皮肤组织对红外激光辐照热响应的细胞机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光热响应是红外激光与生物组织相互作用的主要形式之一,但其产生、传输和作用机理尚不十分清晰,这导致在临床应用中还主要以经验为主,不能更为有效地控制激光治疗的过程和效果。为了明确激光辐照过程中的作用机理,以期达到优化治疗效果,研究者开始从细胞层面着手,来认识这一作用。本文主要采用膜片钳技术与激光辐照相同步技术,对激光辐照生物组织过程中细胞外液在光吸收诱导的热响应中所起的媒介作用进行了理论和实验两方而的探究。
     皮肤疾病是目前应用激光治疗最有效的一个领域,红外激光又大多以热作用的形式和标准来确定其相关参数。基于这样一个前提,在组织层面上,本文从理论上研究了激光辐照皮肤的光热响应情况。研究中采用目前研究光皮肤组织热响应过程时常用的两层模型,理论计算了激光辐照过程中不同部位皮肤组织热响应的温度分布,对比了不同部位皮肤表皮层开始汽化的时间和探讨了能量累积问题,结果表明不同部位的皮肤层厚度、皮肤组织各层中水、脂肪、血红蛋白等色团的光学性质和热学性质、以及所选取激光的参数包括波长、能量密度、脉冲宽度等在作用过程中都起到了至关重要的作用,但要具体辨识色团的作用就需要进行细胞方面的实验。
     为了明确水在红外光热响应过程中介导方面的作用,本文选取980nm和845nm两个波长的近红外激光进行了理论和实验两方面的研究,选择两个波长的依据是:由于水是生物组织中含量最高的色团(按重量),在生物组织的生命活动中起着至关重要的作用,另外,两个波长的激光在临床上较为常用,且在水中的光吸收系数分别为0.502cm-1(980nm)和0.0378cm-1(845nm),其比值大约10倍。
     在研究过程中把激光辐照的作用过程分为温升建立和耗散两个阶段,在温升建立阶段,理论方面充分考虑激光辐照的脉冲时程(500ms)长于水介质的热弛豫时间(17.6ms),且空间作用长度远远短于两个波长的光在水中的穿透深度等因素。主要考虑轴向吸收和径向热扩散两方面的作用。实验上是基于膜片钳系统来测量细胞外溶液中,已进行温度标定的、充灌溶液的玻璃微电极(Open-pipette method)电导变化,根据这个电导变化来定量研究溶液的光热响应与其吸收特性的关联。实验结果显示温度场建立过程中双波长辐照产生的温升比大约为10倍。在耗散阶段(关闭激光后),理论方面主要是运用热扩散理论来分析温度场的衰逝进程,实验方面使用膜片钳监测神经细胞电生理功能在温度场衰逝过程中的变化,这样可以最大限度的排除其它光学效应(比如光化学、光力学等)的影响。理论和实验结果都证明了Na通道的电流强度在双波长激光辐照后都得到了较明显的增强,目.980nm激光辐照后的电流强度增加值明显高于845nm激光辐照后的电流强度的增加值。又由于在实验过程中只改变激光波长,其它实验条件保持一致,因此这两个结果具有波长依赖的可比性。理论和实验两方面的结果都表明,溶液在低强度近红外激光的吸收特性决定了光热响应,从而对细胞的电生理功能进行调制。这一结果,可以直接用于生物组织光热响应特性相关的机理研究。
     由于第四章中理论分析电流峰值的变化时所采用的近似方法使得实验和理论计算有一定的差异,在接下来的工作中对其理论进行了修正。文中采用离子热迁移理论分析了激光辐照溶液中的细胞Na离子通道电流的峰值变化。通过理论分析发现:由于局部温升造成的离子迁移,致使细胞周围的离子浓度减小,而Na离子浓度的减小减弱了电压依赖的Na离子通道的电流强度的增强程度。
     最后,由于血液中的主要吸收色团为水(约90%)和血红蛋白,那么对于近红外光,血液吸收的能量明显强于周围的组织。基于该事实本文进行了近红外激光的静脉观测实验,发现使用近红外激光辅助可以使手背静脉较清晰的显现出来,这对临床上静脉穿刺等临床医学应用特别是对血管比较难以辨认的患者提供了帮助,同明证明了红外光辐照皮肤过程中水的吸收起到了决定性的作用。
Photothermal response is the main form in infrared laser with biological tissue, however, the mechanism of generation, transmission and function is not very clear. The clinical application so far has to be counting on the experiences which make the process of laser treatment and therapeutic effect is difficult to manage and control. In order to clarify its mechanism, the photothermal effect has been studied in cellular level. In this present study, we employed the patch clamp to examine the photothermal effect induced by optical absorption in process of laser-tissue interaction in theory and experiment study.
     The most effective field in laser physiotherapy is skin disease. The related parameters, used infrared laser physiotherapy, are determined by the form of thermal. Based on such a premise, the two-layer model of skin is adoptive to calculate the temperature distribution, to compare the time of the beginning of the gasification of epidermis, and to study the cumulative of heat of different body part in photothemal effect according the optical properties of skin, The results showed that the optical properties of water, fat and hemoglobin, and thermal properties of skin played an important role in laser irradiation skin as well as the wavelength, energy density, and duration time of pulse, however, the experiments in cellular level are needed to do for know the role of chromophores.
     In order to confirm the mediated effect of water in photothermal response of laser-tissue interaction, the dual-wavelength laser (980nm and845nm) were chosen to study the mechanism in laser irradiation the cell. It is well known that water is the main chromophores (by weight) in biological tissue, it plays an important role in life; and the dual-wavelength laser is widely applied in study of laser medicine; the magnitude of absorption coefficients (0.502cm-1at980nm and0.0378cm-1at845nm) of this two wavelength lasers is10times difference, they can produce a correspondingly proportional absorption-driven temperature rises. Thus,980nm and845nm as two probe wavelengths have been chosen to assess the photofhermal effect during the activation of neurons by a continuous near-infrared laser irradiation.
     The photothermal effect can be assessed in two stages:the establishment and the dissipation of the absorption-driven temperature rises:In the establishment stage, because the duration time of laser irradiation (500ms) is longer than thermal relaxation time of water (17.6ms), and the spatial distance is far shorter than penetration depth of this two wavelength laser in water, the role of absoiption in axial direction and thermal diffusion in radial direction were take into account in theoretical study. According to the temperature-dependence of conductivity of solution, an open pipette method was employed to measure the absorption-driven temperature rises by fabricating a glass pipette which was filled with electrolyte solution, formed a several mega-ohm resistance and calibrated as a temperature sensor by using a pico-ampere current amplifier technique (patch clamp). The experiment results showed that ratio of temperature rises is about10times in absorption-driven temperature rises. In the dissipation stage (turn off the laser source), we used the theory of thermal diffusion to describe the dissipative process. The electrophysiological function of a living neuron cell in dissipative process was studied based on a patch clamp. This method can decrease the influence of photochemistry and photomechanics. Because all experimental conditions are kept as the same, while the wavelengths are switched, the results have the comparability of wavelength-dependence. The theoretical calculation and the experimental results showed that the optical properties of solution determined the photothermal effect in laser-tissue interaction, and then modulated the electrophysiological function of a living neuron cell. The results can be used to study the mechanism of photothermal effect in laser-tissue interaction.
     However, there is some difference between experiment results and theoretical results for the adoptive approximation method when we use the theoretical method to analyze the changes of current peak. The theoretical results are corrected in the following work. We analyzed the current change of Na ion channel with thermophoresis theory in the process of theoretical analysis. The ions displace along the gradient of temperature for laser irradiation, it will decrease the concentration of Na ions in local cell, then it will change the current intensity, and the physiological function is modulated.
     Finally, because the chromophores are the water (90%) and hemoglobin in blood, according to the optical properties of hemoglobin in vein, we made the vein imaging experiment with near infrared laser irradiation. This method can make the vein of opisthenar clearly, and may provide a lot of help for the clinical venipuncture, especially to the patients, whose blood vessels are not difficult to identify.
引文
[1]顾瑛.激光医学[J].物理,2010,39(8):515-521.
    [2]MESTER E, MESTER A F, MESTER A. The biomedical effects of laser application [J]. Lasers in Surgery and Medicine,1985,5(1):31-39.
    [3]NIEMZ M H. Laser-Tissue Interactions-Fundamentals and Applications [M].Springer,2007.
    [4]ZARET M M, BREININ G M, SCHMIDT H, et al. Ocular lesions produced by an optical maser (laser) [J]. Science,1961,134(3489):1525-1526.
    [5]CAMPBELL C J, RITTLER M C, KOESTER C J. The optical maser as a retinal coagulator:an evaluation [J]. Transactions of the American Academy of Ophthalmology & Otolaryngology,1963, 67:58-67.
    [6]ZWENG H C, FLOCKS M, KAPANY N S, et al. Experimental laser photocoaguation [J]. American Journal of Ophthalmology,1964,58:353-362.
    [7]GOLDMAN L, HORNBY P, MEYER R, et al. Impact of the laser on dental caries [J]. Nature,1964, 203(417).
    [8]GOLDMAN L, ROCKWELL R J, MEYER R, et al. Laser treatment of tattoos. A preliminary survey of three year's clinical experience [J]. Jama,1967,201(11):841-844.
    [9]GOLDMAN L, ROCKWELL R J, NAPRSTEK Z, et al. Some parameters of high output CO2 laser experimental surgery [J]. Nature,1970,228(5278):1344-1345.
    [10]VOGEL A, VENUGOPALAN V. Mechanisms of pulsed laser ablation of biological tissues [J]. Chemical Reviews,2003,103(2):577-644.
    [11]BARTON J K, ROLLINS A, YAZDANFAR S, et al. Photothermal coagulation of blood vessels:a comparison of high-speed optical coherence tomography and numerical modelling [J]. Physics in Medicine and Biology,2001,46(6):1665-1678.
    [12]MOCAN L, TABARAN F A, MOCAN T, et al. Selective ex-vivo photothermal ablation of human pancreatic cancer with albumin functionalized multiwalled carbon nanotubes [J]. International Journal ofNanomedicine,2011,6:915-928.
    [13]JIANG Z, DONG B, CHEN B, et al. Multifunctional Au@mSiO(2)/Rhodamine B Isothiocyanate Nanocomposites:Cell Imaging, Photocontrolled Drug Release, and Photothermal Therapy for Cancer Cells [J]. Small,2013,9(4):604-612.
    [14]ICHIKAWA K, MIYASAKA M, TANAKA R, et al. Histologic evaluation of the pulsed Nd:YAG laser for laser lipolysis [J]. Lasers in Surgery and Medicine,2005,36(1):43-46.
    [15]MORDON S, EYMARD-MAURIN A F, WASSMER B, et al. Histologic evaluation of laser lipolysis: pulsed 1064-nm Nd:YAG laser versus cw 980-nm diode laser [J]. Aesthetic Surgery Journal,2007, 27(3):263-268.
    [16]WELCH A J, MARTIN J C V G. Optical-thermal response of laser-irradiated tissue [M].Springer, 2011.
    [17]HAKGUDER A, BIRTANE M, GURCAN S, et al. Efficacy of low level laser therapy in myofascial pain syndrome:an algometric and thermographic evaluation [J]. Lasers in Surgery and Medicine, 2003,33(5):339-343.
    [18]WELLS J, KAO C, JANSEN E D, et al. Application of infrared light for in vivo neural stimuliton [J]. Journal of Biomedical Optics,2005,10(6):064003.
    [19]WELLS J, KAO C, MARIAPPAN K, et al. Optical stimulation of neural tissue in vivo [J]. Optics Letters,2005,30(5):504-506.
    [20]WELLS J, KONRAD P, KAO C, et al. Pulsed laser versus electrical energy for peripheral nerve stimulation [J]. Journal of Neuroscience Methods,2007,163(2):326-337.
    [21]IZZO A D, WALSH J J, JANSEN E D, et al. Optical parameter variability in laser nerve stimulation: a study of pulse duration, repetition rate, and wavelength [J]. Biomedical Engineering, IEEE Transactions on,2007,54(6 Pt 1):1108-1114.
    [22]FORK R L. Laser stimulation of nerve cells in Aplysia [J]. Science,1971,171(3974):907-908.
    [23]HIRASE H, NIKOLENKO V, GOLDBERG J H, et al. Multiphoton stimulation of neurons [J]. Journal of Neurobiology,2002,51(3):237-247.
    [24]DUKE A R, CAYCE J M, MALPHRUS J D, et al. Combined optical and electrical stimulation of neural tissue in vivo [J]. Journal of Biomedical Optics,2009,14(6):60501.
    [25]徐祖才,陈恒胜,刘靓,等.膜片钳技术在成年大鼠海马脑片应用的初步研究[J].重庆医科大学学报,2012,37(9):799-801.
    [26]MIGLIORI B, Di VENTRA M, KRISTAN W. Photoactivation of neurons by laser-generated local heating [J]. Aip Advances,2012,2(3):1-10.
    [27]IZZO A D, RICHTER C P, JANSEN E D, et al. Laser stimulation of the auditory nerve [J]. Lasers in Surgery and Medicine,2006,38(8):745-753.
    [28]IZZO A D, WALSH J J, RALPH H, et al. Laser stimulation of auditory neurons:effect of shorter pulse duration and penetration depth [J]. Biophysics Journal,2008,94(8):3159-3166.
    [29]LITTLEFIELD P D, VUJANOVIC I, MUNDI J, et al. Laser stimulation of single auditory nerve fibers [J]. Laryngoscope,2010,120(10):2071-2082.
    [30]TEUDT I U, NEVEL A E, IZZO A D, et al. Optical stimulation of the facial nerve:a new monitoring technique? [J]. Laryngoscope,2007,117(9):1641-1647.
    [31]WELLS J, KAO C, KONRAD P, et al. Biophysical mechanisms of transient optical stimulation of peripheral nerve [J]. Biophysics Journal,2007,93(7):2567-2580.
    [32]乔晓艳,李刚,董有尔,等.弱激光诱导神经元兴奋性改变的实验研究[J].物理学报,2008,57(2):1259-1265.
    [33]乔晓艳,李刚,贺秉军.弱激光对大鼠海马神经元钠通道特性的影响[J].生物化学与生物物理进展,2006,33(2):178-182.
    [34]乔晓艳,李刚.弱激光对神经元钠电流及动作电位特性的影响[J].光子学报,2007,36:219-223.
    [35]乔晓艳,李刚,林凌,等.弱激光对神经元钾离子通道特性影响的实验研究[J].物理学报,2007,56(4):2448-2455.
    [36]乔晓艳,李刚,贺秉军,等.弱激光对神经元瞬时外向钾通道电流特性的影响[J].光学精密工程,2007,15(3):337-343.
    [37]黄保续,刘焕奇,刘云等.低能量激光照射对小鼠脾脏NK细胞活性影响的试验研究[J].激 光生物学报,2002,11(5):321-325.
    [38]莫华,何萍,梁爱宣,等He-Ne激光对大鼠离体颈上神经节后神经元膜电导的影响[J].激光生物学报,2002,11(5):368-371.
    [39]SHAPIRO M G, HOMMA K, VILLARREAL S, et al. Infrared light excites cells by changing their electrical capacitance [J]. Nature Communications,2012,3(736).
    [40]METROPOLIS N, ULAM S. The Monte Carlo Method [J]. Journal of the American Statistical Association,1949,44(247):335-341.
    [41]范丽颖.激光对植物细胞矿化合成Si02纳米材料影响的研究:(硕士)[D].长春理工大学,2005.
    [42]SEKINS K M, LEHMANN J F, ESSELMAN P, et al. Local muscle blood flow and temperature responses to 915MHz diathermy as simultaneously measured and numerically predicted [J]. Archives of Physical Medicine and Rehabilitation,1984,65(1):1-7.
    [43]VALVANO J W, COCHRAN J R, DILLER K R. Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors [J]. International Journal of Thermophysics,1985, 6(3):301.
    [44]PANESCU D, WHAYNE J G, FLEISCHMAN S D, et al. Three-dimensional finite element analysis of current density and temperature distributions during radio-frequency ablation [J]. Biomedical Engineering, Ieee Transactions On,1995,42(9):879-890.
    [45]杨昆,刘伟,骆清铭.基于热敏电阻探头加热的肿瘤热疗用生物传热模型验证方法[J].中国生物医学工程学报,2008,27(2):282-286.
    [46]HYNYNEN K, MARTIN C J, WATMOUGH D J, et al. Errors in temperature measurement by thermocouple probes during ultrasound induced hyperthermia [J]. British Journal of Radiology,1983, 56(672):969-970.
    [47]DICKINSON R J, HALL A S, HIND A J, et al. Measurement of changes in tissue temperature using MR imaging [J]. Journal of Computer Assisted Tomography,1986,10(3):468-472.
    [48]SEIP R, EBBINI E S. Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound [J]. Biomedical Engineering, Ieee Transactions On,1995,42(8):828-839.
    [49]MANNS F, MILNE P J, GONZALEZ-CIRRE X, et al. In situ temperature measurements with thermocouple probes during laser interstitial thennotherapy (LITT):quantification and correction of a measurement artifact [J]. Lasers in Surgery and Medicine,1998,23(2):94-103.
    [50]BRUCE G K, BUNCH T J, MILTON M A, et al. Discrepancies between catheter tip and tissue temperature in cooled-tip ablation:relevance to guiding left atrial ablation [J]. Circulation,2005, 112(7):954-960.
    [51]CUMMINGS J E, BARRETT C D, LITWAK K N, et al. Esophageal luminal temperature measurement underestimates esophageal tissue temperature during radiofrequency ablation within the canine left atrium:comparison between 8 mm tip and open irrigation catheters [J]. Journal of Cardiovascular Electrophysiology,2008,19(6):641-644.
    [52]CHEEVER E A, FOSTER K R. Microwave radiometry in living tissue:what does it measure? [J]. Biomedical Engineering, Ieee Transactions On,1992,39(6):563-568.
    [53]MARUYMA K, MIZUSHINA S, SUGIURA T, et al. Feasibility of noninvasive measurement of deep brain temperature in newborn infants by multifrequency microwave radiometry [J]. Microwave Theory and Techniques, Ieee Transactions On,2000,48(11):2141-2147.
    [54]LEVICK A, LAND D, HAND J. Validation of microwave radiometry for measuring the internal temperature profile of human tissue [J]. Measurement Science and Technology,2011,22(6):065801.
    [55]MERRICK M A, MIHALYOV M R, ROETHEMEIER J L, et al. A comparison of intramuscular temperatures during ultrasound treatments with coupling gel or gel pads [J]. Journal of Orthopaedic and Sports Physical Therapy,2002,32(5):216-220.
    [56]MOKHTARI-DIZAJI M, GORJI-ARA T, GHANAEATI H, et al. Ultrasound monitoring of temperature change in liver tissue during laser thermotherapy:10 degrees C intervals [J]. Conference Proceedings, Ieee Engineering in Medicine and Biology Society,2007,2007:2130-2133.
    [57]PETERS R D, HINKS R S, HENKELMAN R M. Ex vivo tissue-type independence in proton-resonance frequency shift MR thermometry [J]. Magnetic Resonance in Medicine,1998, 40(3):454-459.
    [58]QUESSON B, de ZWART J A, MOONEN C T. Magnetic resonance temperature imaging for guidance of thennotherapy [J]. Journal of Magnetic Resonance Imaging,2000,12(4):525-533.
    [59]CHENG H L, PLEWES D B. Tissue thermal conductivity by magnetic resonance thermometry and focused ultrasound heating [J]. Journal of Magnetic Resonance Imaging,2002,16(5):598-609.
    [60]DENIS D S B, QUESSON B, MOONEN C T. Magnetic resonance temperature imaging [J]. International Journal of Hyperthennia,2005,21(6):515-531.
    [61]EGGLESTON T A, ROACH W P, MITCHELL M A, et al. Comparison of two porcine (Sus scrofa domestica) skin models for in vivo near-infrared laser exposure [J]. Comprehensive Medical Management,2000,50(4):391-397.
    [62]DENG Z S, LIU J. Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies [J]. Journal of Biomechanical Engineering,2002, 124(6):638-649.
    [63]ZHANG R, VERKRUYSSE W, CHOI B, et al. Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms [J]. Journal of Biomedical Optics,2005,10(2):24030.
    [64]LISTER T, WRIGHT P A, CHAPPELL P H. Optical properties of human skin [J]. Journal of Biomedical Optics,2012,17(9):90901.
    [65]ANDERSON R R, PARRISH J A. The optics of human skin [J]. Journal of Investigative Dermatology,1981,77(1):13-19.
    [66]徐爱军.传统艾灸、电子灸与激光针灸对脑中风疗效的对比研究:(硕士)[D].燕山大学,2006.
    [67]BASHKATOV A N, GENINA E A, KOCHUBEY V I, et al. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm [J]. Journal of Physics D:Applied Physics,2005,15(38):2543-2555.
    [68]SALOMATINA E, JIANG B, NOVAK J, et al. Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range [J]. Journal of Biomedical Optics,2006, 11(6):64026.
    [69]ALEXEY N. BASHKATOV E A G, TUCHIN A V V. Optical properties of skin, subcutaneous, and muscle tissues [J]. Journal of Innovative Optical Health Science,2011,4(1):9-38.
    [70]CONWAY J M, NORRIS K H, BODWELL C E. A new approach for the estimation of body composition:infrared interactance [J]. The American Journal of Clinical Nutrition,1984, 40(6):1123-1130.
    [71]周华伟,曹洪玉,唐乾,等.光诱导高铁肌红蛋白还原的光谱法研究[J].化学学报,2011,69(13):1559-1564.
    [72]ALEXANDRAKIS G, BUSCH D R, FARIS G W, et al. Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid monte carlo diffusion model [J]. Applied Optics,2001,40(22):3810-3821.
    [73]TASAKI A, YAMANAKA N, KUBO M, et al. Three-dimensional two-layer collagen matrix gel culture model for evaluating complex biological functions of monocyte-derived dendritic cells [J]. Journal of Immunological Methods,2004,287(1-2):79-90.
    [74]KIM A D, MOSCOSO M. Light transport in two-layer tissues [J]. Journal of Biomedical Optics, 2005,10(3):34015.
    [75]DAS M, XU C, ZHU Q. Analytical solution for light propagation in a two-layer tissue structure with a tilted interface for breast imaging [J]. Applied Optics,2006,45(20):5027-5036.
    [76]MA N, GAO X, ZHANG X X. Two-layer simulation model of laser-induced interstitial thermo-therapy [J]. Lasers in Medical Science,2004,18(4):184-189.
    [77]SHIH T, YUAN P, LIN W, et al. Analytical analysis of the Pennes bioheat transfer equation with sinusoidal heat flux condition on skin surface [J]. Medical Engineering & Physics,2007, 29(9):946-953.
    [78]SHAGOSHTAASBI H. A forth order finite differencce scheme for pennes' bioheat transfer equation in a three? Dimensional triple-layered skin structure with multilevel bloood vessel [C]. EUROCON 2009, EUROCON'09. IEEE,2009:146-151.
    [79]ZHAO X J, WANG H. Numerical Simulation of Transient Thermal Effects in Skin Tissue [C]. Bioinformatics and Biomedical Engineering, (iCBBE) 20115th International Conference on, 2011:1-4.
    [80]EL-ADAWI M K, ABDEL-NABY M A, SHALABY S A. Laser heating of a two-layer system with constant surface absorption:an exact solution [J]. International Journal of Heat and Mass Transfer, 1995,38(5):947-952.
    [81]EL-ADAWI M K, SHALABY S A, ABDEL-NABY M A. Laser heating of a two-layer system with temperature dependent front surface absorptance [J]. Vacuum,1995,46(1):37-42.
    [82]HENRIQUES F C, MORITZ A R. Studies of Thermal Injury:I. The Conduction of Heat to and through Skin and the Temperatures Attained Therein. A Theoretical and an Experimental Investigation [J]. American Journal of Pathology,1947,23(4):530-549.
    [83]HENRIQUES F J. Studies of thermal injury; the predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury [J]. Archives of Pathology (Chic),1947, 43(5):489-502.
    [84]NELSON J S. Selective photothermolysis and removal of cutaneous vasculopathies and tattoos by pulsed laser [J]. Plastic and Reconstructive Surgery,1991,88(4):723-731.
    [85]NELSON J S, MILNER T E, ANVARI B, et al. Dynamic epidermal cooling during pulsed laser treatment of port-wine stain. A new methodology with preliminary clinical evaluation [J]. Archives of Dermatology,1995,131(6):695-700.
    [86]MILNER T E, GOODMAN D M, TANENBAUM B S, et al. Depth profiling of laser-heated chromophores in biological tissues by pulsed photothermal radiometry [J]. Journal of the Optical Society of America A:Optics, Image Science, and Vision,1995,12(7):1479-1488.
    [87]NELSON J S, MILNER T E, ANVARI B, et al. Dynamic epidermal cooling in conjunction with laser-induced photothermolysis of port wine stain blood vessels [J]. Lasers in Surgery and Medicine, 1996,19(2):224-229.
    [88]WALDORF H A, ALSTER T S, MCMILLAN K, ct al. Effect of dynamic cooling on 585-nm pulsed dye laser treatment of port-wine stain birthmarks [J]. Dermatologic Surgery,1997,23(8):657-662.
    [89]ZENZIE H H, ALTSHULER G B, SMIRNOV M Z, et al. Evaluation of cooling methods for laser dermatology [J]. Lasers in Surgery and Medicine,2000,26(2):130-144.
    [90]NELSON J S, MAJARON B, KELLY K M. Active skin cooling in conjunction with laser dermatologic surgery [J]. Seminars in Cutaneous Medicine and Surgery,2000,19(4):253-266.
    [91]DAI T, PIKKULA B M, TUNNELL J W, et al. Thermal response of human skin epidermis to 595-nm laser irradiation at high incident dosages and long pulse durations in conjunction with cryogen spray cooling:an ex-vivo study [J]. Lasers in Surgery and Medicine,2003,33(1):16-24.
    [92]BATTLE E J. Advances in laser hair removal in skin of color [J]. Journal of Drugs in Dermatology, 2011,10(11):1235-1239.
    [93]叶志生,朱宝忠,高惠敏,等.激光在皮肤病学应用中的最新进展[J].光电子激光,2000,6):677-680.
    [94]李艳华,胡黎明.半导体激光器在医疗领域的新应用与进展[J].光机电信息,2010,27(7):27-34.
    [95]袁继龙,王莉波,高景恒.宽带红外光无创伤性皮肤年轻化技术的应用进展[J].中国美容整形外科杂志,2008,19(5):376-379.
    [96]霍孟华.非剥脱性嫩肤技术治疗皮肤老化[J].中国美容医学,2007,16(10):1440-1444.
    [97]张纪庄.皮肤病治疗中激光蚀除和选择性热解的光热作用研究(博士)[D].北京:清华大学,2009.
    [98]SHAFIRSTEIN G, BAUMLER W, LAPIDOTII M, et al. A new mathematical approach to the diffusion approximation theory for selective photothermnolysis modeling and its implication in laser treatment of port-wine stains [J]. Lasers in Surgery and Medicine,2004,34(4):335-347.
    [99]BARTON J, PFEFER T, WELCH A, et al. Optical Monte Carlo modeling of a true portwinc stain anatomy [J]. Optics Express,1998,2(9):391-396.
    [100]PFEFER T J, SMITHIES D J, MILNER T E, et al. Bioheat transfer analysis of cryogen spray cooling during laser treatment of port wine stains [J]. Lasers in Surgery and Medicine,2000,26(2):145-157.
    [101]JIA W, AGUILAR G, VERKRUYSSE W, et al. Improvement of port wine stain laser therapy by skin preheating prior to cryogen spray cooling:a numerical simulation [J]. Lasers in Surgery and Medicine,2006,38(2):155-162.
    [102]JACQUES S L. Laser-tissue interactions. Photochemical, photothermal, and photomechanical [J]. Surgical Clinics of North America,1992,72(3):531-558.
    [103]XIAO-FENG P. The biological effect and medical functions of the Infrared Rays [J]. Chinese Journal of Biomedical Engineering(English Edition),2001,10(1):27-37.
    [104]LAPOTKO D, ROMANOVSKAYA T, ZHAROV V. Photothermal images of live cells in presence of drug [J], Journal of Biomedical Optics,2002,7(3):425-434.
    [105]丁海峰,黄梅珍,童雅星,等.激光辐照下皮肤组织光热响应有限元分析[J].光学学报,2008,28(10):1983-1988.
    [106]陈燕,牛燕雄,邵珺,等.脉冲激光辐照皮肤组织的热效应解析计算研究[J].激光与红外,2009,39(12):1309-1312.
    [107]LAPOTKO D, SHNIP A, LUKIANOVA E. Photothermal responses of individual cells [J]. Journal of Biomedical Optics,2005,10(1):14006.
    [108]STUURMAN N. Chromophore-assisted laser inactivation in neural development [J]. Neuroscience Bulletin,2012,28(4):333-341.
    [109]WIELICZKA D M, WENG S, QUERRY M R. Wedge shaped cell for highly absorbent liquids: infrared optical constants of water [J]. Applied Optics,1989,28(9):1714-1719.
    [110]PALMER K F, WILLIAMS D. Optical properties of water in the near infrared [J]. Journal of Optical Society of America,1974,64(8):1107-1110.
    [111]van GEMERT M J, WELCH A J. Time constants in thermal laser medicine [J]. Lasers in Surgery and Medicine,1989,9(4):405-421.
    [112]van GEMERT M J, LUCASSEN G W, WELCH A J. Time constants in thermal laser medicine:Ⅱ. Distributions of time constants and thermal relaxation of tissue [J]. Physics in Medicine and Biology, 1996,41 (8):1381-1399.
    [113]GUAN K, JIANG Y, SUN C, et al. A two-layer model of laser interaction with skin:A photothermal effect analysis [J]. Optics and Laser Technology,2011,43(3):425-429.
    [114]周静伟,徐旭,尹招琴,等.强激光对组织热损伤过程的数值模拟与实验研究[J].中国激光,2005,32(1):139-144.
    [115]包美芳,钱志余,李韪韬,等.激光诱导间质热疗中生物组织的温度场研究[J].光子学报,2011,40(5):718-721.
    [116]CHOI B, WELCH A J. Analysis of thermal relaxation during laser irradiation of tissue [J]. Lasers in Surgery and Medicine,2001,29(4):351-359.
    [117]YAO J, LIU B, QIN F. Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies [J]. Biophysics Journal,2009,96(9):3611-3619.
    [118]LIANG S, YANG F, ZHOU C, et al. Temperature-dependent activation of neurons by continuous near-infrared laser [J]. Cell Biochemistry and Biophysics,2009,53(1):33-42.
    [119]TANG X, CHUN-PING Z, GUI-YING C, et al. Theoretical and experimental study of the intensity distribution in biological tissues [J]. Chinese Physics,2005,9(14):1813-1820.
    [120]KUYUCAK S, CHUNG S H. Temperature dependence of conductivity in electrolyte solutions and ionic channels of biological membranes [J]. Biophysical Chemistry,1994,52(1):15-24.
    [121]HODGKIN A L, HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve [J]. Journal of Physiology,1952,117(4):500-544.
    [122]G A, U B, E R, et al. The temperature dependence of the refractive index of water [J]. Journal of Physics D:Applied Physics,1978,11(8):1167-1172.
    [123]JEAN K P. The Soret Effect:a review of recent experimental results [J]. Journal of Applied Mechanics,2006,73(1):5-15.
    [124]GENET S, COSTALAT R, BURGER J. A Few Comments on Electrostatic Interactions in Cell Physiology [J]. Acta Biotheoretica,2000,48(3):273.
    [125]DUHR S, BRAUN D. Why molecules move along a temperature gradient [J]. Proceeding of the National Academy of Science,2006,103(52):19678-19682.
    [126]REINECK P, WIENKEN C J, BRAUN D. Thermophoresis of single stranded DNA [J]. Electrophoresis,2010,31(2):279-286.
    [127]BRAUN D, LIBCHABER A. Trapping of DNA by thennophoretic depletion and convection [J]. Physical Review Letters,2002,89(18):188103.
    [128]ICHIKAWA M, ICHIKAWA H, YOSHIKAWA K, et al. Extension of a DNA molecule by local heating with a laser [J]. Physical Review Letters,2007,99(14):148104.
    [129]CABRERA H, SIRA E, RAHN K, et al. A thermal lens model including the Soret effect [J]. Applied Physics Letters,2009,94:0511035.
    [130]MALACARNE L C, ASTRATH N G, MEDINA A N, et al. Soret effect and photochemical reaction in liquids with laser-induced local heating [J]. Optics Express,2011,19(5):4047-4058.
    [131]PLATTEN J K. The Soret effect:A review of recent experimental results [J]. Journal of Applied Mechanics-Transactions of the Asme,2006,73(1):5-15.
    [132]DUHR S, BRAUN D. Thermophoretic depletion follows Boltzmann distribution [J]. Physical Review Letters,2006,96(16):168301.
    [133]BROWN B R. Temperature response in electrosensors and thermal voltages in electrolytes [J]. Jorunal of Biological Physics,2010,36(2):121-134.
    [134]HILLE B. Ionic channels of excitable membranes [M].Sinaucr Associates,2001.
    [135]NING H, DHONT J K, WIEGAND S. Thermal-diffusive behavior of a dilute solution of charged colloids [J]. Langmuir,2008,24(6):2426-2432.
    [136]GENHT S, COSTALAT R, BURGER J. A few comments on electrostatic interactions in cell physiology [J]. Acta Biotheoretica,2000,48(3-4):273-287.
    [137]CONWAY J M, NORRIS K H, BODWELL C E. A new approach for the estimation of body composition:infrared interactancc [J]. The American Journal of Clinical Nutrition,1984, 40(6):1123-1130.
    [138]CHIH-LUNG L, K.UO-CHIN F. Biometric verification using thermal images of palm-dorsa vein patterns [J]. Circuits and Systems for Video Technology, Ieee Transactions On,2004,14(2):199-213.
    [139]YUHANG D, DAYAN Z, KEJUN W. A study of hand vein recognition method [C]. Mcchatronics and Automation,2005 IEEE International Conference,2005:2106-2110.
    [140]王科俊, 丁宇航, 王大振.基于静脉识别的身份认证方法研究[J].科技导报,2005,23(1):35-37.
    [141]郭岳衡.揭秘手指静脉识别认证系统[J].中国安防,2007,2(1):60-61.
    [142]ZHANG L, ZHANG R, YU C. Study on the Identity Authentication System on Finger Vein [C]. Bioinformatics and Biomedical Engineering,2008. ICBBE 2008. The 2nd International Conference on,2008:1905-1907.
    [143]YU C, QING H, ZHANG L. A Research on Extracting Low Quality Human Finger Vein Pattern Characteristics [C]. Bioinformatics and Biomedical Engineering,2008. ICBBE 2008. The 2nd International Conference on,2008:1876-1879.
    [144]陈桂香.手掌静脉身份识别技术及其应用[J].中国安防,2009,(11):108-109.
    [145]谭营,王军.手指静脉身份识别技术最新进展[J].智能系统学报,2011,06(6):471-482.
    [146]秦斌.手静脉身份识别技术[J].现代电子技术,2011,34(4):169-174,177.
    [147]MIURA N. Personal identification device and method [P]. Kokubunji, JP.907421.
    [148]SIMPSON C R, KOHL M, ESSENPREIS M, et al. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique [J]. Physics in Medicine and Biology,1998,43(9):2465-2478.
    [149]TARONI P, PIFFERI A, TORRICELLI A, et al. In vivo absorption and scattering spectroscopy of biological tissues [J]. Photochemical & Photobiological Science,2003,2(2):124-129.
    [150]WAHR J A, TREMPER K K, SAMRA S, et al. Near-infrared spectroscopy:theory and applications [J]. Journal of Cardiothoracic and Vascular Anesthesia,1996,10(3):406-418.
    [151]丛晓刚.皮下静脉红外成像技术的研究:(硕士)[D].华中科技大学,2007.
    [152]章毓晋.图像工程(上册) [M].清华大学出版社,2006.
    [153]刘志才,李志广.红外热像仪图像处理技术综述[J].红外技术,2000,22(6):27-32.
    [154]李成军.近红外光谱技术用于前额皮层工作记忆作用的研究[D].华中科技大学,2005.
    [155]于天河,郝富春,康为民,等.红外图像增强技术综述[J].红外与激光工程,2007,36(z2):335-338

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700