雨天溢流污水就地处理工艺开发及处理装置CFD模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市化进程的加快,城市雨天溢流污染问题日益凸现,雨天溢流污水含大量污染物质,若未经有效处理直接排放水体,将严重破坏水环境并危及人体健康。
     根据上海市西干线雨天污水溢流的水质情况,研制一套采用强化絮凝+高效沉淀工艺的装置处理雨天溢流污水,对装置各单元的设计进行了介绍和分析,应用管道静态混合器取代传统混合池单元,设置导流筒强化反应池絮凝效果,增设斜管和悬浮填料提高沉淀池沉淀效率,采用fluent商业软件对装置沉淀单元流态进行模拟优化。
     现场搭建溢流污水中试处理装置,考察各种相关因素对其的影响,捕获不同雨型进行现场试验,验证装置处理效能。分别对旱流污水、小雨情况混接雨污水、中强降雨混接雨污水和暴雨溢流污水、梅雨持续雨天、冬春季节持续降雨等工况进行了试验研究,装置能较大幅度地削减SS、TP和COD等各项污染物,有效控制雨天溢流污水对水体的污染。处理暴雨条件下雨天溢流污水,SS、浊度、TP和COD平均去除率分别达到82%、79%、77%和69%以上,装置沉淀池表面水力负荷可达32m~3/h.m~2,为普通沉淀池表面水力负荷的10倍以上。
     分别考察装置污泥回流、沉淀池水力负荷和药剂投加点与出水水质的关系和影响,讨论底流排放措施、沉淀池设置斜管、管道混合器应用等各种措施对出水水质的改善情况。污泥回流在溢流污染控制中不建议采用,药剂最优投加点为反应池进水口部位,出水SS浓度随出水流速即沉淀池水力负荷的增加而上升,水质其他指标相应升高;装置底流排放措施是控制多余溢流污水的有效措施;
     沉淀池斜管的设置主要起整流和泥水分离作用;管道混合器取代传统混合池单元,减少了混合池设施及其搅拌设备,防止药剂投加过程携带或混入空气,有效控制了反应池和沉淀池出现浮渣,改善沉淀池出水水质。
     启动响应时间是溢流污水处理装置的重要指标,结合自主开发的溢流污水高效处理装置,研究了装置在不同启动方式下的响应时间及影响因素。研究表明,干式启动时装置响应时间达25~30min,响应时间内出水水质较差,浊度高达120NTU以上,SS浓度也在100mg/L以上;湿式启动运行时,装置响应时间为10min左右,响应时间内出水水质良好,出水浊度60NTU左右,SS浓度小于60mg/L。处理溢流污水时应采用湿式启动方式,以有效削减初期溢流污染。
     对斜管滤料沉淀池的处理功能进行了探讨,在斜管上部加设滤料,利用滤料层稳定水流,拦截絮体;实验表明,提高沉淀池水力负荷,沉淀池较难出现矾花跑冒现象,出水效果较好,出水稳定,该措施能有效提高了沉淀池的处理负荷。
     借助大型计算流体力学Fluent软件,采用标准κ-ε两方程湍流模型,对装置沉淀单元进行了数值模拟,发现目前运行的沉淀装置存在严重的回流区及其较大的死区。通过分析沉淀池中水流的运动规律,在沉淀池进水堰下方设置挡板,重新进行计算后表明,沉淀池流态较前模型合理,改善了沉淀池流态。
     开发的高效溢流污水处理装置启动快,处理负荷高,耐水力冲击,出水水质稳定;处理单元少,结构紧凑,占地面积小,运行操作简单;污泥可回流入污水管网,减少了污泥处理设施,可推广应用于国内多雨城市溢流污染控制中。
With the accelerated urbanization of China, the Combined Sewer Overflows (CSOs) pollution had become increasingly serious. The CSOs contained a large number of pollutants that would seriously damage the environment and threaten to the human health if they were directly discharged into rivers without any effective treatment.
     According to the water quality of the wet sewer overflow from the Iranian wastewater transfer pipes in Shanghai, a set of device to treat the overflow was developed using the enhanced flocculation combined with the high-efficiency sedimentation. The design ideas, the mechanism and functions of the device were introduced. The pipeline static mixer were applied to replace the traditional mixing unit, the draft-tube was installed to rearrange the flow and enhance flocculation process . The inclined tubes and the suspended filters were added in the settling tank to improve the sedimentation efficiency. Moreover, the software FLUENT was used to simulate and optimize the flow status in the sedimentation unit.
     Pilot experiments were conducted to treat the wet sewer overflow on-site. The relevant influence factors were investigated. Different kinds of wet sewer overflows in various weather conditions were researched. The flow of dry weather, drizzly day, strong rainfall, or storm even that in Meiyu period and winter season with persistent rainfall were treated by the polit device. The results showed that the device could greatly reduce SS, TP, COD and other pollutants, effectively control the wet sewer overflow pollution. The removal rate of SS, turbidity, TP and COD of the storm overflow reached 82%,79%, 77% and 69% on average, respectively. The surface hydraulic load of the sedimentation tank could reach 32m~3/h.m~2 that is 10 times more than the general precipitation used in wastewater plant.
     The impacts of sludge recycling, the surface hydraulic load of the sedimentation and the pharmaceutical dosage positions on the water quality were investigated. It was to find out whether such measures as the underflow emissions, inclined tubes adding in sedimentation unit, the channel mixer application could improve outflow quality. Sludge recycling was not recommended in the overflow pollution control. The optimal pharmaceutical dosage point should set at the inlet pipe of the reaction tank. The concentration of effluent SS and other water quality index were increased with the hydraulic load of sedimentation unit. Underflow discharge could effectively control redundant sewage overflow.
     The main functions of the inclined tubes in the sedimentation unit are to rectifier the flow and improve the water-solid separation. The applying of pipeline static mixer could reduce the mixed pool and relevant mixing equipments and prevent the pharmaceutical dosage from mixing with the air, which was effectively reduced the scum in the reaction unit and the sedimentation unit and improved outflow quality.
     The respondent time of the device in different start-up modes and its impact factors were researched. The results showed that the respondent time was 25~30min in the dry mode start-up and the effluent quality was not so good. The NTU and SS reached to 120 degrees and 100mg/L, respectively. However, with the wet mode start-up, the respondent time was about 10min. The effluent quality was satisfactory. The NTU was about 60 degrees and the SS was less than 60mg/L during the start-up period. The wet mode start-up was recommended to apply in control with the wet sew overflow pollution.
     Suspended filters were placed upper the inclined tubes to intercept the floc in the upflow. The performance of inclined tube combined filters sediment tank was investigated. Results showed the new sedimentation tank could increase the surface hydraulic load and greatly reduce the flocs in the effluent. Good and stable effluent quality was achieved.
     The flow-field distribution in the sedimentation unit of the device was simulated by FLUENT using theκ-εtwo equations model. Serious back-flow and large hydraulic dead zones were found. Based on the analysis, the baffle plate was decided to set under the weir of the inlet zone, at the left of the tank bottom. The simulated result of the modified tank was showed that the flow-field distribution was much more reasonable than the old one.
     The high-efficiency sewer overflow treatment device had a lot of advantages, such as quick start-up, high treating capacity, hydraulic Shock-Resistant, stable effluent quality, simple and compact treatment units, small occupied area, and easy operation and so on. Furthermore, the sludge produced by the device could flow back into the sewage pipeline, so the sludge treatment facilities were not necessary. The device can be used to control the wet sewer overflow pollution effectively in those rainy cities.
引文
[1] 车伍,李俊奇.城市雨水利用技术与管理.北京:中国建筑出版社,2006
    [2] 袁铭道.美国水污染控制和发展概况.北京:中国环境科学出版社,1986
    [3] 张善发,李田,高廷耀.上海市地表径流污染负荷研究.中国给水排水,2006,22(21):57~60
    [4] 盛铭军,马鲁铭,王红武.强化混凝—高效沉淀工艺控制城市溢流污水研究.给水排水,2006,32(9),23-25
    [5] 李贺,李田.上海高密度居民区合流制系统雨天溢流水质研究.环境科学,2006,27(8):1565~1569
    [6] 陈宗明.上海苏州河的环境综合整治.城市发展研究,1998(3):47~50
    [7] 陈一申.苏州河水环境污染现状分析.上海环境科学,1997 16(1):11~15
    [8] 王祖琴,李田.上海市雨水污染控制初探.上海环境科学,2002,21(5):305~309
    [9] EPA. Combined Sewer Overflow Control Policy. Washington, 1994
    [10] Degremont. Sanitary Sewer Overflow. http://www.enquip.com/cso-sso.htm
    [11] 华明,徐祖信.苏州河沿岸市政泵站放江特征分析.给水排水,2004,30(11):33~36
    [12] USEPA. NationaL water quality inventory. Report to congress Executive Summary. Washington D. C: USEPA, 1995
    [13] Lee J H, Bang KW. First flush analysis of urban storm runoff. The Science of the Total Environment, 2002 , 293: 163~175
    [14] 谭琼,李田,高秋霞.上海市排水系统雨天出流的初期效应分析.中国给水排水,2005,21(11):26~30
    [15] 麦穗海,黄翔峰,汪正亮.合流制排水系统污水溢流污染控制技术进展.四川环境,2004,23(3):18~22
    [16] EPA. Guidance: Coordinating CSO Long-Term Planning with Water Quality Standards Reviews. Washington, 2001
    [17] 车武,刘燕,李俊奇.国内外城市雨水水质及污染控制.给水排水,2003,29(10):38~42
    [18] 赵剑强.城市地表径流污染与控制.北京:中国环境科学出版社,2002
    [19] EPA. Results of the national urban runoff program. Final Report. Washington DC:US EPA Water Planning Division, 983
    [20] Richard, Marie. Integrated Storm water Management. 1993, 3~4
    [21] Thomas N. Debo. MunicipaL Storm water Management. 1995,161~168
    [22] EPA. Combined Sewer Overflow: Guidance for Nine Minimum Controls. Washington, 1995
    [23] EPA. Combined Sewer Overflow: Guidance for Long-Term Control Plan. Washington, 1995
    [24] EPA. Combined Sewer Overflows Guidance for Meriting and Modeling. Washington, 1999
    [25] EPA. National Menu of Best Management Practices for Storm Water Phase Ⅱ,12-20-2005,, URL:http://www.epa.gov/npdes/menuo fbmps/menu.htm (HTML)
    [26] Richtlinien fur die Bemessung, Gestaltung von.Regenentlastungsanlagen in Mischwasserkana. len Arbeitblatt A 128 April 1992
    [27] GeigerW, Dreiseitl H. Neue Wege fuerdas Regenwasscr Hand Such zum Rucckhalt and zur Vcrsickcrung von Regenwasser in Baugebieten. M uencherOldenbourg Industrieverlag GmbH, 2001
    [28] Janurce Niemczynouicz, Swedish Way to Stormwater Enhancement by Source Control. Urban Stormwater Quality Enhancement, 1990,156~157
    [29] 曹凤中,戴天有编译.地表水污染及其控制.北京:中国环境科学出版社,1993
    [30] Chebbo G. Solids in urban wet weather discharges: characteristics and treat ability.Paris: Ecole National des Punts et Chaussees, 1992
    [31] Krejci V, Dauber L, Novak B, et al. Contribution of different sources to pollutant loads in combined sewers. 1 Proc 4th Int Conf on Urban Storm Drainage ,Lausanne, Switzerland, 1987, 34~39
    [32] Larry AR. Urban runoff pollution summary thoughts the state of practice today and for the 21st century. Wat. Sic .Technol, 39(12): 353~360
    [33] Martin H. Characterization of the Performance of an off line Storage Tank. at. Sci. Tech, 1996, 34(4): 25~32
    [34] J L Bertrand, Krajewski, et al. Flow and Pollutant Measurements in a Combined Sewer System to Operate a Wastewater Treatment Plant and Its Storage Tank During Storm Events. Wat. Sci. Tech, 1995,31(7): 1~12
    [35] 王中民.城市降雨径流的污染和防治.西南给排水.,2003,25(4):16~19
    [36] 王鸿云,李永生.溢流雨水对水体的影响及雨水出路问题研究.北京水利,2005,2:6~8
    [37] 张善发,马鲁铭,高廷耀.合流制溢流污水的一级化学强化处理.中国给水排水,2005,21(11):6~9
    [38] 李俊奇,车武,孟光辉等.城市雨水利用方案设计与技术经济分析给水排水.2001,27(12):25~28
    [39] 张善发.合流制排水系统雨天溢流污染防治技术研究:[博士学位论文].上海:同济大学环境科学与工程学院,2006
    [40] 车武,欧岚,汪慧贞,李俊奇.北京城区雨水径流水质及其主要污染因素.环境污染治理技术与设备,2002,3(1):33~37
    [41] 刘树人,周巧兰.上海市暴雨积水灾害成因及防治对策研究.城市研究,2000(2):18~21
    [42] 合流一期污水治理工程合流泵站雨水溢流污染物总量调查.上海市排水公司,2003
    [43] 优化泵站运行管理减少苏州河泵站雨天溢流研究.上海市排水公司,2005
    [44] 赵剑强,闫敏,刘珊.城市路面径流污染调查.中国给排水,2001,17(1):33~35
    [45] 赵剑强.城市地表径流污染与控制.北京:中国环境科学出版社,2002
    [46] 尹炜,李培军,可欣等.我国城市地表径流污染治理技术探讨.生态学杂志,2005,24(5):533~536
    [47] 刘曼蓉,曹万金.南京市城北地区暴雨径流污染研究.水文,1990(6):15~19
    [48] 温灼如.苏州水网城市暴雨径流污染的研究.环境科学,1986,7(6):2~6
    [49] 宫莹,阮晓红,胡晓东.我国城市地表水环境非点源污染的研究进展.中国给水排水,2003,19(3):21~23
    [50] EPA. Attention County, City and Township Environmental Officials—EPA Seeking Towns to Test BMPs for Nonpoint Source Runoff Pollution, 2005. 12, URL:http://www.epa.gov/owow/estuaries/coastlines/oct99/attention.html(HTML)
    [51] Larry AR. Urban runoff pollution summary thoughts the state of practice today and for the 21st century.. Watt Sic Tech, 1999,39 (12): 353~360
    [52] USEPA. Combined sewer Overflow Technology Fact Sheet Retention Basins. 1999,8322F299-2042
    [53] W De Cock, et al. The Feasibility of Flocculation in a Storage Sedimentation Basin. Wat Sci. Tech., 1999:39 (2):75~83
    [54] 张善发,屈强,马鲁铭.污水处理中紫外消毒技术进展.西南给排水,2006,26(5):10~13
    [55] M C Boner, et al, Modified Vortex Separator and UV Disinfection for Combined Sewer Overflow Treatment. Wat. Sci. Tech., 1995, 31 (3-4): 263-274
    [56] W F Geiger. Combined Sewer Overflow Treatment Knowledge or Speculation. Wat. Sci. Tech, 1998,38 (10) :128
    [57] R M A khaddar, et al, Residence Time Distribution of a Model Hydrodynamic Vortex Separator. Urban Water ,2001, 3: 17~24
    [58] 郑兴灿,张悦.化学—生物联合絮凝的污水强化一级处理工艺.中国给水排水,2000,16(7):29~32
    [59] 顾德兴,汪陈彪.铁盐和铝盐作为饮用水絮凝剂的比较.环境工程,1990,8(6):62~63
    [60] 吴浩汀,刘立伟.聚合硫酸铁与其它无机混凝剂性能的比较.水处理技术,1989,15(5):290~294
    [61] 江霜英,高廷耀.上海污水二期工程污水化学强化处理的试验研究.上海环境科学,2002,21(1):40~42
    [62] 裘泽民,郭迎庆等.CEPT工艺特点及其经济性分析.西南给排水,2002,24(5):19~21
    [63] 蒋玖璐,李东生,陈树勤.高密度澄清池设计.给水排水,2002,28(9):27~29
    [64] 罗启达,周克明,陈伟.ACTIFLO一种新型高效水处理澄清工艺.净水技术,2003,23(1):38~42
    [65] Plum, Victoria, DahL, Claus P., Bentsen, Leif; Petersen, Carsten R., Napstjert, Lis, Thomsen, N. B. The Actiflo method. Water Science and Technology, 1998, Vol. 37(1): 269~275
    [66] 吴建磊.污水处理新工艺DENSADEG+BIOFOR.中国给水排水,2003,19(11):03~10
    [67] A. Daligault, D. Meadre etc, Stormwater and lamella sttlers:Efficiency and reality. Wat. Sci. 1999, 39(2): 93~101
    [68] Victoria Plum, Claus P.Dahl, Leif Bentsen, et al. The Actiflo Method. Water Science and Technology,1998, 37(1): 269~275
    [69] 陆晓如,周雅珍,黄竹君.高效澄清池在黄浦江原水中的应用试验.净水技术,2002 21(2):14~17
    [70] C. Delporte, R. Pujol and P. Vion. Optimized Lamellae settling for urban stormwater waste. Wat.Sci.Tech. 1995,32(1): 127~136
    [71] EPRI. High Rate Clarification for the Treatment of Wet Weather Flows. Electric Power Research Institute, USA, 1999
    [72] 李家春.现代流体力学发展的回顾与展望.力学进展,1995,25(4):42~449
    [73] 周力行.多相湍流反应流体力学.北京:国防工业出版社,2002
    [74] Van Wachem, Almstedt. Methods for multiphase computational fluid dynamics. Chemical Engineering Journal, 2003, 96: 81~98
    [75] 姚征.CFD通用软件综述.上海理用大学学报,2002,24(2):137~145
    [76] 王福军.计算流体动力学分析—CFD软件原理与应用.北京:清华大学出版社,2004
    [77] CFD comes to the desktop, The chemical Engineer, 13 June 1991: 23~25
    [78] Asa Adamsson, Virginia Stovin, Lars Bergdahl. Bed Shear Stress Boundary Condition for Storage Tank Sedimentation. Journal of Environmental Engineering, 2003
    [79] 马培勇,仇性启,唐鹏.计算流体力学软件PHOENICS及其应用.数值计算与工程仿真,2004,4
    [80] 刘霞.FLUENT软件及其在我国的应用.能源研究与利用,2003(2):36~38
    [81] Fluent Co. Fluent Documentation. Fluent Inc. 2003
    [82] SPALDING POLIS OF PHOENICS. England: CHAM COMPANY, 1978
    [83] Fluent Co. Fluent Overview. Fluent Inc. 2002
    [84] Fluent Co. Gambit Documentation. Fluent Inc 2003
    [85] Fluent Co. Introduction to CFD Analysis. Fluent Inc. 2003
    [86] Fluent Co. Modeling Turbulent Flows. Fluent Inc. 1999
    [87] Andre Baker. Application of CFD in the Chemical Industries. Fluent Co. 2000
    [88] AEA Tech. CFX Introduction. AEA Technology. 2004
    [89] 朱炜,马鲁铭,盛铭军,屈强.模型在污水沉淀池数值模拟中的应用.水处理技术,2006,32(4):10~15
    [90] 蔡金榜.沉淀池水流数值模拟.重庆建筑大学学报,2003,25(4):64~69
    [91] Imam, McCorquodale. Simulation of flow in rectangular clarifiers. Journal of Environmental Engineering, ASCE, 1983, (109):713~730
    [92] J R Messenger, J C Smith, M J Tetreault etc. The Use of Dynamic BNR and Two-Dimensional Clarifler Modeling to Investigate Nitrogen Removal at Eastern Treatment Plant, Melbourne, Australia. Water Science and Technology ,1999 39(6): 89~96
    [93] Zeng Guangming, Jiang Yimin. Numerical Modeling Method on The Movement of Water Flow Suspended solids in Two Dimensional Sedimentation Tanks in the Wastewater Treatment Plant. China Journal of Environmental Sciences 2003 15(1): 31~37
    [94] 马鲁铭,金志刚,杨友宝.周边式二次沉淀池流态的数值模拟研究.环境科学学报,1992,12(4):391~398
    [95] 马鲁铭.二次沉淀池运行工况的研究设计理论及其新工艺的探讨:[博士学位论文].上海:同济大学环境科学与工程学院,1988
    [96] 顾正平.周边式二次沉淀池流态的计算模拟研究的数值方法.环境科学研究,1995,8(3):50~52
    [97] Samstag, R. W., Dittmar, D. E, Vitasovic, Z. and McCorquodale, JA., Underflow geometry in secondary sedimentation. Wat Environ Res, 1989, 64(3): 204~212
    [98] Zhou SP, McCorquodale JA, Modeling of Rectangular Settling Tanks-Closure. Journal of Hydraulic Engineering ASCE, 1994,120 (2): 279~281
    [99] Zhou SP, McCorquodale JA, Vitasovic Z, Influences of density on circular clarifiers with baffles, Journal of environmental engineering, ACSE, 1992,118(6): 829~847
    [100] Zhou S. McCorquodale. Modeling of rectangular settling tanks. Journal of Hydraulic Engineering, 1992, 118(10): 1391~1400
    [101] Zhou SP, McCorquodale JA, Godo AM, Short-Circuiting and Density Interface in primary clarifiers. Journal of hydraulic engineering, ASCE, 1994,120 (9): 1060~1080
    [102] Krebs, P, Vischer D. GUJER, W., 1995, Inlet-structure design for final clarifiers. Journal of Environmental Engineering-,ASCE, 1995,121 (8): 558~564
    [103] M G Wood, T Howes, J Keller etc. Two Dimentional Computational Fluid Dynamic Models for Stabilization Ponds. Water Research 1998,32(3):958~963
    [104] Hong Wang, Roger A falconer. Numerical Modeling of Flow in Chlorine Disinfection Tanks. Journal of Hydraulic Engineering, 1998,124(9):918~931
    [105] Adamsson, Three-dimensional simulation and physical modeling of flows in detention tanks-Studies of flow pattern, residence time and sedimentation, Doktorsavhandlingar vid Chalmers Tekniska Hogskola, 2004, 71
    [106] 陈宗明.上海苏州河的环境综合整治.城市发展研究,1998,3:47~50
    [107] 廖振良,徐祖信,刘东胜.苏州河干流水质模型的开发研究.上海环境科学,2002,21(3):136~138
    [108] 匡桂云,张效国.苏州河整治的阶段性成果.净水技术,2001,20(1):7~10
    [109] 王骏,张海良.苏州河污染源调查探究.上海市政工程,2004,(4):67~70
    [110] 张善发,马鲁铭,高廷耀.合流制溢流污水的一级化学强化处理.中国给水排水,2005,21(11):6~9
    [111] Jones S C. Static mixers for water treatment. georgiatnstitute of etchnology, 1999. 11
    [112] 王钢,沈士德.静态混合器气液两相流压降的研究.化学工程,1993,21(6):47~52
    [113] 郑四仙.静态混合器简介及选用.化工生产与技术,2000,7(2):33~35
    [114] 李新.苏尔士静态混合器压力降性能的研究.石油化工,1997,26(5):306~310
    [115] 郎显华,施永生,王琳.改进管道混合器提高高浊水混凝效果.工业用水与废水,2006,37(1):71~72
    [116] 给水排水设计手册(第9册)-专用机械.北京:中国建筑工业出版社,1986
    [117] 黄廷林,李玉仙,张志政,卢金锁.斜管沉淀池布水均匀性模拟计算与工艺参数分析.给水排水.2005.31(4):16~19
    [118] 廖足良,刘荣光,罗辉荣,田伟博.斜管沉淀的评价指标.水处理技术,1996,22(04):227~232
    [119] 罗忠,陈卫民.斜管沉淀池应用中存在问题的探讨.能源环境保护,2004,18(2):46~48
    [120] 邹品毅.影响斜管沉淀池出水效果的因素.中南工学院学报,1999,13(1):87~90
    [121] 刘静竺,豪立.整流配水装置对斜管沉淀池沉淀效果的影响.给水排水,1997,23(9):29~31
    [122] 国家环保总局.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2001
    [123] 陈蕴智,龙柱.聚合氯化铝与硫酸铝性能的比较.中国造纸,2001,20(3):15~18.
    [124] 纪峰,张海龙.水处理药剂复合铝铁应用研究.化学工程师,2001,(6):47~48
    [125] 郑兴灿,李亚新.污水除磷脱氮技术.北京:中国建筑工业出版社,1998
    [126] 邢丽贞.对城市污水处理厂辐流式二沉池设计方法的探讨.山东建筑工程学院学报,1998,13(1):83~86
    [127] 严晨敏,张代钧,卢培利.沉淀池模型的研究现状与展望.重庆大学学报,2004,27(3):130~133
    [128] 孙慧修.排水工程(上册第四版).北京:中国建筑工业出版社,1999
    [129] 高廷耀,顾国维.水污染控制工程(下)..北京:高等教育出版社,1999
    [130] N. Jardin, L. Rath, A. Sabin, et al. Cost-effective upgrading of the Amsberg WWTP by post denitrification with a moving bed system. Wat. Sci. Tech. 2000, 41(9): 123~130
    [131] 刘霞.生物粒子浮动床处理城市污水的实验研究:[硕士学位论文].上海:同济大学环境科学与工程学院,1996
    [132] 何国富.悬浮填料活性污泥脱氮试验及其机理研究:[博士学位论文].上海:同济大学环境科学与工程学院,2004
    [133] 吕春生,曲久辉,等.微絮凝拦截沉淀处理低温低浊水.中国给水排水,2000,16(1):
    [134] 刘知晓等.拦截沉淀工艺在水厂沉淀工艺改造中的应用.给水排水,2000,26(10):22~25
    [135] 王华文等.拦截斜板沉降技术研究.净水技术,2004,23(3):12~14
    [136] 董宾.应用于活性污泥法系统的新型悬浮填料澄清池的机理及运行研究:[博士学位论文].上海:同济大学环境科学与工程学院,2006
    [137] 尹晔东,王运东,费维阳.计算流体力学(CFD)在化学工程中的应用.石化技术,2000,7(3):166~169
    [138] Fluent Co. Modeling Turbulent Flows. Fluent Inc. 1999
    [139] 张兆顺.湍流.北京:国防工业出版社,2002
    [140] 华祖林.湍流模型在环境水力学研究中的应用.水科学进展,2001,12(3):403~412
    [141] Yakhot V, Smith L M, The renormalization group—the expansion and derivation of turbulence models. Journal of Science Computing. 1992, 7(1):31~52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700