2008, 16(4):2547-2554
    4. Desmond C. Adler, Robert Huber, and James G. Fujimoto, Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers. Opt. Lett.,2007,32(6):626-628
    5. C. M. Eigenwillig, W. Wieser, B. R. Biedermann et al., Subharmonic Fourier domain mode locking. Opt. Lett.,2009,34(6):725-727
    6. S. R. Chinn, E. A. Swanson, J. G. Fujimoto, Optical coherence tomography using a frequency-tunable optical source, Optics Letters,1997,22(5):340-342
    7. B. Golubovic, B. E. Bouma, G. J. Tearney et al., Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr^ 4+:forsterite laser. Opt. Lett.,1997,22(22): 1704-1706
    8. Sebastian Marschalla, Thomas Kleinb, Wolfgang Wieserb et al., FDML swept source at 1060 nm using a tapered amplifier. Proc. of SPIE,2010,7554:75541H-1-5
    9. Sebastian Marschall, Thomas Klein, Wolfgang Wieser, Benjamin R. Biedermann, Kevin Hsu, Kim P. Hansen, Bernd Sumpf, Karl-Heinz Hasler, Gotz Erbert, Ole B. Jensen, Christian Pedersen, Robert Huber, and Peter E. Andersen, Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier. Opt. Express,2010 18(15):15820-15831
    10. Nicolae Miron, Tunable laser with tilted-mirrors interferometer and dynamic wavelength reference. Proc. of SPIE,2009,7195:71952J-1-12
    11. Kyle H. Y. Cheng, Beau A. Standish, Victor X. D. Yang, K. K. Y. Cheung, Xijia Gu, Edmund Y. Lam, and K. K. Y. Wong, Wavelength-swept spectral and pulse shaping utilizing hybrid Fourier domain modelocking by fiber optical parametric and erbium-doped fiber amplifiers. Opt. Express,2010,18(3):1909-1915
    12. Y. Wang, W. Liu, J. Fu, and D. Chen, Quasi-Distributed Fiber Bragg Grating Sensor SystemBased on a Fourier Domain Mode Locking Fiber Laser. Laser Physics,2009,19(3): 450-454
    13. Thomas Klein, Wolfgang Wieser, Benjamin R. Biedermann, Christoph M. Eigenwillig, Gesa Palte, and Robert Huber, Raman-pumped Fourier-domain mode-locked laser:analysis of operation and application for optical coherence tomography. Opt. Lett.2008,33(23): 2815-2817
    14. S. K. Dubey, T. Anna, C. Shakher et al., Fingerprint detection using full-field swept-source optical coherence tomography. Appl. Phys. Lett.,2007,91 (181106):1811061-1811063
    15. S. Y. Ryu, J. W. You, Y. K. Kwak et al., Design of a Prism to Compensate the Image-shifting Error of the Acousto-optic Tunable Filter. Opt. Express,2008,16(22):17138-17147
    16. Gyanendra Sheoran, Satish Dubey, Arun Anand et al., Swept-source digital holography to reconstruct tomographic images. Optics Letters,2009,34(12):1879-1881
    17. J. Zhang, Q. Wang, B. Rao, and Zh. P. Chen, wept laser source at 1 um for Fourier domain optical coherence tomography. Applied Physics Letters,2006,89(073901):1-3
    18. R. Huber, M. Wojtkowski, K. Taira et al., Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging:design and scaling principles. Opt. Express,2005, 13(9):3513-3528
    19. M. Kourogi, Y. Kawamura, Y. Yasuno et al., Programmable high speed (-1MHz) Vernier-mode-locked frequency-swept laser for OCT imaging. Proc. of SPIE,2008,6847: 68470Z1-68470Z8
    20. T. Amano, H. Hiro-Oka, D. H. Choi et al., Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser. Appl. Opt., 2005,44(5):808-816
    21. Michael Buric, Joel Falk, and Kevin P. Chen et al., Piezo-electric tunable fiber Bragg grating diode laser for chemical sensing using wavelength modulation spectroscopy. Opt. Express, 2006,14(6):2178-2183
    22. S. H. Yun, C. Boudoux, M. C. Pierce et al., Extended-cavity semiconductor wavelength-swept laser for biomedical imaging. IEEE Photon. Technol. Lett.,2004,16(1): 293-295
    23. V. J. Srinivasan, R. Huber, I. Gorczynska et al., High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm. Opt. Lett., 2007,32(4):361-363
    24. S. H. Yun, G. Tearney, J. de Boer et al., Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts. Opt. Express,2004,12(23): 5614-5624
    25. H. Lim, J. F. De Boer, B. H. Park et al., Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range. Opt. Express,2006,14(13):5937-5944
    26. S. M. R. Motaghian Nezam, High-speed polygon-scanner-based wavelength-swept laser source in the telescope-less configurations with application in optical coherence tomography. Opt. Lett.,2008,33(15):1741-1743
    27. W. Y. Oh, S. H. Yun, G. J. Tearney et al.,115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser. Opt. Lett.,2005,30(23):3159-3161
    28. Kouki Totsuka, Keiji Isamoto, Tooru Sakai et al., MEMS scanner based swept source laser for optical coherence tomography. Proc. of SPIE,2010,7554:75542Q-1-5
    29. Tong Wu,Zhihua Ding,Kai Wang,Chuan Wang, Swept source optical coherence tomography based on non-uniform discrete fourier transform. Chin. Opt. Lett,2009,7(10):941-944
    30. T. Wu, Z. Ding, M. Chen, and L. Xu, Development of high-speed swept-source optical coherence tomography system at 1320 nm. Journal of Innovative Optical Health Sciences, 2009,2(1):117-122
    1. R. Huber, M. Wojtkowski, K. Taira et al., Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging:design and scaling principles. Opt. Express,2005, 13(9):3513-3528
    31..1. Zhang, Q. Wang, B. Rao, and Zh. P. Chen, wept laser source at 1 um for Fourier domain optical coherence tomography. Applied Physics Letters,2006,89(073901):1-3
    2. Michael A. Choma, Kevin Hsu, Joseph A. Izatt, Swept source optical coherence tomography usingan all-fiber 1300-nm ring laser source. Journal of Biomedical Optics,2005,10(4): 044009-1-6
    3. Tsung-Han Tsai, Chao Zhou, Desmond C. Adler, and James G. Fujimoto, Frequency comb swept lasers. Opt. Express,2009,17(23):21257-21270
    4. Minghui Chen, Zhihua Ding, Lei Xu et al., All-fiber ring-cavity based frequency swept laser source for frequency domain OCT. Chin. Opt. Lett.,2010,8(2):202-205
    5. S. H. Yun, C. Boudoux, M. C. Pierce et al., Extended-cavity semiconductor wavelength-swept laser for biomedical imaging. IEEE Photon. Technol. Lett.,2004,16(1): 293-295
    6. V. J. Srinivasan, R. Huber, I. Gorczynska et al., High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm. Opt. Lett., 2007,32(4):361-363
    7. S. H. Yun, C. Boudoux, G. J. Tearney et al., High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. Opt. Lett.,2003,28(20):1981-1983
    8. W. Y. Oh, S. H. Yun, G. J. Tearney et al.,115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser. Opt. Lett.,2005,30(23):3159-3161
    9. Michael K. K. Leung, Adrian Mariampillai, Beau A. Standish, Kenneth K. C. Lee, Nigel R. Munce,I. Alex Vitkin, and Victor X. D. Yang, High-power wavelength-swept laser in Littman telescope-less polygon filter and dual-amplifier configuration for multichannel optical coherence tomography. Opt. Lett.,2009,34(18):2814-2816
    10. S. M. R. Motaghian Nezam, High-speed polygon-scanner-based wavelength-swept laser source in the telescope-less configurations with application in optical coherence tomography. Opt. Lett.,2008,33(15):1741-1743
    11. C. Chong, T. Suzuki, A. Morosawa et al., Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength-swept light source. Opt. Express,2008,16(25): 21105-21118
    12.陈明惠,丁志华,陶渊浩,吴彤,宽带快速线性扫频激光光源的研制.中国激光,2011,38(2):0204001-1-5
    13. R. Huber, K. Taira, M. Wojtkowski and J. G. Fujimoto, Fourier Domain Mode Locked Lasers for OCT imaging at up to 290 kHz sweep rates. Proc of SPIE,2005,5861:5861B-1-6
    14. R. Huber, M. Wojtkowski, and J. G. Fujimoto, Fourier Domain Mode Locking (FDML):A new laser operating regime and applications for optical coherence tomography. Opt. Express, 2006,14(8):3225-3237
    15. R. Huber, D C. Adler, and J. G. Fujimoto, Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines /s. Opt. Lett.,2006,31(20):2975-2977
    16. Desmond C. Adler, Robert Huber, and James G. Fujimoto, Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers. Opt. Lett.,2007,32(6):626-628
    17. C. M. Eigenwillig, W. Wieser, B. R. Biedermann et al.. Subharmonic Fourier domain mode locking [J]. Opt. Lett.,2009,34(6):725-727
    1. 张国威,可调谐激光技术.北京:国防工业出版社,2002,201-206
    2. 丁志华,陈明惠,王凯,孟婕,吴彤,沈龙飞,快速扫频光源及其在光学频域成像中的应用.中国激光,2009,36(10):2469-2476
    3. S. R. Chinn, E. A. Swanson, J. G. Fujimoto, Optical coherence tomography using a frequency-tunable optical source, Optics Letters,1997,22(5):340-342
    4. S. H. Yun, C. Boudoux, M. C. Pierce et al., Extended-cavity semiconductor wavelength-swept laser for biomedical imaging. IEEE Photon. Technol. Lett.,2004,16(1): 293-295
    5. V. J. Srinivasan, R. Huber, I. Gorczynska et al., High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm. Opt. Lett., 2007,32(4):361-363
    6. S. H. Yun, C. Boudoux, G. J. Tearney et al., High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. Opt. Lett.,2003,28(20):1981-1983
    7. C. Chong, T. Suzuki, A. Morosawa et al., Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength-swept light source. Opt. Express,2008,16(25): 21105-21118
    8. S. H. Yun, G. Tearney, J. de Boer et al., Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts. Opt. Express,2004,12(23): 5614-5624
    9. H. Lim, J. F. De Boer, B. H. Park et al., Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range. Opt. Express,2006,14(13):5937-5944
    10. S. M. R. Motaghian Nezam, High-speed polygon-scanner-based wavelength-swept laser source in the telescope-less configurations with application in optical coherence tomography. Opt. Lett.,2008,33(15):1741-1743
    11. W. Y. Oh, S. H. Yun, G. J. Tearney et al.,115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser. Opt. Lett.,2005,30(23):3159-3161
    12. W. Y. Oh, S. H. Yun, G. J. Tearney et al., Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers. IEEE Photon. Technol. Lett.,2005,17(3):678-680
    13. E. C. Lee, J. F. de Boer, M. Mujat et al., In vivo optical frequency domain imaging of human retina and choroid. Opt. Express,2006,14(10):4403-4411
    14. Kouki Totsuka, Keiji Isamoto, Tooru Sakai et al., MEMS scanner based swept source laser for optical coherence tomography. Proc. of SPIE,2010,7554:75542Q-1
    15. R. Huber, M. Wojtkowski, and J. G. Fujimoto, Fourier Domain Mode Locking (FDML):A new laser operating regime and applications for optical coherence tomography. Opt. Express, 2006,14(8):3225-3237
    16. M. Y. Jeon, J. Zhang, and Z. Chen, Characterization of Fourier domain mode locked wavelength swept laser for optical coherence tomography imaging. Opt. Express,2008,16(6): 3727-3737
    17. C.M. Eigenwillig, W. Wieser, B. R. Biedermann et al., Subharmonic Fourier domain mode locking. Opt. Lett.,2009,34(6):725-727
    18. R. Huber, D. C. Adler, and J. G. Fujimoto, Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt. Lett.,2006,31(20):2975-2977
    19. Minghui Chen, Zhihua Ding, Lei Xu et al., All-fiber ring-cavity based frequency swept laser source for frequency domain OCT. Chin. Opt. Lett.,2010,8(2):202-205
    20. M. Kourogi, Y. Kawamura, Y. Yasuno et al., Programmable high speed (-1MHz) Vernier-mode-locked frequency-swept laser for OCT imaging. Proc. of SPIE,2008,6847: 68470Z1-68470Z8
    21. A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, Numerical study of wavelength-swept semiconductor ring lasers:the role of refractiveindex nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications. Optics Letters,2006,31(6):760-762

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700