井下分离系统中气液两相流动特性及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气井积液造成气井水淹是制约天然气开采的重要问题,排水采气是解决此类气井开采的有效方法。应用常规排水采气工艺是将井下积液采至地面,经地面处理后,再回注地层,存在着设备多、投资大、污染环境等问题。因此,从低污染、低投入、高产出角度出发,研制一种经济有效、简单易行的,能够实现井下气液分离及回注的系统是势在必行的。
     气液分离设备是井下气液分离系统的主体结构,其性能的优劣直接影响系统的工作效率。结合油气田生产实际,根据气液两相流的运动规律,开展了分离装置的理论与试验研究。本文基于欧拉-欧拉理论,在考虑气液两相相互渗透、相间耦合、气液分离器内两相分离过程服从绝热的基本方程及气体的可压性的假设基础上,建立了气体可压缩的两相流模型。在此基础上,对其进行雷诺时均处理,得出可求解的气液两相的控制方程组。根据重整化群的思想,经数学推导得出有旋修正的气液两相湍流方程模型。
     利用所建立的气液两相流湍流模型,开展了井下分离设备的数值模拟研究,研究井下气液分离器内速度场、压力场及两相分布规律,分析了结构变化对流场、压力降及分离效率的影响关系。在此基础上,开展了井下气液分离器的结构优化设计研究,确定了适合井下气液分离的分离器结构形式。并开展了井下气液分离器性能试验研究,研究结果表明:考虑气体可压的两相流模型的模拟结果与试验结果有较好的吻合。
     根据气液两相绕流流动特点,开展了井下返气装置的数值模拟与试验研究,分别对返气装置内部及球浮子在单介质和气液两相绕流后,随着结构参数(球浮子直径、阻尼孔直径、底座直径)、操作参数(流量、液体体积百分含量)变化的流场分布特点及球浮子受力特征进行了理论分析,优化得到了井下返气装置结构。并与试验研究结合进行比较分析,二者的结果基本吻合,表明通过建立数学模型及数值计算方法对浮子结构及参数优选进行定性分析是可行的。
     在以上研究基础上,确定了井下分离系统的结构形式,提出了一种井下气液分离及产出水回注技术的新工艺,形成了以改进的空心转子螺杆泵和井下气液分离器为核心的井下分离回注系统,该系统的气液采出、为分离提供动力及回注水增压是通过一台空心转子螺杆泵来实现的,分离出的气从套管采出,井下分离出的水通过螺杆泵空心转子提供的回注通道回注,在油田两口水淹气井得到了成功应用。
Gas well fluid accumulation caused by floodout is the important problem to restrict nature gas exploitation. To solve the problem by using dewatering gas production is a availability method. Application convention gas well production with water withdrawal technics was that accumulated water is lift to ground. And the gas-liquid mixture of ground handling, water injection back formation. So there are more equipment, investment, environmental pollution and other issues. From clean, low input, high output perspective, the development of a cost-effective, simple, can be achieved downhole gas-liquid separation and water injection system.
     Gas-liquid separation devices are important parts of downhole gas-liquid separation system, its advantages and disadvantages of a direct impact on the performance of the system's efficiency. Combination of oil and gas production practice, according to the law of gas-liquid two-phase flow movement theory and experimental research of separation devices are carried out. Based on Euler-Euler's theory, taken into account gas-liquid two-phase inter-penetration of alternate coupling, obeyed adiabatic equation in separation process and assumed gas compressibility that the two-phase flow model of gas compressibility is established. On this basis, the application of Reynolds-averaged treatment methods, can be obtained solving the control of gas-liquid two-phase equations. According to renormalization group ideas derived through the mathematical derivation rotating gas-liquid two-phase turbulence modified equation model.
     Established by the use of gas-liquid two-phase turbulence model for the downhole separation equipment to carry out numerical simulation of gas-liquid separator velocity field, pressure field and the two-phase distribution of the analysis and structural changes on the flow, pressure drop and separation efficiency of affect the relationship. On this basis, we can launch a downhole gas-liquid separator design of structural optimization to determine the suitable for downhole separation of gas-liquid separator structure. The downhole gas-liquid separator performance carried out that test result of the study show that the simulation results in considering compressibility of gas with the experimental results better match.
     According to characteristics of flow around with gas-liquid two-phase, numerical simulation and experimental research of exhaust were carried out with single-media and gas-liquid two-phase,.respectively. The distribution of flow field characteristics and the characteristics of the ball float force were analysised under the structural parameters (ball float diameter, damping hole diameter, base diameter), operating parameters (flow rate, liquid volume percentage content) change so that the structure of optimized exhaust. Through experiments and numerical simulation analysis and comparison, both results agree that the establishment of mathematical model and numerical calculation method is feasible.
     Based on the above study to determine the structural form of downhole separation system presents ,proposes downhole gas-liquid separation and produced water re-injection technology, new process, and formed a hollow rotor screw pump and an improved gas-liquid separator for downhole separation of the core hole re-injection system, gas-liquid taken out for the separation and return to power is through a water booster pumps to achieve the hollow rotor, the separated gas from the casing to adopt out, down-hole separation out of the water through the hollow rotor screw pump provided by the re-injection channel re-injection, two flooded wells in the oil field has been successfully applied.
引文
[1]周际永,伊向艺,卢渊.国内外排水采气工艺综述[J].太原理工大学学报,2005,36(6):44-51
    [2]李闽,郭平,谭光天.气井携液新观点[J].石油勘探与开发,2001(5):105-106.
    [3]于俊波,艾文军.气井积液分析[J].大庆石油学院学报,2000,24(2):5-8.
    [4]杨启明.国外井下气液分离采气新技术研究现状分析[J].天然气工业,2001,21(2):85-88.
    [5]黄艳,谢南星.产水气井有效开采的工艺技术[J].钻采工艺,2002,25(2):24-27.
    [6]李敏.井下气液分离及回注系统研究[J].石油矿场机械,2006,35(2):27-30.
    [7]杨川东.采气工程[M].北京:石油工业出版社,1997.
    [8]李怀庆,耿新中,郝春山,等.积液停产气井排液复产的新方法[J].天然气工业,2001,21(1):88-90.
    [9]冯仁东,王振松.本井气柱塞气举技术研究[J].内蒙古石油化工,2007(3):193~195.
    [10]张书平,白晓弘,樊莲莲,等.低压低产气井排水采气工艺技术[J].天然气工业,2005,25(4):106-109.
    [11]春兰,魏文兴,刘永辉,等.国内外排水采气工艺现状[J].土哈油气,2004,9(3):255-261.
    [12]魏纳,刘安琪,等.排水采气工艺技术新进展[J].新疆石油天然气,2006,2(2):78-83.
    [13]黄艳.国外排水采气工艺现状及发展趋势[J].钻采工艺2005,20(4):27-30.
    [14] John A, Veil and John J, Quinn. Downhole Separation Technology Performance[J]. Relationgship to Geologic Condition Argonne National Laboratory, 2004, 11: 56-79.
    [15] Seth A,Silverman. Concentric Capillary Tubing BoostsProduction of Low Pressure Wells. Petroleum Engineering International, October 1997. 1.
    [16] Peachey B R. Downhole separator extends high-water cut well life World Oil[J]. 1995,216(8): 150-151.
    [17] Matthess C M. Application of downhole oil/water separation systems in the Allionee f -ield[C]. SPE 35817, 1996.
    [18]吴槟蓉,朱其秀,周静.聚合物控水采气原理及方法[J].钻采工艺2005,23(5):76-78.
    [19]钟晓瑜.连续油管深井排水采气技术[J].天然气工业,2005,25(1):111-113.
    [20]李大公,朱长发.连续油管综述[J].国外石油机械,1995,6(3):22-33.
    [21]周权,钟晓瑜.国内首例连续油管悬挂作业在张13井取得成功[J].钻采工艺,2005,26(5):49.
    [22]杜坚,周洁玲.深井低压底水超声排水采气方法研究[J].天然气工业,2004,24(6):86-88.
    [23]秦崴嵬,杜坚.超声排水采气换能器研究[J].计量与测试技术,2004,7:11-13.
    [24]关密生,王如平.采气井超声波雾化排液原理探讨[J].石油钻采工业,1998,20(2):94-96.
    [25]王阳恩,杨长铭,凌向虎.井下超声雾化换能器的设计[J].石油仪器,2001,15(6):23-25.
    [26]张剑君,赵炜.防止气井积液与提高天然气产量的两项实用技术[J].断块油气田,2003,7(3):62-64.
    [27]王翠红.毛细管管柱排液采气获得高产[J].国外油田工程,2003,19(7):36-37.
    [28]赵炜,张义生,张燕等.井下油(气)水分离系统的研究和应用[J].断块油气田,1998,5(3):64-67.
    [29]丁良成.胜利油气区浅层气藏配套采气工艺技术及存在问题[J].钻采工艺,2004,25(3):21-22.
    [30] Zunce Wang (SPE),Xiaoping Wang, Sen Li, et al. Experimental Study on Downhole Gas-Liquid Separation and Produced Water Reinjection[C]. Proceedings SPE Annual Technical Conference and Exhibition, v 2, SPE Annual Technical Conference and Exhibition, ATCE 2008,p 815-819. (EI number: 090611892283)
    [31]车得福,李会雄.多相流及其应用[M].西安:西安交通大学出版社,2007.15-345
    [32]张劲松.气-液旋流分离技术综述[J].过滤与分离,2002,12(6):12-14.
    [33]杨启明,周锡容.井下气液分离器中流体速度场的运动分析[J].石油机械,2000,28(增刊):68~71.
    [34] Bernardo S, Mori M, Peres A P, et al. 3-D computational fluid dynamics for gas and gas -particle flows in a cyclone with different inlet section angles[J]. Powder Technology, 2006, 162: 190-200.
    [35] Rosa E S, Franca F A, Ribeiro G S, The cyclone gas liquid separator: operation and mechanistic modeling[J]. Journal of Petroleum Science and Engineering, 2001, 32: 87- 101.
    [36]魏伟胜,杨彦文,鲍晓军,等.气液分离器的模拟实验[J].石油化工,2003,32(9):779-782.
    [37]王振波,金有海.导叶式气液旋流分离器实验研究[J].流体机械,2006,34(3):7-10.
    [38]赵立新,李枫.离心分离技术[M].哈尔滨:东北林业大学出版社,2006,11.125-129.
    [39]金向红,金有海,王建军,等.气液旋流分离技术应用的研究进展[J].化工机械,2007,34(6):351-354
    [40] Davies E E, Watson P. Miniaturized Separators for Offshore platforms[C]. proceedings of the 1st New Technology for Exploration and Exploiation of Oil and Gas ReservesSymosium, Luxembourg, April 1979, pp. 75-85.
    [41] Kouba G E, Shoham O, Shirazi S. Design and Performance of Gas-Liquid Cyclone Separators. Proceedings[C]. BHR Group 7th International Meeting on Multiphase Flow, Cannes, France,1995: 307-327.
    [42] Wang S, Mohan R, Shoham O, et al. Optimal Control Strategy and Experimental Investigation of Gas/Liquid CompactSeparators[C]. SPE Journal, 2002, 7(2): 170-182.
    [43]王晓莉.GLCC多相流计量装置用于单井计量.油气田地面工程,2005,24(3): 37
    [44]方再新,王连海.GLCC多相流计量系统优化控制方案设计及工程实现[J].石油化工自动化,2008,1:5-7.
    [45] Movafaghian S, Mohan R. S, Shoham O et al. The Effects of Geometry, Fluid Properties and Pressure the Hydrodynamics of Gas-Liquid Cylindrical Cyclone Separators[J]. International Journal of Multiphase Flow, 2000, 26 (6): 999-1018.
    [46] Nebrensky N T, Morgan G E, Oswald B J. Cyclone for Gas/Oil Separation”Proceedings of the International Conference on Hydrocyclones[D]. Churchill College, Cambridge, UK, 1980, paper No. 12, 167-177.
    [47] Zikarev A S, Kutepov A M. Design of a Cyclone Separator for the Separation of Gas Liquid Mixtures[J]. Chemical and Petroleum Engineering. March 1985, 196-198.
    [48] Jaek F, Mondt. Aerospace gas/liquid separator for terrestrial applications[C].1996(IEEE): 109-113.
    [49]吴太平,邱勇,陈凤英等.井下复合式气液分离器的研制与应用[J].石油机械,2006,34(4):26~27.
    [50]李振宁,吴频,刘海静.井下液气分离器分离原理及结构改进[J].石油矿产机械,2006,35( 3):76~79.
    [51]徐云霞,赵彬,童广岩等.高效井下分离器的研制和应用[J].石油矿产机械,2003,32(2):61~62.
    [52]赵炜.螺旋式油气分离器的研究与试验[J].国外石油机械,1998,9(2):35-40.
    [53] D.R.Kelsall,A Study of the Motion of Solid Particles in Hydraulic Cyclone[J].Trans.Inst. Chem. Eng, 1952, 30, 87-104.
    [54] K T. Heieh, Rajamani. Phenomenological model of hydrocyclone: model development and verification for single-phase flow[J]. Int. J.Min.Proc, 1988, 22, 223.
    [55]褚良银,罗茜,余仁焕.充气水力旋流器内流场的研究[J].化工矿山技术,1994, 23(3):20-23.
    [56]褚良银,罗茜,余仁焕.充气水力旋流器内压力分布的研究[J].化工矿山技术,1994,23(5):16-19.
    [57]褚良银,罗茜,余仁焕.充气水力旋流器内矿化气泡运动行为的研究[J].过滤与分离,1996,(2):8-11.
    [58]褚良银,罗茜,余仁焕.充气水力旋流器内颗粒的受力与运动[J].化工装备技术,1995,16(5):4,5-7.
    [59]蒋明虎,王尊策,赵立新,等.旋流器切向速度测试与分布规律分析——液-液水力旋流器速度场研究之一[J].石油机械,1999(27):20-23.
    [60]赵立新,王尊策,蒋明虎,等.液液水力旋流器流场特性与分离特性研究二——锥角变化对轴向速度场的影响[J].化工装备技术,1999(2):1-3.
    [61]赵立新,王尊策,蒋明虎.液液水力旋流器流场特性与分离特性研究三——水力旋流器径向速度测试方法[J].化工装备技术,1999(5):4-6.
    [62] Erdal F M. Local Measurements and Computational Fluid Dynamics Simulations in a Gas-Liquid Cylindrical Cyclon Separator: [D]. Oklahoma: The University Tulsa, 2001.
    [63] Drew D. A,Segel L. A. Averaged Equations for Two-Phase Flows, Studies in Applied Math,1971, 50(3):
    [64] Ishii M. Thermo-Fluid Dynamic Theory of Two-Phase Flow[M]. Eyrolles, Paris, 1975.
    [65] Boure J A,Delhaye J M. General Equations and Two-phase Flow Modeling In Handbook of Multiphase Systems edited by Hetsroni G, McGraw-Hill, New York,1982.
    [66] Delhaye J M. Local Instantaneous In Two-Phase Flow and Heat Transfer edited by Kakac S, Mayinger F, Veziroglu T N, Hemisphere Publishing Co, Washington, 1977.
    [67] Delhaye J M. Local Instantaneous Equations Space-Averaged. In Two-Phase Flow and Heat Transfer edited by Kakac S, Mayinger F, Veziroglu T N, Hemisphere Publishing Co, Washington, 1977.
    [68] Delhaye J M. Local Time-Averaged Equations. In Two-Phase Flow and Heat Transfer edited by Kakac S,Mayinger F, Veziroglu T N, Hemisphere Publishing Co, Washington, 1977.
    [69] Delhaye J M. Local Space/Time and Time/Space-Averaged Equations. In Two-Phase Flow and Heat Transfer edited by Kakac S, Mayinger F, Veziroglu T N, Hemisphere Publishing Co, Washington, 1977.
    [70]刘大有.二相流体动力学[M].北京:高等教育出版社,1993.326-354.
    [71] Zuber N, Findlay J A. Average Volumetric Concentratio in Two-Phase Flow Systems[C]. Trans of the ASME, 1965,87: 453-468.
    [72] Filho B R M. Rotational Two-Phase Flow in Gas-Liquid Cylinderical Cyclone Separators: [Dissertation]. Oklahoma: TheUniversity of Tulsa, 1997.
    [73] Ishii M. The Two-Fluid Dynamic Theory of Two-Phase Flow. 1975. 42-89.
    [74]王维,李佑楚.颗粒流体两相流模型研究进展.化学进展,2000, 12(2):208-217.
    [75] Gomez L E. Dispersed Two-Phase Swirling Flow Characterization forPredicting Gas Carry-Under: [Dissertation]. Oklahoma: TheUniversity of Tulsa, 2001.
    [76] Boysan F, Ayers W H, Swithenbank J A. Fundamental Mathematical Modeling Approachto Cyclone Design[J]. Trans InstChem Engrs, 1982, 60: 222-230.
    [77] T Dyakowski, R A. Williams. Modelling turbulent flow within a small-diameter hydrocyclone[J]. Chemical engineering science, 1993, 48(6): 1143-1152.
    [78] W D. Griffiths, F Boysan. Computational fluid dynamics(CFD) and empirical modelling of the performance of a number of cyclone samplers[J]. Journal of Aerosol Science, 1996, 27(2): 281-304.
    [79] Meier H F. Anisotropic Behavior of the Reynolds Stressin Gas and Gas-Solid Flows in Cyclones[J]. Powder Tech nology, 1999, 101(2): 108-119.
    [80] A J. Hoekstra, J J. Derksen, H. E. A.Van Den Akker. An experimental and numerical study of turbulent swirling flow in gas cyclones[J]. Chemical Engineering Science, 1999(54): 2055-2065.
    [81]陆耀军,周力行,沈熊.不同湍流模型在液-液旋流分离管流场计算中的应用及比较[J].清华大学学报(自然科学版),2001,41(2):105-109.
    [82]金有海,王建军,王宏伟,等.PSC型旋风管内气相流动的实验与数值研究[J].中国石油大学学报(自然科学版),2006,30(6):71-76,82.
    [83] Bernardo S, Mori M, Peres A. P, etal. 3-D Computational Fluid Dynamics for Gas and Gas-Particle Flows in a Cyclone with Different Inlet Section Angles[J]. Powder Technology, 2006, 162(3): 190-200.
    [84] Mainza A, Narasimha M, PowellM S. Study of Flow Behavior in a Three-Product Cyclone Using Computational Fluid Dynamics[J]. Minerals Engineering, 2006, 19(10): 1048-1058.
    [85]宋营坤,程艳会,成荣等.井口定压放气阀的研制与应用[J].油气井测试,2005,14(2):124-128.
    [86]李秀锦,唐鑫.靖安油田井口套管气回收技术应用研究[J].石油天然气学报,2005,27(4):513-514.
    [87]佘泽华,李文华费,费国兴.套管定压放气阀在抽油泵采油中的应用[J].石油机械,1998,26(12):25-26.
    [88]程艳会,严长青,车海燕.一种新型井口定压放气阀[J].石油机械,2004,32(12): 62.
    [89]吴建军.绕流问题数值模拟的研究综述[J].中国科技论文在线.
    [90]李玉柱,贺五洲.工程流体力学(上册)[M].清华大学出版社,2008,249-251.
    [91]杨纪伟,付晓丽.圆柱绕流研究进展[J].中国水运,2008,8(5):156-158.
    [92] N. E.伊杰里奇克,水力摩阻手册[M].北京:航空发动机编辑部,1985,256-300.
    [93]唐士芳,李蓓.桩群阻力影响下的潮流数值模拟研究[J].中国港湾建设,2001,(5):25-29.
    [94] Zdravkovich M. M.Flow Induced Oscillations of TwoInterfering Circular Cylinder[J].Internation Conference onFlow Induced Vibrations in Fluid Engineering England,September 14-16, 1982.
    [95]王智辉.水流数值模拟中群桩阻力系数研究[D].河海大学.2005.3.
    [96]苑明顺.高雷诺数圆柱绕流的二维大涡模拟[J].水动力学研究与进展,1992,12,A辑第7增刊,614-622.
    [97]邓见,黄钰期,任安禄.分块法研究圆柱绕流升阻力[J].力学与实践,2004 26(5):24-26.
    [98]廖俊,景思睿.高雷诺数下双圆柱绕流的数值模拟[J].2001,A辑16(1):101-110.
    [99]姚熊亮,戴绍仕,王国忠.均匀流场中串列双圆柱水动力特性的数值实验研究[J].哈尔滨工程大学学报,2006,5:698-703.
    [100]林宗虎,李永光,卢家才等.气液两相流旋涡脱落特性及工程应用[J].北京:化学工业出版社,2001,43-47.
    [101]周云龙.多相流体力学理论及其应用[M].北京:科学出版社,2008,236-247.
    [102]卢家才,李永光,林宗虎等,气液两相流体绕方柱流动的数值模拟[J].工程热物理学报,2001,22(6):751-754.
    [103]周云龙,邓冬,曹茹等,气液两相流并列双方柱绕流涡脱特性数值研究[J].中国电机工程学报,2009,29(17):88-96.
    [104]元少昀,吴小林.旋风分离器内旋进涡核的实验研究[J].化工机械,1999,5,249-252.
    [105]陶文铨.计算传热学的近代发展[M].北京:科学出版社,2001.136-148.
    [106]周力行.湍流两相流动与燃烧的数值模拟[M].北京:科学出版社,1994.128-156.
    [117]刘全,张晓轶,水鸿寿.数值模拟界面流方法进展[J].力学进展,2002,32(2):259-274.
    [108] Udaykumar H S, Shyy W, Rao M M. A Mixed Eulerian-Lagrangian Method for Fluid Flows with Complex and Moving Boundaries[J]. Int J of Numerical Methods in Fluids, 1996, 22(8): 691-702.
    [109] Crowe C T. Review-Numerical Models for Dilute Gas-Particle Flows.Journal of Fluids Engineering[C]. Trans ASME, 1982, 104(3): 297-303.
    [110] Crowe C T. Troutt T R, Chung J N. Numerical Models for Two-Phase Turbulent Flows[J]. Annual Review of Fluid Mechanics, 1996,28: 11-43.
    [111] Smoot L D, Smith P J. Coal Combustion and Gasification.Plenum Press, 1985.
    [112]周力行.湍流气粒两相流动和燃烧的理论与数值模拟[M].北京:科学出版社,1994, 96-106.
    [113]周力行.多相湍流反应流体力学[M].北京:国防工业出版社,2002,65-80.
    [114]周力行.湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1991,55-63.
    [115]岑可法,樊建人.工程气固多相流动的理论及计算[M].杭州:浙江大学出版社1990,98-103.
    [116]岑可法,樊建人.燃烧流体力学[M].北京:水利电力出版社,1991,124-131.
    [117]金向红,金有海,王建军等.两相流动模型在气液旋流分离器中的应用[J].新技术新工艺,2007,12:97-99.
    [118] M.Manninen, V. Taivassalo, S. Kallio. On the mixture model for multiphase flow[J]. VTT Publications 288, Technical Research Centre of Finland, 1996.
    [119]李玉柱,贺五洲.工程流体力学[M].北京:清华大学出版社,2006,194-196.
    [120]徐继润,罗茜.水力旋流器流场理论[M].北京:科学出版社,1998,116-124.
    [121]苗青,袁惠新,王跃进.水力旋流器内空气柱的形成规律初探[J].江南大学学报(自然科学版),2002,1(4) :380-383.
    [122] F. Concha, A. Barrientos, J. Montero,R.Sampaio. Air core and roping in hydrocyclone -s[J]. Int. J. Miner. Process, 1996, 44(45): 743-749. [ 123] R A. Williams,O M. Ilyas, T.Dyakowski, etal. Air coreimaging in cyclonic separato -rs: implications for separator design and modeling[J].The Chemical Engineering Journal, 1995, 56: 135-141.
    [124]于福家,陈炳辰,刘其瑞.消除旋流器空气柱提高分级效率的研究[J].中国粉体技术,1999,5(3):40-41.
    [125]刘晓敏,蒋明虎.脱油型水力旋流器空气核的稳定性分析[J].石油学报,2004,25(6):105-108.
    [126]曹晓娟,顾伯勤.旋流器内空气柱形成与发展及其对分离的影响[J].流体机械,2009,37(1):28-33.
    [127]王升贵,陈文梅,禇良银等.旋流器内空气核的形成机理和形状的实测研究[J].过滤与分离,2006,16(4):1-5.
    [128]姜正良,宗润宽,苏艳霞等.直筒型导叶直流式三相旋流器气相流场的试验研究与数值模拟[J].流体机械,2005,33 (7):5-8.
    [129]于勇.两相流动气体湍流变动模型和稠密两相湍流模型的研究[ D].北京,清华大学,2004.
    [130]朱佳奇,朱茉,耿丽萍等.考虑空气柱的水力旋流器内流畅的数值模拟[J].工程热物理学报,2009,30(7):1201-1203.
    [131]蒋明虎,赵立新,李枫,等.旋流分离技术[M].哈尔滨工业大学出版社,2000.
    [132]赵立新,朱宝军,曹怀宇,等.液-液水力旋流器压力场分布规律分析[J].化工机械,2008,35(4):220-223
    [133] Jamal Mohammed Saleh. Fluid Flow Handbook[M].McGraw-HillProfessional, 2002. 726-745.
    [134]吕凤霞.井下用水力旋流器结构优化及制造技术研究(硕士论文)大庆,大庆石油学院,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700