用户名: 密码: 验证码:
矿化垃圾反应床处理填埋场渗滤液工艺优化及运行机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高矿化垃圾反应床对渗滤液的处理能力,同时阐明其对污染物的降解转化机制,本课题主要从工艺优化和降解机制两个方面进行了研究,包括塔式矿化垃圾反应床小试、中试和实际工程运行的工艺参数优化;废铁屑、钢渣、蘑菇渣、秸秆分别作为改性剂的工艺强化;废铁屑固定床耦合矿化垃圾反应床的工艺组合优化;强化混凝处理渗滤液尾水的可行性;反应床体系中氨氮和磷的转化机制以及反应床体系中微生物种群的分子水平分析。
     通过正交试验研究了固液比、进水COD浓度和运行周期对塔式矿化垃圾反应床处理填埋场渗滤液的效能影响。在温度为10-37℃条件下,固液比是影响体系污染物去除性能的关键因素,最佳的工艺运行参数为:固液比大于50∶1,进水COD小于8000 mg/L,运行周期小于3h。现场中试研究表明,在温度为10-37℃,水力负荷为0.267-0.444 m~3/m~3_(矿化垃圾)·d条件下,出水COD和氨氮基本上满足国家二级排放标准。实际工程系统对填埋场渗滤液中的污染物去除效果相对较差,分析认为主要和床体填充的矿化垃圾性质以及处理渗滤液的可生化性有关。
     在固液比为10∶1,运行周期为3h,水力负荷为0.08 m~3/m~3_(矿化垃圾)·d条件下,分别采用废铁屑、钢渣、蘑菇渣、秸秆作为改性剂进行矿化垃圾反应床处理填埋场渗滤液的工艺强化研究。从工程实际应用角度出发,认为废铁屑是相对较为理想的一种改性剂。铁屑固定床耦合塔式反应床处理填埋场渗滤液的工艺组合优化研究表明,前置铁屑固定床和间歇曝气沉淀具有明显强化反应床体系去除COD和氨氮的能力,出水COD小于150mg/L,氨氮小于5mg/L。后置铁屑固定床和间歇曝气沉淀不能有效强化去除塔式反应床出水中的COD。随着铁屑内电解反应器的不断完善,前置铁屑固定床和间歇曝气沉淀可作为强化矿化垃圾反应床处理填埋场渗滤液的有效途径。
     聚合氯化铝、氯化铁和硫酸铝强化混凝处理渗滤液尾水的研究表明,氯化铁强化混凝的效果最佳,硫酸铝的效果最差。氯化铁的最佳混凝条件为:pH4.5、FeCl_3 1500 mg/L、PAM 15mg/L、磺酸类化合物5 mg/L和硅藻土1500 mg/L,其COD去除率为60.9%;聚合氯化铝和硫酸铝的最佳COD去除率分别为50%-53%和34.4%。强化混凝不能实现对渗滤液尾水的有效处理。
     矿化垃圾对氨氮具有“易吸附、难解吸”的特点,矿化垃圾反应床对氨氮的吸附是在瞬间(<10min)完成的,且难以解吸。可用Freundlich方程比较准确地描述矿化垃圾对氨氮吸附的整个过程,其中n值在0.1-0.5之间,表示氨氮吸附容易进行。矿化垃圾反应床对氨氮的转化研究可知,床体中的阳离子交换位点仅仅起暂时贮存氨氮作用,随即主要通过硝化作用实现其氨氮吸附活性的生物再生。通过配水期和落干期的交替循环,反应床完成对氨氮的吸附和生物转化再生。因此,分析认为矿化垃圾反应床的氨氮去除性能与其运行年限无关。低的总氮去除率是由于其反硝化和厌氧氨氧化效果差所致。
     采用修正的Hedley磷素分级方法对矿化垃圾中磷的赋存形态特征进行研究。以NaOH-P和Dil.acid-P构成的中度活性磷为矿化垃圾中磷的主要赋存形态,占TP的74.9%,说明矿化垃圾中磷的可利用率相对较高。塔式反应床体中不同磷素形态的时空动态变化表明,矿化垃圾反应床对填埋场渗滤液中磷的去除过程也是其自身富集磷的过程,增加的磷素主要以Dil.acid-P和NaOH-P形态存在,而且主要集中在塔式反应床的上层床体中。据此推断矿化垃圾反应床对填埋场渗滤液中磷的转化主要是通过吸附和生成以多羟基磷灰石为主要形式的化合物而固定。鸡粪(含磷较高)和稻草(含磷较低)两种典型有机物料均能显著活化矿化垃圾中的磷,而且鸡粪的磷活化效果优于稻草;NaOH-P、Dil.acid-P和Conc.acid-P是矿化垃圾活化磷的主要来源。
     建立了一种适合于矿化垃圾基因组DNA提取的方法,即TENP buffer/PBSbuffer-Bead beating/Proteinase K/SDS-Sephadex G-200 spin column的组合。矿化垃圾反应床体系的微生物分子水平分析发现,矿化垃圾是极端环境微生物的载体,包括嗜盐、嗜碱、嗜热和嗜冷微生物,说明正是由于矿化垃圾反应床中含有这些具有特殊代谢系统的极端微生物才使其具有强的污染物降解能力,证实了矿化垃圾是一种性能优越的生物介质。反应床体系中的细菌以芽孢杆菌属、变形菌属和动球菌属为优势菌属,古菌以甲烷八叠球菌属和甲烷嗜热菌属为优势菌属。运行良好的反应床体系中的细菌主要包括芽孢杆菌属、微杆菌属、放线菌属、动球菌属、γ-变性菌属以及未分类的氮转化细菌;古菌包括euryarchaeote、methanomicrobia、产甲烷archaea、Crenarchaeote和一种未知菌。
     最后,关于进一步工作的方向包括高效生物反应器的开发、总氮去除率的提高和矿化垃圾微生物分子水平的深入研究进行了简要的讨论。
The objectives of this research were to perfect the removal performance and explain the removal mechanisms of the aged-refuse-based reactor in treating landfill leachate. The optimization and operation mechanisms of the aged-refuse-based reactor for the treatment of landfill leachate were mainly investigated, including the determination of the optimized parameters from the operation of the bench-scale, pilot-scale and full-scale stratified reactors; the improvement of the aged-refiise-based reactor in treating landfill leachate by addition of inducing materials such as waste iron scraps,steel slag,mushroom residual and straw individual; the best hybrids of the iron-scraps-fixed reactor and the aged-refuse-based reactor; the feasibility of enhanced coagulation in polishing effluent from the aged-refuse-based reactor; the transformation mechanisms of ammonium and phosphrous in the reactor and the molecular microbial community profile during the operation of the reactor.
     The influences of operating parameters including the volume ratio of aged refuse and influent, the influent COD concentration and the operating cycles on the removal performance of the landfill leachates treatment with the stratified aged-refuse-based reactor were investigated by the Orthogonal Test. The results indicated that the volume ratio of aged refuse and influent was crucial for the operation of the reactor at ambient temperature of 10-37℃. The optimized operational parameters were the volume ratio of aged refuse and influent greater than 50, the influent COD of less than 8000 mg/L and the operation cycle of below 3 h. The pilot-scale experiments showed that under the operating temperature of 10-37℃and the hydraulic load of 0.267-0.444 m~3/ m~3.d, the COD and ammonium of the effluent could conform to the requirements of Second Grade National Discharge Standard generally. The relatively low biomass in the aged refuse and the poor biodegrability of the leachate used in the full-scale reactor could be mainly responsible for its unsatisfactory performances.
     The improvement of aged-refuse-based reactor in treating landfill leachate was tested by addition of inducing materials such as waste iron scraps, steel slag, mushroom residual and straw individually. The experiments were conducted with the volume ratio of the aged refuse and the influent of 100, the operating cycle of 3 h and the hydraulic load of 0.08 m~3/m~3.d . The results indicated that waste iron scraps could notably improve the removal performance of the aged-refuse-based reactor in terms of COD and color; the addition of the steel slag could facilitate the removal of COD,color and total phosphrous, while lower the removal capacity of the reactor in ammonium and total nitrogen; The enhanced removal of COD and color by the mushroom residual could not be attained until long time operation of the reactor; likewise, the increased removal of COD,color, ammonium,total nitrogen and total phosphrous by straw could not be achieved until its termination of self-degradation. Therefore, waste iron scrap was considered a kind of proper inducing material in terms of engineering application.
     The optimized hybrids of the iron-scraps-fixed reactor and the aged-refuse-based reactor were investigated. The results showed that the preceding iron-scraps-fixed reactor and the intermittent aeration-sedimentation could improve the removal performance of the aged-refuse-based reactor in terms of COD and ammonium; the COD and ammonium concentration in the effluent were 150mg/L and 5mg/L, respectively. The posterior iron-scraps-fixed reactor and the intermittent aeration-sedimentation could not enhance the removal capacity of the stratified aged-refuse-based reactor, which could be explained by the fact that the COD removal pathway of iron scraps was discontinued due to the rising potential from high-level nitrate and the refractory soluble COD in the effluent. With the gradual improvement in the iron-scrap-fixed reactor, the preceding iron-scraps-fixed reactor and the intermittent aeration-sedimentation could be considered a promising way in bettering the removal performance of the aged-refuse-based reactor.
     The feasibility of enhanced coagulation in polishing the effluent from the aged-refuse-based reactor was tested regarding polymer aluminum chloride (PAC), ferric chloride and aluminum sulfate. The results demonstrated that the enhanced coagulation of ferric chloride was the best and that of aluminum sulfate was the worst for polishing the effluent. The optimal coagulation condition of ferric chloride was pH4.5, ferric chloride dose of 1500 mg/L, PAM dose of 15 mg/L. sulfonic-group compound dose of 5 mg/L and diatomite dose of 1500 mg/L. The maximum COD removal of 60.9% was obtained by the ferric chloride enhanced coagulation. The best COD removal of PAC and aluminum sulfate were 50%-53% and 34.4%, respectively.
     The adsorption and desorption tests showed that the adsorption of ammonium by aged refuse occurred instantly and the adsorbed ammonium was stable and less exchangeable. The Freundlich isotherms could fit the adsorption trend of ammonium by aged refuse. The value of n was 0.1-0.5, indicating the adsorption of ammonium occurred easily. The synergistic transformations of ammonium within aged-refuse-based reactor indicated that the cation exchange sites only provided temporary storage of ammonium prior to subsequent nitrification. The nitrification process could be considered the predominant restoration pathway of ammonium adsorption capacity of the reactor. The wetting cycle allows ammonium to be adsorbed onto aged refuse. During the subsequent drying cycle, the oxygen infiltrates in the reactor and ammonium is mostly converted to nitrate via nitrification. Hence, it could be concluded that there was no expire for the aged-refuse-based reactor in terms of ammonium removal. The low removal of total nitrogen could be mainly attributed to poor denitrification and anaerobic ammonium oxidation (anammox).
     A modified Hedley phosphorus (P) fractionation method was used to investigate the quantities and proportions of P fractions in aged refuse. The results indicated that the moderately available P (sum of hydroxide and dilute acid fractions) was the predominant forms and accounted for 74.9% of total P in aged refuse, indicating that the phosphorus in aged refuse had the potential of high-efficacy utilization. The temporal and spatial distributions of different P speciations in the stratified aged-refuse-based reactor showed that the phosphrous was accumulated in the reactor during the treatment of landfill leachate. The increase of phosphrous was in form of Dil.acid-P and NaOH-P. The accumulated P was mainly occurred in the upper part of the reactor. Therefore, the conclusion could be drawn that the phosphrous was removed mostly by adsorption and transformation into the precipitated combound of hydroxyl apatite. The activation effects of chicken manure (high P content) and straw (low P content) on different P forms indicated the chicken manure and straw had significant activation effects on the phosphorus in aged refuse, and the chicken manure was superior to straw in P-activation. It was found that NaOH-P, Dil.acid-P and Conc.acid-P were main sources of activitable P in aged refuse.
     In order to develop and validate a method for isolation of PCR-amplifiable DNA from the aged refuse samples, the orthogonal experiment was conducted to evaluate systematically the effects of various steps within each method in terms of DNA yield, purity, fragment size, humic substances contamination, PCR amplifiability using universal eubacterial and archaea 16S rDNA prime pair, and genetic diversity estimate from denaturing gradient gel electrophoresis (DGGE). The combined method of TENP buffer/PBS buffer-Bead beating/Proteinase K/SDS- Sephadex G-200 spin column was recommended.
     The molecular analyses of microbial community under different operation of the reactor were performed. An interesting phenomenon was discovered that the aged refuse was the carrier of extremophiles, including halophilic, alkaliphilic, thermophilic and psychrotrophic microorganism. The strong pollutant removal capacity of aged refuse could result from the high content of extremophiles, which were of the facultative metabolic pathways and the strong adaptive capacity. The predominant eubacteria within the reactor consisted of bacillus sp., proteobacterium and planococcus sp., and the chief archaea included methanosarcinales and crenarchaeote. During the optimized operation of the stratified reactor, the main eubacteria consisted of bacillus sp., microbacterium sp., actinobacteria, planococcus sp.,γ-proteobacterium and one kind of undefined N-transformation bacteria,the predominant archaea were euryarchaeote, methanomicrobia, methane-producing archaea, meihano thermophiles and one unnamed archaea. The self-immobilization of extremophiles by the carrier of aged-refuse makes it possible to treat the refractory industrial wastewater of hypersalinity and hyperalkalinity by biological pathway.
     In the finality, further studies were discussed in terms of the development of high-performance bioreactor, the improvement of the total nitrogen removal and the comprehensive molecular analyses of microbial community in the aged refuse.
引文
[1]Nancy Ragle.Composition and Variability of Leachate from Recent and Aged Areas within a Municipal Landfill[J].Water Environmental Research,1995,67(2):238-243.
    [2]倪晋仁,邵世云,叶正芳.垃圾渗滤液特点与处理技术比较[J].应用基础与工程科学学报,2004,6(2):148-160.
    [3]Kurniawan,T.A.,Lo,W.,Chan,GY.S..Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate[J].Journal of Hazardous Materials,2006,B129:80-100.
    [4]李树德,李新平,蒯琳萍.国外垃圾渗滤液处理研究进展[J].工业用水与废水,2007,38(3):5-8.
    [5]汪德生,朗咸明,付蕾.垃圾渗滤液污染治理技术研究进展[J].工业水处理,2007,27(2):6-9.
    [6]Wiszniowski,J.,Robert,D.,Surmacz-Gorska,J.,Miksch,K.,Weber,J.V.Landfill leachate treatment methods:A review[J].Environmental Chemistry Letters,2006,4(1):51-61.
    [7]周恭明,Visvanathan,C.J.T..生活垃圾填埋渗滤液处理技术进展[M].上海:同济大学出版社,2004.
    [8]何岩,赵由才,柴晓利.中老龄″垃圾渗滤液难降解有机物去除的研究进展[J].有色冶金设计与研究,2007,28(2-3):173-175.
    [9]Aghamohammadi,N.,Aziz,H.B.,Isa,M.H.,et al..Powdered activated carbon augmented activated sludge process for treatment of semi-aerobic landfill leachate using response surface methodology[J].Bioresource Technology,2007,98(18):3570-3578.
    [10]Wiszniowski,J.,Surmacz-Gorska,J.Robert,D.,et al..The effect of landfill leachate composition on organics and nitrogen removal in an activated sludge system with bentonite additive[J].Journal of Environmental Management,2007,85(1):59-68.
    [11]吴旭辉,李铁民,马溪萍,等.复合微生物菌群处理垃圾渗滤液影响因素分析[J].中国公共卫生,2006,22(12):1477-1478.
    [12]邱忠平,杨立中,刘丹.垃圾渗滤液COD降解菌株的筛选及其降解特性初探[J].四川环境,2007,26(1):5-9.
    [13]庞金钊,刘欣,杨宗政,等.投加高效菌处理回灌型垃圾填埋场渗滤液的研究[J].中国给水排水,2007,23(11):64-66.
    [14]熊小京,简海霞.A/O MBR与BAF组合工艺处理垃圾渗滤液[J].工业水处理,2007,27(9):39-42.
    [15]申欢,金奇庭,宋乾武.水解/好氧MBR组合工艺处理非稳定期垃圾渗滤液[J].中国给水排水,2007,23(15):82-85.
    [16]Chen,S.H.and Liu,J.X..Landfill leachate treatment by MBR:Performance and molecular weight distribution of organic contaminant[J].Chinese Science Bulletin,2006,51(23):2831-2838.
    [17]Visvanathan,C,Choudhary,M.K.,Montalbo,M.T.,et al..Landfill leachate treatment using thermophilic membrane bioreactor[J].Desalination,2007,204(1-3):8-16.
    [18]Silva A.C.,Dezotti M.,Sant G.L..Treatment and detoxification of a sanitary landfill leachate[J].Chemosphere,2004,55:207-214.
    [19]Papadopoulos A.,Fatta D.,Loizidou M..Treatment of stablized landfill leachate by physico chemical and bio-oxidation processes[J].Environment Science Technology,1998,A33(4):651-670.
    [20]Aziz,H.A.,Alias,S.,Adlan,M.N.,et al..Colour removal from landfill leachate by coagulation and flocculation processes[J].Bioresource Technology,2007,98(1):218-220.
    [21]Galvez,A.,Zamorano,M.,Ramos,A.,et al..Coagulation-flocculation pretreatment of a partially stabilized leachate from a sanitary landfill site at Alhendin(Granada,Southern spain)[J].Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering,2005,40(9):1741-1751.
    [22]Mendez-Novelo,R.I.,Castillo-Borges,E.E.R.,Sauri-Riancho,M.R.,et al..Physico-chemical treatment of Merida landfill leachate for chemical oxygen demand reduction by coagulation[J].Waste Management & Research,2005,23(6):560-564.
    [23]Tatsi,A.A.,Zouboulis,A.I.,Matis,K.A.,et al..Coagulation-flocculation pre-treatment of sanitary landfill leachates[J].Chemosphere,2003,53:737-744.
    [24]位菁,张彩香,马腾.混凝去除垃圾渗滤液中DOM的实验研究[J].环境科学与技术,2007,30(8):1-2.
    [25]Rodriguez J.,Castrillon L.,Maranon E.,et al..Removal of non-biodegradable organic matter from landfill leachates by adsorption[J].Water Research,2004,38:3297-3303.
    [26]Turan,M.,Gulsen,H.,Celik,M.S..Treatment of landfill leachate by a combined anaerobic fluidized bed and zeolite column system[J].Journal of Environmental Engineering-Asce,2005,131(5):815-819.
    [27]姜浩,廖立兵,郑红,等.赤泥吸附垃圾渗滤液中COD和氨氮的实验研究[J].安全与环境工程,2007,14(3):69-73.
    [28]Ushikoshi,K.,Kobayashi,T.,Uematsu,K.,et al.Leachate treatment by the reverse osmosis system[J].Desalination,2002,150:121-129.
    [29]Li,Z.J.,Zhou,S.Q.,Qiu,J.H..Combined treatment of landfill leachate by biological and membrane filtration technology[J].Environmental Engineering Science,2007,24(9):1245-1256.
    [30]刘研萍,李秀金.处理垃圾渗滤液的反渗透膜污染研究[J].环境工程学报,2007,1(7):101-105.
    [31]刘卫华,季民,张昕,等.催化臭氧氧化去除垃圾渗滤液中难降解有机物的研究[J].环境化学,2007,26(1):58-61.
    [32]李伟东,赵东风.电解氧化处理难降解垃圾渗滤液研究[J].环境工程学报,2007,1(6):141-144.
    [33]王刚,李敬苗,丁忠浩.电凝聚法在垃圾渗滤液处理中的应用[J].环境科学与技 术,2006,29(8):80-82.
    [35]Deng,Y.Physical and oxidative removal of organics during Fenton treatment of mature municipal landfill leachate[J].Journal of Hazardous Materials,2007,146(1-2):334-340.
    [36]Deng,Y.and Englehardt,J.D..Treatment of landfill leachate by the Fenton process[J].Water Research,2006,40(20):3683-3694.
    [37]Zhang,H.,Choi,H.J.,Huang,C.P..Optimization of Fenton process for the treatment of landfill leachate[J].Journal of Hazardous Materials,2005,125(1-3):166-174.
    [38]Moraes,P.B.and Bertazzoli,R...Electrodegradation of landfill leachate in a flow electrochemical reactor[J].Chemosphere,2005,58(1):41-46.
    [39]Tizaoui,C,Bouselmi,L.,Mansouri,L.,et al..Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems[J].Jouraal of Hazardous Materials,2007,140(1-2):316-324.
    [40]Shu,H.Y,Fan,H.J.,Chang,M.C,et al..Treatment of MSW landfill leachate by a thin gap annular UV/H2O2 photoreactor with multi-UV lamps[J].Journal of Hazardous Materials,2006,129(1-3):73-79.
    [41]杨佘维,铁柏清,赵婷.UV/Fe~(3+)/H_2O_2催化一混凝联合工艺处理垃圾渗滤液[J].工业催化,2007,15(4):48-52.
    [42]汪晓军,陈思莉,顾晓扬,等.混凝-Fenton-BAF深度处理垃圾渗滤液中试研究[J].环境工程学报,2007,1(10):42-45.
    [43]Zhang,H.,Zhang,D.B.,Zhou,J.Y..Removal of COD from landfill leachate by electro-Fenton method[J].Journal of Hazardous Materials,2006,135(1-3):106-111.
    [44]Liu,R.L.,Liu,Z.H.,Tao,C.Y.,et al..Fenton integrated processes for landfill leachate treatment[J].Journal of Central South University of Technology,2006,13:163-166.
    [45]Cabeza,A.,Primo,O.,Urtiaga,A.M.,et al..Definition of a clean process for the treatment of landfill leachates integration of electrooxidation and ion exchange technologies[J].Separation Science and Technology,2007,42(7):1585-1596.
    [46]Fan,H.J.,Chen,I.W.,Lee,M.H.,et al..Using FeGAC/H_2O_2 process for landfill leachate treatment[J].Chemosphere,2007,67(8):1647-1652.
    [47]Velasquez,M.T.O.and Monje-Ramirez,I..Combined pre-treatment of coagulation-ozonation for saline-stabilized landfill leachates[J].Ozone-Science & Engineering,2006,28(5):309-316.
    [48]Kurniawan,T.A.,Lo,W.H.,Chan,G Y.S..Degradation of recalcitrant compounds from stabilized landfill leachate using a combination of ozone-GAC adsorption treatment[J].Journal of Hazardous Materials,2006,137(1):443-455.
    [49]Tauchert,E.,Schneider,S.,de Morais,J.L.,et al..Photochemically-assisted electrochemical degradation of landfill leachate[J].Chemosphere,2006,64(9):1458-1463.
    [50]de Morais,J.L.and Zamora,P.P..Use of advanced oxidation processes to improve the biodegradabiliry of mature landfill leachates[J].Journal of Hazardous Materials, 2005,123(1-3):181-186.
    [51]Ntampou,X.,Zouboulis,A.I.,Samaras,P..Appropriate combination of physico-chemical methods(coagulation/flocculation and ozonation)for the efficient treatment of landfill leachates[J].Chemosphere,2006,62(5):722-730.
    [52]Tomokazu Ikematsu,Nobuya Hayashi,Satoshi Ihara,et al..Advanced oxidation processes(AOPs)assisted by excimet lamp[J].Vacuum,2004,73(3-4):579-582.
    [53]Li,T.G,Li,X.F.,Chen,J.,et al..Treatment of landfill leachate by electrochemical oxidation and anaerobic process[J].Water Environment Research,2007,79(5):514-520.
    [54]Di Iaconi,C,Ramadori,R.,Lopez,A..Combined biological and chemical degradation for treating a mature municipal landfill leachate[J].Biochemical Engineering Journal,2006,31(2):118-124.
    [55]Fang,H.H.P.,Lau,I.W.C.,Wang,P..Anaerobic treatment of Hong Kong leachate followed by chemical oxidation[J].Water Science and Technology,2005,52(10-11):41-49.
    [56]Chaturapruek,Visvanathan,A.,C,Ahn,K.H..Ozonation of Membrane Bioreactor effluent for landfill leachate treatment[J].Environmental Technology,2005,26(1):65-73.
    [57]Sheng,H.L.and Chih,C.C.Treatment of landfill leachate by combined electro-fenton oxidation and sequencing batch reactor method[J].Water Research,2000,34,(17):4243-4249.
    [58]Wiszniowski,J.,Robert-,D.,Surmacz-Gorska,J.,et al..Leachate detoxification by combination of biological and TiO2-photocatalytic processes[J].Water Science and Technology,2006,53(3):181-190.
    [59]Nivala,J.,Hoos,M.B.,Cross,C.,et al..Treatment of landfill leachate using an aerated,horizontal subsurface-flow constructed wetland[J].Science of the Total Environment,2007,380(1-3):19-27.
    [60]Sawaittayothin,V.and Polprasert,C.Nitrogen mass balance and microbial analysis of constructed wetlands treating municipal landfill leachate[J].Bioresource Technology,2007,98(3):565-570.
    [61]Ujang,Z.,Soedjono,E.,Salim,M.R.,et al..Landfill leachate treatment by an experimental subsurface flow constructed wetland in tropical climate countries[J].Water Science and Technology,2005,52(12):243-250.
    [62]Bulc,T.G.Long term performance of a constructed wetland for landfill leachate treatment[J].Ecological Engineering,2006,26(4):365-374.
    [63]He,R.,Liu,X.,Zhang,Z.,et al..Characteristics of the bioreactor landfill system using an anaerobic-aerobic process for nitrogen removal[J].Bioresource Technology,2007,98(13):2526-2532.
    [64]Zhao,Q.L.,Liu,X.Y.,Qi,X.D.,et al..Landfill leachate production,quality and recirculation treatment in northeast China[J].Journal of Environmental Sciences-China,2006,18(4):625-628.
    [65]曾晓岚,龙腾锐,丁文川,等.准好氧填埋垃圾渗滤液全循环处理的影响因素研究[J].中国给水排水,2006,22(23):63-66.
    [66]Zhao,Y.,Li,H.,Wu,J.,et al.Treatment of leachate by aged-refuse-based biofilter[J].Journal of Environmental Engineering,ASCE(USA),2002,128(7):662-668.
    [67]赵由才,黄仁华,周海燕,等.一种垃圾填埋场渗滤液的净化处理方法,中国发明专利,申请号:No.00127298.5.公开号:CN1351969.证书号:121846.
    [68]石磊.矿化垃圾生物反应床处理填埋场渗滤液的工艺与机理研究[D].同济大学博士学位论文,2005.
    [69]李华.填埋场矿化垃圾生物反应床处理渗滤水的工艺研究[D].同济大学硕士论文,1999.
    [70]吴军.稳定化垃圾生物反应床处理老港填埋场渗滤液中试研究[D].同济大学硕士论文,2002.
    [71]潘终胜,赵由才.矿化垃圾反应床处理渗滤液的工程应用[J].中国给水排水,2006,22(6):58-61.
    [72]郭亚丽.生活垃圾填埋场稳定化垃圾生物反应床处理城市污水的工艺与机理[D].上海博士论文,2002.
    [73]Zhao Youcai and Shao Fang.Use of an aged-refuse biofilter for the treatment of waste waters fromfeedlots[J].Environmental Engineering Science,2004,21(3),349-360.
    [74]邵芳,张鼎国,赵由才.矿化垃圾生物反应床处理畜禽废水的试验研究[J].环境污染治理技术与设备,2002,3(2):32-36.
    [75]边炳鑫.生活垃圾填埋场中矿化垃圾的综合利用技术[D].同济大学博士后研究工作报告,2004.
    [76]王敏,赵由才.矿化垃圾生物反应床处理焦化废水研究[J].环境技术,2004,1:25-28.
    [77]柴晓利.矿化垃圾吸附与降解酚类化合物的机理及工艺研究[D].同济大学博士论文,2002.
    [78]周琪.矿化垃圾生物反应床处理印染废水研究[D].同济大学硕士论文,2004.
    [79]金龙.Fenton试剂-矿化垃圾生物反应床联合处理离子交换树脂再生废水研究[D].同济大学硕士论文,2003.
    [80]Wagner,M.and Loy Alexander.Bactenal community composition and function in sewage treatment systems[J].Current Opinion in Biotechnology,2002,13:218-227.
    [81]Amann,R.I.,Ludwig W.,Schleifer K.H.Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J].Microbiology Review,1995,59
    [82]李会荣.极地环境样品中的细菌系统进化组成分析[D].复旦大学博士后研究工作报告,2003.
    [83]杨苏声,周俊初.微生物生物学[M].北京:科学出版社,2004.
    [84]Horz,H.P.,Yimga,M.T.,Liesack,W..Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA,mmoX,mxaF,and 16S rRNA and ribosomal DNA,including pmoA-based terminal restriction fragment length polymorphism profiIing[J].Applied and Environmental Microbiology,2001,67,4177-4185.
    [85]Temmerman,R.,Scheirlinck,I.,Huys,G.Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis[J]. Applied and Environmental Microbiology,2003,69(1):220-226.
    [86] Zhou, J., Bruns, M. A., Tiedje, J. M.. DNA recovery from soils of diverse composition[J]. Applied and Environmental Microbiology, 1996,62, 316-322.
    [87] Dong,D.X.,Yan,A.,Liu H.M.,et al.. Removal of humic substances from soil DNA using aluminium sulfate[J]. Journal of Microbiological Methods,2006,66,217-222.
    [88] He,J.Z.,Xu,Z.H.,Jane,H.. Pre-lysis washing improves DNA extraction from a forest soil[J]. Soil Biology &Biochemistry,2005,37,2337-2341.
    [89] Krsek,M.,and Wellington, E.M.H.. Comparison of different methods for the isolation and purification of total community DNA from soil[J]. Journal of Microbiological Methods,, 1999,39,1-16.
    [90] Lipthay, J.R., Enzinger, C, Johnsen K.,et al.. Impact of DNA extraction method on bacterial community composition measured by denaturing gradient gel electrophoresis[J]. Soil Biology & Biochemistry ,2004,36,1607-1614.
    [91] Zaporozhenko,E.V.,Slobodova,N.V.,Boulygina,E.S.,et al.. Methods for rapid DNA extraction from bacterial communities of different soils[J]. Microbiology.,2006, 75(1):105-111.
    
    [92] Howeler, M., Ghiorse, W.C.,Walker,L.R. A quantitative analysis of DNA extraction and purification from compost[J]. Journal of Microbiological Methods,2003,54,37-45.
    [93] La Montagne, M.G., Michel, Jr.F.C.,Holden,P.A.,et al.. Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis[J]. Journal of Microbiological Methods,2002,49,255-264.
    [94] Yang,Zh.H., Xiao, Y.,Zeng,GM.,et al.. Comparison of methods for total community DNA extraction and purification from compost[J]. Applied Microbiology& Biotechnology,2007,74,918-925.
    
    [95] Fortin, N., Beaumier,D.,Lee,K.,et al.. Soil washing improves the recovery of total community DNA from polluted and high organic content sediments[J]. Journal of Microbiological Methods,2004,56,181-191.
    [96] Bourrium, M.,Achouak,W.,Urbain,V., et al.. DNA extraction from activated sludges[J].Current Microbiology,1999,38(6):315-319.
    
    [97] Purohit,H.J.,Kapley, A.,Moharikar,A.A.,et al.. A novel approach for extraction of PCR-compatible DNA from activated sludge samples collected from different biological effluent treatment plants[J]. Journal of Microbiological Methods,2003,52,315-323.
    [98] Shan,G.,Jin,W.,Lam,E.K.,et al.. Purification of total DNA extracted from activated sludge[J]. Journal of Environmental Sciences,2008,20(1): 80-87.
    
    [99] Courtois,S.,Frostegard,A.,Goransson,P.,et al.. Quantification of bacterial subgroups in soilxomparison of DNA extracted directly from soil or from cells previously released by density gradient centrifugation[J],Environmental Microbiology,2001,3,431-439.
    [100] Tien,C.C.,Chao,C.C.,Chao,W.L.. Methods for DNA extraction from various soils: a comparison[J]. Journal of Applied Microbiology,1999,86,937-943.
    [101]赵勇,周志华,李武,等.土壤微生物分子生态学研究中总DNA的提取[J].农业环境科学学报,2005,24(5):854-860.
    [102]Picard,C.,Ponsonnet,C.,Paget,E.,et al..Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction[J].Applied and Environmental Microbiology,1992,58,2717-2722.
    [103]Braid,M.D.,Daniels,L.M.,Kitts,C.L..Removal of PCR inhibitors from soil DNA by chemical fiocculation[J].Journal of Microbiological Methods,2003,52,389-393.
    [104]More,M.L,Herrick,J.B.Silva,M.C.et al..Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment[J].Applied and Environmental Microbiology,1994,60,1572-1580.
    [105]Cullen,D.W.and Hirsch,P.R..Simple and rapid method for direct extraction of microbial DNA from soil for PCR[J].Soil Biology & Biochemistry,1998 30(8/9):983-993.
    [106]Borneman,J.,Skroch,P.W.,O'Sullivan,K.M.,et al..Molecular microbial diversity of an agricultural soil in Wisconsin[J],Applied & Environmental Microbiology,1996,62,1935-1943.
    [107]Lloyd-Jones,Gand Hunter,D.W.F..Comparison of rapid DNA extraction methods applied to contrasting New Zealand soils[J].Soil Biology & Biochemistry,2001,33:2053-2059.
    [108]Lemarchand,K.,Berthiaumea,F.,Maynarda,C.,et al..Optimization of microbial DNA extraction and purification from raw wastewater samples for downstream pathogen detection by microarrays[J].Journal of Microbiological Methods,2005,63(2):115-126..
    [109]Orsini,M.and Romano-Spica,V.A microwave-based method for nucleic acid isolation from environmental samples[J]Letters in Applied Microbiology,2001,33,17-20.
    [110]Tebbe,C.C.and Vahjen,W..Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast[J].Applied & Environmental Microbiology,1993,59,2657-2665.
    [111]Maarit Niemi,R.Heiskanen,Wallenius,I.K.,et al..Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia[J].Journal of Microbiological Methods,2001,45,155-165.
    [112]Robe,P.,Nalin,R.,Capellano,C.,et al..Extraction of DNA from soil[J].European Journal of Soil Biology,2003,39,183-190.
    [113]奥斯伯F.M.,金斯顿,R.E.,塞德曼,J.G[等]主编.精编分子生物学实验指南(第四版)[M].北京:科学出版社,2005.
    [114]Kuske,C.R.,Banton,K.L.,Adorada,D.L.,et al..Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil[J].Applied & Environmental Microbiology,1998,64,2463-2472.
    [115]Trochimchuka,T.,Fotheringhama,J.,Topp,E.,et al..A comparison of DNA extraction and purification methods to detect Escherichia coli O157:H7 in cattle manure[J].Journal of Microbiological Methods,2003,54,165-175.
    [116]Jackson,C.R.,Harper,J.P..Willoughby,D.,et al..A simple,efficient method for the separation of humic substances and DNA from environmental samples[J].Applied and Environmental Microbiology,1997,63(12):4993-4995.
    [117]Miller,D.N.Evaluation of gel filtration resins for the removal of PCR-inhibitory substances from soils and sediments[J].Journal of Microbiological Methods,2003,44,49-58.
    [118]Kehrmeyer,S.R.,Applegate,B.M.,Pinkart,H.C.,et al..Combined lipid/DNA extraction method for environmental samples[J].Journal of Microbiological Methods,1996,25,153-163.
    [119]Bertrand,H,Poly,F.,Van,V.T.,et al..High molecular weight DNA recovery from soils prerequisite for biotechnological metagenomic library construction[J].Journal of Microbiological Methods,2005,62,1-11.
    [120]林万明,杨瑞馥,黄尚志.PCR技术操作和应用指南[M].北京:人民军医出版社,1993.
    [121]黄留玉 主编.PCR最新技术原理、方法及应用[M].北京:化学工业出版社,2005.
    [122]张彤,方汉平.微生物分子生物技术:16SrRNA/DNA方法[J].微生物学通报,2003,30(2):97-101.
    [123]饶应福,夏四清.分子生物技术在环境工程微生物领域中的应用[J].环境污染治理技术与设备,2005,6(5):63-66.
    [124]Muyzer,G,de Waal,E.C.,Uitterlinden,A.G..Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J].Applied and Environmental Microbiology,1993,59:695-700.
    [125]东秀珠,蔡妙英编著.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [126](美)Masatoshi Nei,Sudhir Kumar.分子进化与系统发育[M].北京:高等教育出版社,2002.
    [127]张小雷,崔银秋,吕慧英,等.系统发育分析在古DNA研究中的应用[J].吉林大学学报(理工版),2005,43(5):696-701.
    [128]Akarsubasi,A.T.,Ince,0.,Oz,N.A.,et al..Evaluation of performance,acetoclastic methanogenic activity and archaeal composition of full-scale UASB reactors treating alcohol distillery wastewaters[J].Process Biochemistry,2006,41(1):28-35.
    [129]Buzzini,A.P.,Sakamoto,I.K.,Varesche,M.B.,et al..Evaluation of the microbial diversity in an UASB reactor treating wastewater from an unbleached pulp plant[J].Process Biochemistry,2006,41(1):168-176.
    [130]Gray,N.D.,Miskin,I.P.,Kornilova,O.,et al..Occurrence and activity of Archaea in aerated activated sludge wastewater treatment plants[J].Environmental Microbiology,2002,4(3):158-168.
    [131]Tanaka,J.,Syutsubo,K.,Watanabe,K.,et al..Activity and population structure of nitrifying bacteria in an activated-sludge reactor containing polymer beads[J].Environmental Microbiology,2003,5(4):278-286.
    [132]Boon,N.,De Windt,W.,Verstraete,W.,et al..Evaluation of nested PCR-DGGE(denaturing gradient gel electrophoresis)with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants[J].Fems Microbiology Ecology,2002,39(2):101-112.
    [133] Limpiyakorn, T., Shinohara, Y., Kurisu, F., et al.. Distribution of ammonia-oxidizing bacteria in sewage activated sludge: analysis based on 16SrDNA sequence[J]. Water Science and Technology, 2004,50(8):9-14.
    [134] Cole, A.C., Shanahan, J.W., Semmens, M.J., et al.. Premilinary studies on the microbial community structure of membrane-aerated biofilms treating municipal wastewater[J]. Desalination,2002,146( 1-3):421 -426.
    [135] Park, J.S. and Lee, C.H.. Removal of soluble COD by a biofilm formed on a membrane in a jet loop type membrane bioreactor[J]. Water Research,2005,39(19):4609-4622.
    
    [136] Waite.I.S., ODonnell, A.G, Harrison, A., et al.. Design and evaluation of nematode 18SrDNA primer for PCR and denaturing gradient gel electrophoresis (DGGE) of soil community DNA[J]. Soil Biology & Biochemistry,2003,35(9):1165-1173.
    [137] Nicol, GW, Glover, L.A., Prosser, J.I.. Spatial analysis of archaeal community structure in grassland soil[J]. Applied and Environmental Microbiology,2003,81(5):570-577.
    [138] Luo,H.F,, Qi, H.Y., Zhang,H.X.. Diversity surveys of soil bacterial community by cultivation-based methods and molecular fingerprinting techniques[J]. Journal of Environmental Sciences-China,2004,16(4):581-584.
    [139] Yuan, F., Ran, W, Shen, Q.R., et al.. Characterization of nitrifying bacteria communities of soils from different ecological regions of China by molecular and conventional methods[J]. Biology and Fertility of Soils, 2005,41(1):22-27.
    [140] Becker, J. M,, Parkin, T., Nakatsu, C.H., et al.. Bacterial activity, community structure, and centimeter-scale spatial heterogeneity in contaminated soil[J]. Microbial Ecology, 2006,51(2):220-231.
    [141] Haruta, S., Nakayama, T., Nakamura, K., et al.. Microbial diversity in biodegradation and reutilization processes of garbage[J]. Journal of Bioscience and Bioengineering, 2005,99(1):1-11.
    [142] Klammer, S., Mondini, C.,Insam, H.. Microbial community fingerprints of composts stored under different conditions[J]. Annals of Microbiology,2005,55(4):299-305.
    [143] Huang, L.N., Zhou, H., Chen, Y.Q., et al.. Diversity and structure of the archaeal community in the leachate of a full-scale recirculating landfill as examined by direct 16S rRNA gene sequence retrieval[J]. FEMS Microbiology Letters, 2002,214,235-240.
    [144] Birbir M., Ogan A., Calli B., et al.. Enzyme characteristics of extremely halophilic archaeal community in Tuzkoy Salt Mine, Turkey. World Journal of Microbiology & Biotechnology,2004,20(6):613-621.
    [145] Brakstad, O.G. and Bonaunet, K.. Biodegradation of petroleum hydrocarbons in seawater at low temperature (0-5 degree C) and bacterial communities associated with degradation. Biodegradation,2006,17 (1) :71-82.
    [146] Saikaly, P.E., Stroot, P.G, Oerther, D.B.. Use of 16 SrRNA gene terminal restriction fragment analysis to assess the impact of solids retention time on the bacterial diversity of activated sludge[J]. Applied and Environmental Microbiology,2005,71(10):5814-5822.
    [147] Van der Gast, C.J. and Thompson, I.P.. Effects of pH amendment on metal working fluid wastewater biological treatment using a defined bacterial consortium[J]. Biotechnology and Bioengineering,2005,89(3):357-366.
    [148] McSwain, B.S., Irvine, R.L., Wilderer, P.A.. The influence of settling time on the formation of aerobic granules[J]. Water Science and Technology, 2004,50(10): 195-202.
    [149] Lapara, T.M., Zakharova, T., Nakatsu, C.H., et al.. Functional and structural adaptations of bacterial communities growing on particulate substrates under stringent nutrient limitation[J]. Microbial Ecology,2002,44(4):317-326.
    [150] Herrmann, R. F. and Shann, J F. Microbial community changes during the composting of municipal solid waste[J].Microbial Ecology ,1997,33 :78-85.
    [151] Marshall, M.N., Cocolin, L., Mills, D.A., et al.. Evaluation of PCR primers for denaturing gradient gel electrophores analysis of fungal communities in compost[J]. Journal of Applied Microbiology,2003,95(5):934-948.
    [152] Wittebolle, L., Boon, N., Vanparys, B., et al.. Failure of the ammonia oxidation process in two pharmaceutical wastewater treatment plants is linked to shifts in the bacterial communities[J]. Journal of Applied Microbiology,2005,99(5):997-1006.
    [153] Zhuang, W.Q., Tay, J.H., Yi, S., et al.. Microbial adaptation to biodegradation of tert-butyl alcohol in a sequencing batch reactor[J]. Journal of Biotechnology,2005,118( 1 ):45-53.
    [154] Kawai, M.,Yamagishi, J.,Yamaguchi, N.,et al.. Bacterial population dynamics and community structure in a pharmaceutical manufacturing water supply system determined by real-time PCR and PCR-denaturing gradient gel electrophoresis[J]. Journal of Applied Microbiology,2004,97(6): 1123-1131.
    [155] Lapara, T.M., Nakatsu, C.H., Pantea, L.M.,et al.. Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE[J]. Water Research,2002,36(3):638-646.
    [156] Noda, N., Yoshie, S., Miyano, T., et al.. PCR-DGGE analysis of denaturing bacteria in a metallurgic wastewater treatment process[J]. Water Science and Technology,2002,46(1-2):333-336.
    [157] Pynaert, K., Smets, B.F., Beheydt, D.,et al.. Start-up of autotrophic nitrogen removal reactors via sequential biocatalyst addition[J]. Environmental Science&Technology,2004,38(4):1228-1235.
    [158] Avrahami, S., Liesack, W.,Conrad, R.. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers[J]. Envrironmental Microbiology,2003,5(8):691-705.
    
    [159] Boon, N., Top, E.M.,Verstraete, W.,et al.. Bioaugmentation as a tool to protect the structure and function of an activated-sludge microbial community agaist a 3-chloroaniline shock load[J]. Applied and Environmental Microbiology,2003,69(3): 1511 -1520.
    [160]Kreuzinger,N.,Farnleitner,A.,Wandl,G,et al..Molecular biological methods(DGGE)as a tool to investigate nitrification inhibition in wastewater treatment[J].Water Science and Technology,2003,47(11):165-172.
    [161]Kaewpipat,K.and Grady,C.P.L..Microbial population dynamics in laboratory-scale activated sludge reactors[J].Water Science and Technology,2002,46(1-2):19-27.
    [162]Miller,GS.,Milliken,C.E.,Sowers,K.R..Reductive dechlorination of tetrachloroethene to trans-dichloroethene and cis-dichlorethene by PCB-dechlorinating bacterium DF-1[J].Environmental Science &Technology,2005,39(8):2631-2635.
    [163]Bathe,S.,Mohan,T.V.K.,Wuertz,S.,et al..Bioaugmentation of a sequencing batch biofilm reactor by horizontal gene transfer[J].Water Science and Technology,2004,49(11-12):337-344.
    [164]Jiang,H.L.,Tay,J.H.,Maszenan,A.M.,et al..Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation[J].Applied and Environmental Microbiology,2004,70(11):6767-6775.
    [165]Sei,K.,Inoue,D.,Wada,K.,et al..Monitoring behavior of catabolic genes and change of microbial community structures is seawater microcosms during aromatic compound degradation[J].Water Research,2004,38(40):4405-4414.
    [166]国家环保局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [167]刘光崧主编.土壤理化分析与剖面描述[M].北京:中国标准出版社,1996.
    [168]陈少华,刘俊新.垃圾渗滤液中有机物分子量的分布及在MBR系统中的变化[J].环境化学,2005,24(2):153-157.
    [169]黄理辉.催化铁内电解法预处理印染废水及后继生物处理工艺的研究[D].同济大学博士论文,2006.
    [170]吴德礼.催化Fe~0还原降解水中氯代有机污染物的研究[D].同济大学博士论文,2005.
    [171]张树德,李捷,尹文远,等.ANAMMOX工艺在生活污水深度处理中的应用研究[J].给水排水,2005,31(6):12-17.
    [172]黄理辉,马鲁铭,王红武.催化铁内电解法对胞外聚合物形成的影响[J].中国环境科学,2005,25(6):660-663.
    [173]龚明树,杨东平,王军,等.钢渣在水处理中的应用初步研究[J].攀枝花学院学报,2003,20(6):75-76.
    [174]黄群贤,刘红梅,高太忠,等.钢渣过滤工艺处理印染废水实验研究[J].环境工程学报,2007,1(2):46-48.
    [175]张勇,吕瑞喜.钢渣在污水治理中的应用[J].干旱环境监测,2004,18(4):220-221.
    [176]谭洪新,周琪,杨殿海.页岩-钢渣组合填料湿地强化脱氮除磷研究[J].环境科学,2006,27(11):2182-2187.
    [177]王宝贞,王琳.城市固体废物渗滤液处理与处置[M].北京:化学工业出版社,2005.
    [178]黄红丽,曾光明,黄国和等.堆肥中木质素降解微生物对腐殖质形成的作用[J].中国生物工程杂志,2004,24(8):29-31.
    [179]李慧蓉.白腐真菌生物学和生物技术[M].北京:化学工业出版社,2005.
    [180]朱建军,曾抗美.白腐真菌处理染料废水研究进展[J].四川环境,2006,25(6):86-91.
    [181]程永前,蒋大和,陆雍森.白腐真菌对活性艳红染料X-3B的脱色实验研究[J].环境保护科学,2007,33(4):25-29.
    [182]Swlvam,K.,Swaminathan,K.,Chae Kwon-Sang.Decolourization of azo dyes and a dye industry effluent by a white rot fungus[J]
    [183]卢永,严莲荷,周申范.木屑固定化白腐真菌降解焦化废水中酚类化合物的研究[J].化学与生物工程,2006,23(12):47-49.
    [184]吴涓,肖亚中,王怡平.白腐真菌处理灰法造纸黑液废水的研究[J].生物学杂志,2002,19(5):17-18.
    [185]Sei,K.,Takeda,T.,Soda,S.O.,et al..Removal characteristics of endocrine-disrupting chemicals by laccase from white-rot fungi[J].Journal of Environmental Science and Health(Part A),2008,43(1):53-60.
    [186]王德汉,项钱彬,陈广银.蘑菇渣资源的生态高值化利用研究进展[J].有色冶金设计与研究,2007,28(2-3):262-266.
    [187]张晶,李翠珍,文湘华.天然浸出液对自分离白腐真菌产木质素降解酶的影响[J].清华大学学报(自然科学版),2005,45(12):1629-1632.
    [188]王灿,胡洪营,于茵等.培养基种类和培养条件对白腐真菌生长和产酶特性的影响[J].环境科学研究,2007,20(2):9-13.
    [189]吴小宁,姚秉华,龚浩珍.铁碳内电解前置处理染料废水的试验[J].西安文理学院学报(自然科学版),2006,9(1):38-40.
    [190]鲍立新,李建政,刘莹,等.铁碳内电解法预处理安普霉素生产废水[J].哈尔滨工业大学学报,2007,39(6):883-886.
    [191]曾常华,林波,周百林.内电解-两级生化法处理医药化工废水[J].工业水处理,2007,27(2):84-85.
    [192]杨家村.铁碳内电解-生化法处理医药废水[J].环境卫生工程,2006,14(3):56-57.
    [193]李再兴,杨景亮,邓晓丽,等.铁炭内电解预处理阿维菌素废水[J].化工环保,2002,22(6):347-352.
    [194]林衍,刘立恒.高浓度合成香料废水的处理工艺研究[J].环境工程学报,2007,1(10):64-67.
    [195]詹燕,熊忠,林衍,等.铁屑内电解法对苎麻废水的预处理研究[J].工业水处理,2003,23(2):28-31.
    [196]任拥政,章北平,张晓昱,等.铁碳微电解对造纸黑液的脱色处理[J].水处理技术,2006,32(4):68-70.
    [197]刘霞,李少林,魏宏斌,等.生化后置催化铁内电解工艺处理化工废水的研究[J].中国给水排水,2006,22(19):59-61.
    [198]吴金义.毛发载体生物膜对印染化工废水脱色处理的研究[J].上海环境科学,1993,12(2):6-10.
    [199]罗立新,刘志江.铁屑内电解法废水处理装置研究[J].环境科学与技术,2003,26(2):42-43.
    [200]马悠怡,武道吉,石峰.强化混凝在微污染水源水处理中的应用[J].水处理技 术,2005,31(11):5-7.
    [201]李明,曾光明,张盼月,等.强化混凝去除水源水中天然有机物的研究进展[J].环境科学与技术,2006,29(2):109-111.
    [202]Van Loosdrecht,M.C.M.,Jetten,M.S.M..Microbiological conversions in nitrogen removal[J].Water Science and Technology,1998,38(1):1-7.
    [203]Than Khin and Ajit P..Novel microbial nitrogen removal processes[J].Biotechnology Advances,2004,22:519-532.
    [204]何岩,赵由才,周恭明.高浓度氨氮废水脱氮技术研究进展[J].工业水处理,2008,28(1):1-4.
    [205]Ford,D.L.Comprehensive analysis of nitrification of chemical processing wastewaters[J].Journal of Water Pollution Control Federation,1980,52,2726-2746.
    [206]Hedley,M.J.,Stewart,J.W.B.,Chauhan,B.S..Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubation[J].Soil Sci.Soc.Am.J.,1982,46:970-976.
    [207]Tiessen,H.,Moir,J.O..Characterization of available P by sequential extraction[M]//Carter M R.Soil Sampling and Methods of Analysis.Canadian Society of Soil Science,Lewis Publishers,Boca Raton,1993.
    [208]胡佩,周顺桂,刘德辉.土壤磷素分级方法研究评述[J].土壤通报,2003,34(3):229-232.
    [209]秦胜金,刘景双,王国平.影响土壤磷有效性变化作用机理[J].土壤通报,2006,37(5):1012-1016.
    [210]张奇春,王光火,冯玉科.水稻肥料定位试验中土壤各形态磷的变化动态研究[J].浙江大学学报(农业与生命科学版),2007,33(1):82-88.
    [211]Christienne,N.K.,Erick,C.M.F.,Johannes,L.,et al..Inorganic and organic phosphorus pools in earthworm casts(Glossoscolecidae)and a Brazilian rainforest Oxisol[J].Soil Biology & Biochemistry,2006,38:553-560.
    [212]Wang,G P.,Liu,J.S.,Wang,J.D.,et al..Soil phosphorus forms and their variations in depressional and riparian freshwater wetlands(Sanjiang Plain,Northeast China)[J].Geoderma,2006,132:59-74.
    [213]Jin,X.C,Wang,S.R.,Pang,Y.,et al..Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake,China[J].Environmental Pollution,2006,139:288-295.
    [214]向万胜,黄敏,李学垣.土壤磷素的化学组分及其植物有效性[J].植物营养与肥料学报,2004,10(6):663-670.
    [215]章永松,林咸永,罗安程,等.有机肥(物)对土壤不同形态无机磷的活化作用[J].植物营养与肥料学报,1998,4(2):145-150.
    [216]庞荣丽,介晓磊,谭金芳,等.低分子量有机酸对不同合成磷源的释磷效应[J].土壤通报,2006,37(5):941-944.
    [217]代静玉,周江敏,秦淑平.几种有机物料分解过程中溶解性有机物质化学成分的变化[J].土壤通报,2004,35(6):724-727.
    [218]Bolan,N.S.,Naidu,R.,Mahimairaja,S.,et al..Influence of Low-molecular-weight Organic Acids on the Solubilization of Phosphate[J].Biology and Fertility of Soils,1994,18:311-319.
    [219]Xu,R.,Zhu,Y.,David,C.Phosphorus Release from Phosphate Rock and Iron Phosphate by Low-molecular-weight Organic Acids[J].Journal of Environmental Science,2004,16(1):5-8.
    [220]王林权,周春菊,王俊儒,等.鸡粪中的有机酸及其对土壤速效养分的影响[J].土壤学报,2002,39(2):268-275.
    [221]Huang,LN.,Zhou,H.,Chen,Y.Q.,et al..Diversity and structure of the archaeal community in the leachate of a full-scale recirculating landfill as examined by direct 16S rRNA gene sequence retrieval[J].FEMS Microbiology Letter,2002,214,235-240.
    [222]Huang,L.N.,Zhu,S.,Zhou,H.,et al..Molecular phylogenetic diversity of bacteria associated with the leachate of a closed municipal solid waste landfill[J].FEMS Microbiology Letters,2005,242,297-303.
    [223]Niemi,R.M.,Heiskanen,I.,Wallenius,K.,et al..Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia[J].Journal of Microbiological Methods,2001,45,155-165.
    [224]Gabor,E.M.,de Vries,E.J.,Janssen,D.B..Efficient recovery of environmental DNA for expression cloning by indirect extraction methods[J].FEMS Microbiology Ecology,2003,44,153-163.
    [225]Фvreas,L.,Forney,L.,Daae,F.L.,Torsvik,V..Distribution of bacterioplankton in meromictic Lake Saelevanet,as determined by denaturant gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rDNA[J].Applied and Environmental Microbiology,1997,63,3367-3373.
    [226]Zhang,G,Ma,X.,Niu,F.,et al..Diversity and distribution of alkaliphilic psychrotolerant bacteriain the Qinghai-Tibet Plateau permafrost region[J]Extremophiles,2007,11(3):415-424.
    [227]Harwati,T.U.,Kasai,Y,Kodama,Y,et al..Characterization of Diverse Hydrocarbon-Degrading Bacteria Isolated from Indonesian Seawater[J].Microbes Environment,2007,22,412-415.
    [228]Wani,A.A.,Surakasi,V.P.,Siddharth,J.,et al..Molecular analyses of microbial diversity associated with the Lonar soda lake in India:An impact crater in a basalt area.Research Microbiology,2006,157(10):928-937.
    [229]周璟,盛红梅,安黎哲.极端微生物的多样性及应用[J].冰川冻土,2007,29(2):286-291.
    [230]Reardon,C.L.,Cummings,D.E.,Petzke,L.M.,et al..Composition and diversity of microbial communities recovered from surrogate minerals incubated in an acidic uranium-contaminated aquifer[J].Applied and Environmental Microbiology,2004,70(10):6037-6046.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700