双曲拱坝混凝土本构关系和损伤识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年,大型水电站发展迅猛,水电结构体型巨大,又多处在地震活动比较活跃的西南和西北地区,地形地质、水文气象情况比较复杂,利用成熟的计算方法和试验结合结构的实际条件进行受力情况、使用情况分析是建设过程中必不可少的一个环节,而水电这类投资大运行周期长的关乎国家经济和民生的特大建筑,建成后其正常荷载下的性能监测和超常规及突发荷载下的可能性损伤评估等相关研究和工作已受到越来越多的关注和重视,并已不局限于研究领域而是与实际工程进行结合,意义深远重大。对大体积水工混凝土结构进行动力分析,混凝土材料的性能、结构抗力、损伤识别及损伤参数的选取等研究相对现有的水工结构力学计算方法、理论的发展不相适应,也影响到大体积水工结构的分析结果的准确性,严重制约对结构动力分析的进一步深入研究及水电站结构安全性评价的整体可靠性和精度水平。本文的研究对象是双曲拱坝,依据水工混凝土配合比特点制定试验方案,对混凝土进行单轴抗压试验,分析不同混凝土配合比和外加剂情况下混凝土应力应变全曲线、混凝土抗压强度及混凝土的弹性模量、泊松比的特点,在对混凝土静动态破坏准则研究现状进行综述分析的基础上,提出适用于水工混凝土材料的两段式单轴压缩准静态本构模型,根据混凝土单轴压缩试验结果对混凝土材料的应力应变曲线的上升和下降段做出修正,从而提出基于不同配合比和原料的混凝土单轴压缩本构模型。在对坝体结构进行有限元非线性分析时,在Willam-Warke准则的基础上,并采用Haigh-Westerguard坐标系提出了一种四参数准则作为混凝土破坏准则,因为不同坝所使用的混凝土都是经过特殊设计而配比的,具有唯一性和特殊性,所以不匹配通用的混凝土材料数据,而该准则参数可由基本材料试验得到的各项强度数据来确定,本文提出此准则并编制相应子程序,在输入相关混凝土基本强度数据后据此准则进行结构分析,以期得到与实际情况更相符的结果。在混凝土静态破坏准则的基础上,针对温度场、坝内水体和坝体地基这些可变荷载,编制有限元分析子程序,在混凝土刚度矩阵和质量矩阵中叠加影响因子,构建混凝土动力分析的方程,加入适用于坝体混凝土材料的破坏准则和屈服,进行结构的有限元动力分析,与同结构的试验进行验证。对双曲拱坝进行损伤分析,选用适当的具备敏感度的损伤指标,研究人工神经网络方法进行坝体损伤识别的可行性和可靠度,研究考虑大体积混凝土弹性模量硬化及基础取用范围变化所带来动力特征的改变是否对损伤识别结果造成误判,研究结果表明人工神经网络适用于水坝结构的损伤识别,并且对振型和自振频率模态参数识别程度较高,误判程度很小。
In recent decades, the development of large-scale hydropower stations is rapid,the great-size structures are most in Southwest and Northwest regions with activeseismic activities, where topographic and geological, hydrological andmeteorological situation is more complex, using sophisticated calculation methodsand test binding actual conditions by King Architectural usage analysis is anessential part in the process of building, such hydropower stations with largeinvestments and long-run cycle are in relation to the national economy and people'slivelihood, after the completion, performance monitoring within normal load and thestudy and work on possibility of damage assessment within unconventional burstloads are being more and more concerned and intentioned, and not limited toresearch areas, but combined with actual engineering, the meaning is far-reachingand significant. To the dynamic analysis of hydraulic concrete structure in largevolume, the research on performance of concrete material, structural resistance,damage identification and selection of damage parameters is incompatible relativelyto the existing hydraulic structural mechanics calculation methods and thedevelopment of the theory, it's also affect the accuracy of the results of large-volumehydraulic structures, severely restricting further and deeper research on structuraldynamic analysis and the overall reliability and accuracy levels of hydropowerStructural Safety Assessment. The object of this paper is the arch dam, according tothe hydraulic concrete mixture ratio characteristics to develop pilot programs, thenoperate an uniaxial compression testing of concrete subject, analysis concretestress-strain curve of different concrete mix ratio and admixtures, the characteristicsof the compressive strength of concrete, the modulus of elasticity of concrete andthe Poisson's ratio, based on the summarized analysis of the concrete in static anddynamic failure criterion Research, proposed a two-stage hydraulic concretematerials uniaxial compression quasi-static constitutive model based on The concrete uniaxial compression test results to make a correction to the segment of therise and fall of the stress-strain curve of concrete materials, then proposedconstitutive model based on different mixing ratio and raw concrete uniaxialcompression. For nonlinear finite element analysis of the dam structure, based on theWillam-Warke guidelines and the Haigh-Westerguard coordinate system, afour-parameter criteria as concrete failure criterion is proposed, because differentdam concrete ratio is specially designed with the uniqueness and particularity, so thedata does not match the common concrete material, the criteria parameters aredetermined by the strength of the basic material testing data, this paper presents theguidelines and propagate the corresponding sub-program, structural analysisaccordingly this criteria will work after the entering of concrete strength data, inorder to get the results more consistent with the actual situation. based on concretestatic failure criterion considered variable load such as the temperature field, thewater in the dam and the dam foundation, the preparation of the finite elementanalysis concludes subroutine stack concrete stiffness and mass matrices ImpactFactor, building concrete dynamic analysis equation joined failure and yield criteriafor dam concrete materials, the dynamic finite element analysis of structure canwork, then dong the verification test with the same structure. Analysis hyperbolicarch dam damage, with selection of sensitivity injury indicators appropriate, thefeasibility and reliability of artificial neural network method for dam damageidentification is studied, the study took into account a range of bulk elastic modulusof concrete hardening and the changes of basic access whether brought aboutmisjudgment of damage identification results by the change of the dynamiccharacteristic, the study results show that the artificial neural network can be appliedto the dam structure damage identification, and the method is in higher degreeidentification with the modal parameters such as shapes and the natural vibrationfrequency of structure, and misjudgment is less.
引文
[1]谢凯军,王永,贾德霞等.水工混凝土及土工试验[M].中国电力出版社,2010.8
    [2]郭之章,傅华.水工建筑物的温度控制[M].水利电力出版社,1990
    [3]黎展眉.拱坝[M].水利电力出版社,1982
    [4]王树和,许平,朱伯芳.高拱坝全过程温度应力仿真研究[J].水利水电技术,2000年第7期:15-21
    [5]张升明.流体的可压缩性对弹性结构振动的影响[J].水动力学研究与进展,1994,9(4):429-436
    [6]迟世春,顾淦臣.考虑水体压缩性与不考虑水体压缩性坝水系统基频及振型的比较[J].华北水利水电学院学报,1995,16(1):10-15
    [7]华东水利学院,弹性力学问题的有限单元法[M].北京:水利电力出版社,1978
    [8]汪立桦.水电站结构安全现状研究[J].水力发电,1998年第5期
    [9]高路彬.混凝土本构理论[M].成都:西南交通大学出版社,1993
    [10]张胜东,混凝土本构关系进展与评述[J].南京建筑工程学院学报,2002,3(26):45-51
    [11] Kotsovos M D.Generalized Stress-Strain Relations for Concrete[J].Journal ofEngineering Mechanics,1978,104(4):845-855.
    [12]Elwi A A,Murray D W.A3D Hypoelastic Concrete ConstitutiveRelationship[J].Journal of Engineer ing Mechanics,1979,105(4):623-641.
    [13]Chen W F,Ting E C.Constitutive Models for Concrete Structures[J].Journal ofEngineering Mechan ics,1980,106(1):1-19.
    [14]Bazant Z P,Bhat P D.Endochronic Theory of Inelasticity and Failure ofConcrete[J].Journal of Engineering Mechanics,1976,102(4):701-721.
    [15]Han D.J.,Chen W.F.Strain space plasticity formulation for hardening softeningmaterials with elastoplastic coupling.[J].Solids Structures.1986.22(8):935-950
    [16]Valanis K C.A Theory of Viscoplasticity without A Yield Surface[J].Archives ofMechanics,1971,23:517-551.
    [17]Chaboche J L.Development of Continuum Damage Mechanics for ElasticSolids Sustaining Anisotropic and Unilateral Damage[J].Int.J.DamageMechanics,1993,(2):311-329.
    [18]FanJ.,PengX.A physically based constitutive description for nonproportionalcyclic plasticity[J]. Engng.Mat.Tech.,1991,113(4):254-262
    [19]韩林海,钟善桐.利用内时理论描述钢管混凝土在复杂受力状态下核心混凝土的本构关系[J].哈尔滨建筑工程学院学报,1993,26(2):48-54
    [20]Loland K E.Continuous Damage Model for Load-Response Estimation ofConcrete[J].Cement and Concrete Research,1980,(10):395-402.
    [21]Mazars J.,Berthaud Y.,Ramtani S. The unilateral behavior of damagedconcrete[J].Eng.Fract.Mech,1990,35(4):629-635
    [22]Mazars J,Pijaudier-Cabot G.Continuum Damage Theory-Application toConcrete[J].Journal of Engineering Mechanics,1989,115(2):345-365.
    [23]Resende L.A Damage Mechanics Constitutive Theory for the InelasticBehaviour of Concrete[J].Com puter Methods in Applied Mechanics andEngineering,1987,(60):57-93.
    [24]Carmeliet J,Hens H.Probabilistic Nonlocal Damage Model for Continua withRandom Field Properties[J].Journal of EngineeringMechanics,1994,120(10):2013-2027.
    [25]高路彬.混凝土变形与损伤的分析[J].力学进展,1993,23(4):510-519.
    [26]Scott W.Doebling, A Summary Review of Vibration-Based DamageIdentification Methods[J].The Shock and Vibration Digest,1998(3):91-105
    [27]Pandy,A.K.and Biswas,M. Damage Detection in Structures Using Changes inFlexibility[J].Sound Vib,1994,169(1):3-17
    [28]Zongfen Zhang.The Damage Indices for the Constructed Facilities. Proceedingsof the10th International Modal[J].Analysis Conferenee,1992:1520-1529
    [29]孟吉复,王忠健.高层结构模型的模态参数识别[J].动态分析与测试技术,1991(3),18-26
    [30]尚久锉,杨连第.导管架式海洋平台模型的模态试验与计算[J].振动与冲击,1990,33(l):22-36
    [31]胡守仁等,神经网络导论[M].国防科技大学出版社,1993年
    [32]Messina A,Williams E J,Contursi T. Structural damage detection by a sensitivityand statistical based method[J]. Journal of Sound andVibration,1998,216(5):791-808
    [33]Wolff T,Richardson M. Fault detection in structures from changes in the modalparameters[J].Proc of the7th IMAC,Las Vegas,Nevada,1989,87-94
    [34]袁向荣,梁的破损对频率、振型曲率的影响[J].振动测试与诊断,1994(2):17-24
    [35]Yao,G.C.,Chang,K.C., and Lee,G.Z. Damage diagnosis of steel frames usingvibrational signature analysis[J].Engrg.Mech.,ASCE,1992,118(9)1949-1961
    [36]Ko, J.M., and Ni, Y.Q.(1999),“Development of Vibration-Based DamagedDetection Methodology for Civil Engineering Structures.” Proceeding of the1stInternational Conference on Structural Engineering, Kunming, China,37-56
    [37]梁青槐,土-结构动力相互作用数值分析方法的评述[J].北方交通大学学报,Dec.1997Vol.21No.6:35-40
    [38]胡宁,一种改进的有限元子结构并行算法[J].山西机械学院学报,1992第八卷第一期:62-69
    [39]Charbel Farhat,Eduard Wilson.A new finite element concurrent programmerarchitecture. Int Jou for Numer Meth in Engng,1987,24:1771-1792
    [40]Shun Doi, Shoichi Koyama. A parallel computation technique for finite elementmethod[J].System Computers Controls,1982,13(2):27-36
    [41]Tan Hanchen,Chopra A K. Dam-foundation rock interaction effects infrequency-response of arch dams [J].Earthquake engineering&StructuralDynamcis,1995,24(11):1475-1489
    [42]徐艳杰,张楚汉,金峰,非线性拱坝-地基动力相互作用的FE-BE-IBE模型[J].清华大学学报,1998年第38期:45-52
    [43]林皋,陈健云,拱坝-地基动力体系的简化计算模型及其在地震作用下的动力反应分析[J].计算力学学报,Vol.16No.2May1999:31-38
    [44]Westergaad,H.M.,Water Pressures on Dams During Earthquakes[J].Proc.ofASCE.1931,Vol.57,No.9:20-26
    [45]何发祥,王忠,刘浩吾,采用无质量地基模型时动力平衡方程的缩减[J].四川大学学报Vol.32No.4July2000:29-37
    [46]常晓林,何蕴龙,地震情况下地基、库水、拱坝的相互作用[J].武汉水利水电大学学报,Vol.31No.4Aug.1998:33-39
    [47] Zanger C N.由于水平地震影响作用于坝体的水动压力[J].水利译从,1957(2):13-19
    [48]邱流潮,张立翔,地震作用下拱坝-库水耦合振动动水压力分析[J].水动力学研究与进展,Ser.A.Vol.15No.1Mar2000:29-37
    [49]徐汉忠,吴旭光,马贞信,计算动水压力附加质量的韦氏公式的扩充[J].河海大学学报Vol.25No.5Sep.1997:40-46
    [50]於三大,熊文林,王鸿儒.库底淤砂对地震动水压力的影响[J].武汉水利水电学院学报,1992,25(5):447-493
    [51]陈怀海,林皋,坝面动水压力影响系数的一种简化求法[J].计算力学学报Vol.17No.2May2000:52-60
    [52]倪汉根,金崇磐,大坝抗震特性与抗震计算[M].大连:大连理工大学出版社,1994
    [53]中国水利水电科学研究院,水工建筑物抗震设计规范(DL5073-2000)北京:中国电力出版社,2001
    [54]郭之章,傅华.水工建筑物的温度控制[M].水利电力出版社,1990
    [55]郑永来、夏颂佑,岩土类材料的动弹性模量的进一步研究[J].岩土工程学报,1997年l月:75-78
    [56] U.Haussler,and J.Eibl. New Approch to Strain rate sensitinity of Concrete inCompression[J].. Journal of Engineering Meehanies,1999Vol.125,No.12:26-36o
    [57] Abrmas,D.A.Effeet of rate of application of load on the compressive strength ofconerete[C]. Proc.,20th Annu.Meeting,ASTM,WestConshohoeken,Pa.,1997(17):366-374
    [58] J.R.KlePaezko,A.Brara.An experimental method for dynmaic tensile testing ofconerete by spalling[J]..International Journal of Impact Engineering25(2001)387-409
    [59]董毓利,谢和平,赵鹏.不同应变率下混凝土全压过程的试验研究[J]..水利学报,1997.7:72一77
    [60] HLChen,ChengCT,Chen SE. Determination of fraeture parameters of mortaand conerete bemas by using a eoustieemission[J].MaterialsEvaluation,1992.1:888-894
    [61]王道荣,胡时胜.骨料对混凝土材料冲击压缩行为的影响[J].试验力学,第17卷第1期:23-27
    [62]孟益平.混凝土材料压缩试验中的一些问题[J].试验力学,2003年3月:108-112
    [63]肖诗云,林皋,王哲,途静洲.应变率对混凝土抗拉特性影响[J].大连理工大学学报,2001.11:721-725
    [64]肖诗云,林皋、途静洲、王哲.应变率对混凝土抗压特性的影响[J].哈尔滨建筑大学学报,2002年10月:35-39
    [65] WatsteinD.Effect of straining rate on the compressive strength and elasticproperties of conerete[J].ACIJournal,1993(8):729-744.
    [66] Glanville WH. An investigation of the stress in reinforced conerete piles[C].Building Rearch Technical PaPer20H.M.S.O,London,England,1998
    [67] Kelsey H. An investigation of mechanical properties at very highs train rates[C].Proeeedings of the Physical society, London,B62,1999:676-700
    [68] J.T.Gomez,A.Shukla,A.Sharma.Static and dynamic behaveior of conerete withdamage [J].Theoretical and APPlied Fracture Mechanics,36(2001)37-49
    [69] P.H.Bisehoff.Compressive behavior of conerete at high strainrate[J].Materialsand struetures,1991(24);425-450
    [70] HiroshiYokota.Localized failure of concrete in compression identified by Amethod[J].Construction and Building Materials.18(2004)189-196
    [71]过镇海,王传志,张秀琴等,混凝土的多轴强度试验和破坏准则研究,见:清华大学抗震抗爆工程研究室,科学研究报告集第六集混凝土力学性能的试验研究,北京:清华大学出版社,1996,85-110
    [72]湖南大学,太原工业大学,福州大学合编,建筑结构试验[M].北京:中国建筑工业出版社,1991年7月
    [73]天津大学,同济大学,东南大学等.混凝土结构(第二版)[M].北京:中国建筑工业出版社,1997
    [74]Ottosen N S, A Failure Criterion for Concrete, ASCE,1977,103(EM4):537-545
    [75]W.F.Chen,Plasticity in Reinforced Concrete[J].Mc Graw-Hall,1982
    [76] G.Robutti等,混凝土的破坏强度和弹性极限的比较研究,混凝土的强度和破坏译文集,水利出版社,1982年,301-310
    [77]陈重喜、汪树玉、杨延毅,混凝土的断裂损伤模型[J].水利学报,1996年第9期:51-58
    [78]杜修力,王进廷, Hung T K.淤砂对库水地震动水压力作用分析[J].科学通报,2000,45(18):2012-2016
    [79]Westergaard H M. Water pressures on dams during earthquakes[J]. Proc.ofASCE,1931,57(9)
    [80]Chen Houqun,Hou Shunzai. Effects of seismic traveling wave on the responseof arch dam Proceedings of China–US Workshop on Earthquake Behavior ofArch Dam,Beijing:1987.73-91
    [81]蔡元奇,段克让,坝-基础相互作用的动力分析[J].工程力学(增刊)1998年
    [82]李宗坤,周鸿钧,地基弹性和坝踵裂缝对重力坝动力特性的影响[J].郑州工学院学报,Vol.15No.1Mar.1994:32-40
    [83]诸鑫萍、史金松、沈家荫,复杂地基上重力拱坝有限元计算的三向应力分析[J].华东水利学院学报,第13卷第3期,1985年9月:22-31
    [84]黎展眉.拱坝温度荷载的计算[C].高拱坝学术讨论会论文选集.电力工业出版社,1982
    [85]中华人民共和国电力工业部发布,电力部中南勘测设计研究院主编.水工建筑物荷载设计规范[S].中国电力出版社,1998
    [86]傅作新等.拱坝极限承载力分析方法研究[J].河海大学学报,1994.19(5):25-31
    [87]左东启,水工建筑物[M].河海大学出版社,1995年7月
    [88]中国水力发电工程学会编,高拱坝学术讨论会论文选集,电力工业出版社,1982年
    [89]R.W.Clough, O.C.Zienkiewicz.FEM in Analysis and Design ofDams[M].Swansea,U.K,1976
    [90]Li Qingbin. Uni-axial dynamic damage constitutive model of plain concrete[J].Computational Mechanics,1996,18(2):127-143
    [91]郑雄.拱坝的非线性有限元分析[D].南京:华东水利学院,1983
    [92]郑雄.拱坝的三维非线性有限元分析[J].华东水利学院学报,第14卷第3期,1986年9月
    [93]王良琛.混凝土坝地震动力分析[M].北京:地震出版社,1981
    [94][苏]C.F.舒尔曼.水工建筑物的抗震计算[M].北京:水利出版社,1981
    [95]潘家铮,水工结构分析及计算机运用[M].北京:北京科技出版社
    [96]朱伯芳.朱伯芳院士文选[M].中国电力出版社
    [97]朱伯芳.再论混凝土弹性模量的表达式[J].水利学报,1996年3月第三期
    [98]Hassiotis,s.,and Jeong,G.D. Identification of Stiffness Reductions Using NaturalFrequencies J.Engrg.Mech[J].ASCE1995,121(10):301-310
    [99]Chin-hsiung Lou and Tsu-chiu Wu,System Identification of FEI-TSUI ArchDam From Forced Vibration and Seismic Response Data[J].Journal ofEarthquake Engineering,Vol.4,No.4(2000)511-537
    [100]傅作新等,拱坝极限承载力分析方法研究[J].河海大学学报.19(5),25-31
    [101] Design C.S et al, Implementation of anisotropical damage models indynamic analysis[J].Computation Mechanics, Cheung, Lee&Leung(eds),Baklema, Rotterdam
    [102] Juan,R.,and Angel,C.A. Structural Damage Identification fromDynamio-test Data[J].Struct.Engrg,ASCE,1995,120(8):2437-2449
    [103] Clough R.w.,Chopra,A.k.,Earthquake response analysis of concretedams[J]. Structural and Geotechnical Mechanics,1977
    [104]顾淦臣,土石坝地震工程[M].南京:河海大学出版社,1989
    [105]潘家铮,水工结构分析文集[M].上海:电力工业出版社,1981年4月
    [106]倪汉根,金崇磐,大坝抗震特性与抗震计算[M].大连:大连理工大学出版社,1994
    [107]陈祖坪,拱坝应力的非线弹性分析[J].工程力学,Vol.15No.4Nov.1998:51-62
    [108]李瓒等,混凝土拱坝设计[M].北京:中国电力出版社,2000
    [109]赵光恒,杜成斌,分缝拱坝的地震响应分析[J].河海大学学报,1994,22(5):1-8
    [110]陈厚群,侯顺载,李德玉,高拱坝地震反应与抗震安全性评价[J].水力发电1996年第11期:12-20
    [111]陈厚群,侯顺载,杜修力等,小湾拱坝的抗震研究[J].云南水力发电1997年第2期:35-43
    [112]王良琛,混凝土坝地震动力分析[M].北京:地震出版社,1981
    [113]田斌,夏颂佑,高拱坝坝踵开裂非线性有限元分析,河海大学学报,1997,28(5):32-3
    [114]蔡德所,地震输入波形对三峡工程左岸坝段的动力影响研究[J].岩石力学与工程学报,1998,17(2):183-187
    [115]倪汉根,大坝抗震特性与抗震计算[M].大连:大连理工大学出版社,1994年12月
    [116]赵代深,重力坝有限元计算网格部分与应力控制标准问题[J].水利学报,1996年第5期:22-28
    [117]杨清平、李俊杰,重力坝坝踵主拉应力区分布规律的探讨[J].水利学报,2000年第4期:58-66
    [118]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析[M].北京:清华大学出版社,1993
    [119]姜晋庆,结构弹塑性有限元分析法[M].北京:宇航出版社,1990年
    [120]黄琳,广义特征值的摄动问题[J].北京大学学报,1978(4):42-51
    [121]陈和群,彭宣茂,有限元法微机程序与图形处理[M].南京:河海大学出版社,1992
    [122]朱伯芳,有限单元法原理与应用(第二版[M].)北京:中国水利水电出版社,1998
    [123]王勖成,邵敏,有限单元法基本原理和数值方法(第二版)[M].北京:清华大学出版社,1997
    [124]卓家寿、姜弘道,带有夹层岩基的三维弹塑性分析[J].华东水利学院,1979(6):53-61
    [125]孟凡中,弹塑性有限元变形理论和有限元方法[M].北京:清华大学出版社,1985年9月
    [126]强天驰,寇晓东,周维垣,三维有限元网格加密方法及其工程应用[J].水利学报,第七期2000年7月:11-20
    [127]翼春楼,杨小平,水工结构有限元分析的前处理[J].水利水电科技进展第18卷第1期,1998年2月:52-58
    [128]彭宣茂,钱向东,有限元网格自动剖分的分区直接法[J].河海大学学报,Vol.28No.6Nov.2000:34-41
    [129]龚晓南,土工计算机分析[M].北京:中国建筑工业出版社,2000
    [130]周维垣,杨若琼,剡公瑞,高拱坝的有限元分析方法和设计判据研究[J].水利学报,1997年第8期:23-31
    [131]李强,邹经湘,黄文虎.大型结构动力分析的并行子空间迭代法[J].哈尔滨工业大学学报,1998,30(1):118-120
    [132]曾三平、卓家寿,混合界面动态子结构法及其在求解坝-基体系的自振特性中的应用[C].华东计算力学论文选集,复旦大学出版社,1990
    [133] Pandey A K.Damage detection from changes of curvature modeshapes[J].Sound and Vibration,1991,145(2):321-332
    [134]田斌,蒋晗,复杂水工结构有限元网格自动生成技术[J].武汉水利水电大学(宜昌)学报,Vol.19No.4Dec.1997:23-32
    [135]刘德贵,FORTRAN算法汇编(第一分册)[M].北京:国防工业出版社,1980
    [136]刘德贵,FORTRAN算法汇编(第二分册)[M].北京:国防工业出版社,1983
    [137]张壁诚、潘家铮,水工建筑物的有限元分析[M].北京:水利电力出版社,1991年11月
    [138]张汝清,非线性有限元分析[M].重庆:重庆大学出版社,1990年1月
    [139]刘更,结构动力学有限元程序设计[M].北京:国防工业出版社,1993年6月
    [140]沈祖炎,董宝,曹文衔.结构损伤累积分析的研究现状和存在的问题[J].同济大学学报,1997.25(2):53-57
    [141]欧进萍,吴波.结构概率累积损伤的理论和应用[C].结构工程科学发展青年专家研讨会论文集,哈尔滨,1992
    [142]李翌新,赵世春.钢筋混凝土及劲性钢筋混凝土构件的累积损伤模型[J].西南交通大学学报,1994.29(4):413-415
    [143]徐道远,符晓陵,朱为玄,坝体混凝土损伤-断裂模型[J].大连理工大学学报,Vol.37,Suppl.1Aug.1997:55-63
    [144] Kosmatka J B,Ricles J M. Damage detection in structures by modalvibration characterization [J].Journal of StructuralEngineering,1999,125(12):1384-1392
    [145]张炼钢,钟珞,李桂青.神经网络在结构损伤模拟中的应用[J].武汉工业大学学报,1995,18(4):39-42
    [146]丛爽.面向MATLAB工具箱的神经网络理论与应用[M].北京:中国科学技术大学出版社,1998
    [147] Adachi Y, Unjoh S, et al. Nondestructine damage detection and evaluationtechnique for seismically damaged structures[J]. Porc SPIE. NondestructiveEvaluation of Bridges and Highways Ⅲ, v3587, Newport Beach,CA.,USA
    [148]任传波,于万明,云大真.求解超定线性方程组及其相关问题的神经网络算法[J].大连理工学院学报,1996,7:420-424
    [149] Vanluchen R D, Roufei Sun. Neural networks in structural engineering[J].Microcomputer in Civil Engineering,1990(5):207-215
    [150]杨英杰,虞和济,结构损伤状态识别的神经网络方法[J].东北大学学报Vol.15.No.2Apr.1994:24-31
    [151]罗跃纲,李宝家.基于神经网络的结构损伤诊断分析[J].沈阳工业大学学报,2000,22(6):53-56
    [152] Hojjat Adeli. Counterpropagation neural networks in structuralengineering[J]. Journal of Structural Engineering,1995,121(8):1205-1212,
    [153]陈伟,瞿伟廉,姜正国.人工神经网络技术在结构损伤诊断中的应用[J].世界地震工程,2002年3月18卷1期:25-32
    [154]钟珞,李桂青,基于神经网络的结构损伤状态模拟[J].小型微型计算机系统,Vol.29No.2Feb.1999:51-56
    [155]张炼钢,钟珞,李桂青,神经网络在结构损伤模拟中的应用[J].武汉工业大学学报Vol.18.N0.4Dec.1995:36-43
    [156]王柏生,倪一清,高赞明,用概率神经网络进行结构损伤位置识别[J].振动工程学报Vol.14No.1Mar.2001:42-49
    [157] Smet C A M. Ambient vibration tests at the Dam of Mauvoisin[C],16thIMAC,2
    [158] Wasserman P.D.,Advanced Methods in Neural Computing, Van NostrandReinhold,New York,1993
    [159]罗跃纲,李宝家,基于神经网络的结构损伤诊断分析[J].沈阳工业大学学报,Vol.22No.6Dec.2000:47-55
    [160]段雪平,朱宏平,熊世树,神经网络在建筑物有限元模型修正中的应用[J].噪声与振动控制第2期2000年4月:16-25
    [161] Kemp B G. Ambient vibration testing and numerical model correlation ofRuskin Dam[C],14th IMAC,2
    [162] iedernann J P.Training and using neural networks to represent heuristicdesign knowledge[J].Advances in Engineering Software,1996(27):117-128
    [163] Wang Bai-Sheng, Ni Yi-Qing, Ko Jan-ming, Influence of MeasurementErrors On Structural Damage Identification Using Artificial Neural NetworksJournal of Zhejiang University(Science) Vol.1,No.3,P.291-299,July-Sep.,2000
    [164]陈素文,李强.基于BP网络的框架结构损伤的多重分步识别理论[J].地震工程与工程振动,2002,10,22(5):18-23
    [165]尚钢,钟珞,刘立胜.神经网络在结构分析中的应用研究[J].微机发展,1998,(2):7-17
    [166]袁曾任.人工神经网络及其应用[M].北京:清华大学出版社,1999
    [167]张立明,人工神经网络的模型及其应用[M].上海:上海交通大学出版社,1993
    [168]郝迎吉,王瑞平,靖民建,识别结构动力学参数新方法的研究[J].西安矿业学院学报,Vol.15Sup.Nov.1995:37-46
    [169]刘箴,唐岱新,建筑结构损伤诊断方法研究[J].哈尔滨建筑大学学报,Vol.33No.1Feb.2000:26-33
    [170] HUANG Fanglin,GU Songnian. A method of structural fault diagnosis byresidual energy[J].Journal of Mechanical Strength,1996,18(4):5-8
    [171]杨英杰,虞和济.结构损伤状态识别的神经网络方法[J].东北大学学报,1994,15(2):210-214
    [172] Cawley P,Adwley P,Adams R D.The location of defection in structuresfrom measurements of natural frequencies [J].Journal of StrainAnalaysis,1979,14:49-57
    [173]翟东武,朱唏.基于神经网络的结构振动响应预测控制[M].2000,40(s1):61-65
    [174]郭国会,傅余萍,易伟建,基于Kohonen网络的钢筋混凝土简支梁振型识别实验研究[J].郑州工业大学学报,Vol.19No.4Dec.1998:68-76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700