夏玉米时空交替补灌技术的生理生态效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验于2008-2009年在河南农业大学科教园区测坑试验区进行,试验利用作物自身遗传和生态生理特性,将时间(不同生育时期)交替和空间(不同根系区域)交替相结合,形成时空综合调控技术,进行主动的水分调控。通过对土壤水分运移规律、夏玉米生长发育特点,生理生态效应,夏玉米的产量以及夏玉米耗水规律的分析,较系统的研究了夏玉米时空综合调控技术的生理生态效应,主要结论如下:
     时空交替灌溉方式下,各处理在灌水结束后土壤平均含水量和土壤最大含水量以垄高15㎝,垄宽55㎝的T2处理最大,所需入渗时间最短。非灌水沟(观测点4)在土壤各剖面土壤水势的作用下使土壤水分侧向入渗增强,垂直下渗减少,土壤含水量逐渐上升,最后达到平衡。说明适宜的垄体参数(T2处理)可有效改善土壤水分再分布,使时空交替灌溉方式发挥更大的节水效益。
     夏玉米全生育期内土壤含水量在不同层次上的垂直变化明显不同,苗期不同层次的土壤水分含量差异较小,拔节期以后差异逐渐变大。0~40㎝土层的土壤水分含量变化幅度较大,40~60㎝土层的土壤水分含量变化程度相对较小,60~80㎝和80~100㎝土层土壤水分含量变化相对比较稳定。不同处理60~100㎝土层土壤含水量存在明显差异,拔节期高水分(田间持水量的80%)补灌的T1N1、T1N2和T1N3三处理始终表现为持续缓慢增加,拔节期中度亏缺(田间持水量的65%)的T2N1、T2N2和T2N3处理出现明显下降趋势,拔节期重度亏缺(田间持水量的50%)的T3N1、T3N2和T3N3处理开始下降的时间逐渐提前。同一补灌时期下,补灌量不同,土壤各层次水分含量表现为,N1>N2>N3,即高水分>中度亏缺>重度亏缺。
     各处理株高和叶面积指数随玉米生育进程逐渐增大,且随总补灌量的减少而降低。其中,拔节期高水分、抽穗期中度亏缺补灌的T1N2处理最高。各处理籽粒干重逐渐增大,籽粒灌浆初期,各处理间的籽粒干重差异不明显,随籽粒灌浆进程,差异逐渐增大。同一补灌时期不同补灌量之间差异表现为:高水分﹥中度亏缺﹥重度亏缺,不同时期间表现为拔节期补灌优于抽穗期。
     夏玉米叶片叶绿素值、叶片相对含水量和叶片比叶重随植株生育进程逐渐下降,不同处理间以拔节期高水分、抽穗期中度亏缺的T1N2处理最高,其余处理,随总补灌量的减少而降低,且同一补灌时期下,各处理随水分亏缺程度加强,其下降幅度增大。夏玉米叶片相对电导率、MDA含量和脯氨酸含量随植株的衰老呈逐渐增加。不同处理间同样表现为拔节期高水分、抽穗期中度亏缺的T1N2处理相对电导率、MDA含量和脯氨酸含量最小,随生育进程,与其他处理间差异逐渐增大,吐丝30天后,与其余处理间差异显著。
     不同处理光合速率、蒸腾速率和气孔导度的变化趋势基本一致,随总补灌量的减少而逐渐降低,且随水分亏缺程度的加剧,降低的幅度增大,且蒸腾速率减弱的程度要比光合速率减弱的程度大。叶片水分利用效率的变化不具有一定的规律性,拔节期高水分、抽穗期中度亏缺的T1N2处理最高,拔节期和抽穗期均为高水分的T1N1处理最低。随玉米生育进程的推进各处理Fv/Fo和Fv/Fm均呈先升高后降低的趋势。不同处理间,除T1N2处理外,Fv/Fo和Fv/ Fm值均随总补灌量的降低而下降,尤其是抽穗期重度水分亏缺的处理下降最快。不同处理ΦPSⅡ和ETR均表现为逐渐下降的趋势,且随时间的推移,ETR值下降幅度增大。
     夏玉米的棵间蒸发量在整个生育期内的变化曲线均呈脉冲状,每次灌水或降水后,各处理夏玉米棵间蒸发变化趋势一致,均有明显的上升趋势,然后逐渐下降。夏玉米各生育阶段的棵间蒸发量占耗水量比例的变化规律为播种-出苗最高,尔后逐渐下降,抽雄-灌浆阶段降至最低,随后,由于植株衰老,植株蒸腾降低,二者比例又明显增加。不同处理间,亏缺严重的低水分处理在进行灌水或降水后迅速上升,其上升幅度明显高于其余处理。
     不同处理产量以拔节期高水分、抽穗期中度亏缺的T1N2处理产量最高,以T1N2处理为对照,T3N1处理减产22.44%,T3N2处理减产24.6%,而T3N3处理减产达29.01%,处理间差异达极显著水平。T1N2处理水分利用效率最高,拔节期和抽穗期均为高水分处理的T1N1处理最低,其余处理随着总补灌量的减少逐渐下降,T1N2处理水分利用效率分别比T3N1、T3N2、T3N3和T1N1处理高12.78%、16.9%、19.79%和26.92%。若与目前生产上普遍延用的大田漫灌相比,产量与其相平略有提高,但水分利用效率可提高15%-20%左右。
     综合本研究结果,在采用时空交替灌溉方式进行补灌的条件下,初步拟定了夏玉米高产高效的优化灌水技术,即采用空间上的交替隔沟灌溉结合时间上的拔节期充分补灌(田间持水量的80%)和抽穗期补灌量适度减少(田间持水量的65%)的水分处理(T1N2处理)有利于夏玉米产量的增加和水分的合理优化分配,进而提高水分利用效率。
The experiment were carried out from 2008 to 2009 in the testing-hole at the Henan Agricultural University Science and Education Garden Area. The experiment usesd crop genetic and ecological physiological characteristics of their own, combined the temporal (different stages) and spatial alternation (in different root regions) together to form a temporal and spatial integrated control technology for active water regulation. Through the analysis of soil moisture transfer, the characteristics of growth and development, physiological and ecological effects, yield and water consumption of summer corn, this thesis systematically examines the physiological and ecological of temporal and spatial integrated control technology of summer corn. With sufficient disscussion,the conclusions are listed as follows:
     Under temporal and spatial alternative irrigation methods, at the end of irrigation, the trentment (T2)has the average SWC and max SWC which within the height of 15 cm and width of 55 cm, and the time of infiltration was the shortest. Because of soil water potential, increased lateral infiltration and reduced vertical infiltration at non-irrigation ditch (observation point 4), soil water content increased gradually, and finally reached equilibrium. This result demonstrates that appropriate ridge parameters (T2 treatment) can improve the soil water redistribution, so that spatial and temporal alternation of irrigation can greatly improve the water-saving irrigation efficiency.
     For the soil water content in summer corn’s growth period, vertical changes at different levels have significant differences. There were smaller differences of soil moisture content in different levels at seedling stage, and differences gradually enlarged after jointing. The soil moisture fluctuation ranged relatively bigger of the 0 ~ 40 cm layer, 40 ~ 60 cm layer was relatively small, 60~80 cm and 80 ~ 100 cm was relatively stable. The differences were obvious for soil water content of 60~100 cm, at jointing stage, high moisture (80% of field capacity) which included T1N1, T1N2 and T1N3 three treatments have always increased continually, moderate deficit ( 65% of field capacity) which consists of T2N1, T2N2 and T2N3 showed significant downward, severe deficit (50% of field capacity) which included T3N1, T3N2 and T3N3 began an earlier decline. Under the same period of supplementary irrigation, the amount of supplementary irrigation is different, soil water content showed: N1> N2> N3, the high water> moderate deficit> Severe deficit.
     The process of plant height and leaf area index increased gradually with the growing process of corn, and with the reduction of the total amount of supplementary irrigation, it decreased. T1N2 treatment high moisture at jointing, moderate deficit at heading stage were the highest. Grain dry weight increased gradually in all treatments, in the period of early grain filling, the grain dry weight among different treatments has no significant difference, but with the grain filling process, the difference increases. In the same period of supplementary irrigation, the different amount of supplementary irrigation showed: the high water> moderate deficit> Severe deficit. At different stage of supplemental irrigation it showed jointing stage is better than heading stage.
     Value of maize leaf chlorophyll, leaf relative water content and specific leaf weight decreased gradually with the plant growth process. Among different treatments, T1N2 treatment that has high moisture at jointing, moderate deficit at heading stage were the highest. While the rest treaments decline with the decreasing of the total amount of supplementary irrigation, and under the same period of supplementary irrigation, each dealing with the enlarged extent of water deficit, the declining rate increased. MDA content in maize leaves and proline content were gradually increased with the senescence of plant, the relative conductivity of leaves were gradually reduced and changed relatively. The performance shows that T1N2 treatment which the jointing of high moisture and the heading stage of moderate deficit, MDA and proline content were smallest, while the relative conductivity was the largest. With the growth process, the difference increased between other treatments and after silking 30 days the rest of the treatments were different.
     Between the different treatments of photosynthetic rate, transpiration rate and stomatal conductance consistent with the trend, and with the reduction of the total amount of supplementary irrigation gradually decreased, and with the increased level of water deficit, the rate of reduction increased, and transpiration rate is faster than the degree of great extent reduced photosynthetic rate. Changes in leaf water using efficiency does not have a certain regularity, the treatment(T1N2) which jointing of high moisture and heading stage of moderate deficit was the highest, T1N1 treatment in jointing and heading stages with high moisture were minimum. With the advance of the growth process of corn processing, Fv / Fo and Fv / Fm increased at first while then decreased. Among different treatments, except T1N2, Fv / Fo and Fv / Fm decreased with the declining of total irrigation quantity, especially the treatment of severe water stress at heading stage decreased fastest.ΦPSⅡand ETR of different treatments aslo showed decreasing trends and over time, ETR increased its declining rate.
     The evaporation of summer corn showed a pulse-shaped curve in the whole growth period, after each irrigation or rainfall, the evaporation of summer corn has a same trend---an obviously upward trend, and then gradually decreased. In each growth stage,the variation of maize evaporation accounted of water consumption showed that the highest rate appears in seedling stage,and then gradually decreased. Days to heading- filling stage, then, due to plant senescence, plant transpiration reduction ratio between the two obviously increased. Among different treatments, the treatments of severe deficit increased rapidly after irrigation or rainfall, the rate of increase was significantly higher than the rest of their treatments.
     The yield of T1N2 with high moisture at jointing stage and moderate deficit at heading stage was the highest. Compared toT1N2, T3N1 deal cut 22.44%, T3N2 treatment cut 24.6%, and T3N3 deal cut up to 29.01%, the difference reached an obvious level. T1N2 has the highest water using efficiency, jointing and heading stages were high water treatment, while T1N1 was lowest.The other dealings decling gradually with the reduction of the total amount of supplementary irrigation. Water using efficiency of T1N2 was higher than T3N1, T3N2, T3N3 and T1N1 treatment, respectively the rate of 12.78%, 16.9%, 19.79% and 26.92%. But if compared with the flooding irrigation, which is popularly used in the agricultural production,it can produce a little more , but water using efficiency can be improved about 15%.
     Comprehensive results of this study, under the conditions of using spatial and temporal way of supplementary irrigation, we preliminarily studied out a high production, high efficiency and optimal irrigation technology for summer corn.That is the method of combining alternate furrow irrigation with full irrigation at jointing stage (80% of field capacity) and moderate deficit (65% of field capacity)of heading stage, which is conducive to the increase in maize production and the rational optimization of water distribution, thus improving water using efficiency.
引文
[1]康绍忠,梁忠锁.控制性交替灌溉—一种新的农田节水调控思路[J].干旱地区农业研究,1997,(2):1-6.
    [2]孙景生,康绍忠,蔡焕杰,等.控制性交替灌溉技术的研究进展[J].农业工程学报,2001, 17,(4):1-5.
    [3]康绍忠.我国现代化农业节水高新技术发展战略的思考[J].中国农村水利水电,2001,10:23-29.
    [4]许旭旦,朱涵素.植物根部的水分倒流现象[J].植物生理学通讯,1995,31(4):241-245.
    [5]康绍忠,梁银丽.调亏灌溉对玉米生理指标及水分利用效率的影响[J].1998,14(4):82- 87.
    [6]张正斌,徐萍,崔玉亭,等.旱地农业研究中“三大观念”的转[J].中国农业科技导报, 2004,2:16-19.
    [7]连彩云.春小麦垄作交替隔沟灌溉研究[J].甘肃农业科技,2006,8:21-22.
    [8]张虎如,杨秀英,杜太生,等.干旱沙漠绿洲区地膜玉米控制性隔沟交替灌溉节水技术研究[J].干旱地区农业研究,2003,21(3):74-77.
    [9]孙景生,康绍忠,蔡焕杰,等.交替隔沟灌溉提高农田水分利用效率的节水机理[J].水利学报,2002,3(3):64-68.
    [10]康绍忠,潘英华.控制性作物根系分区交替灌溉的理论与试验[J].水利学报,2001,11: 80-86.
    [11]梁建生,张建华.根系逆境信号ABA产生和运输及其生理作用[J].植物生理学通讯, 1998,34(5):329-338.
    [12]康绍忠,蔡焕杰.农业水管理[M].北京:中国农业大学出版社,1996.
    [13]李洁.亏缺灌溉的发展与现状[J].节水灌溉,1998,(5):21-23.
    [14]陈玉民,肖俊夫,王宪杰,等.非充分灌溉研究进展与展望[J].灌溉排水,2001,20(2): 73-75.
    [15]杜尧东,宋丽莉,刘作新.农业高效用水理论研究综述[J].应用生态学报,2003,14(5):808-812.
    [16]汪志农.灌溉排水工程学[M].北京:中国农业出版社,2000.
    [17]郭相平,康绍忠.调亏灌溉-节水灌溉的新思路[J].西北水资源与水工程,1998,9(4): 22-26.
    [18]鄂卓矛,刘清平,庞昌乐,等.行走式节水灌溉理论与实践[M].北京:中国农业出版社,2005.
    [19]张正斌,徐萍,董宝娣,等.高水效农业是我过农业发展的必由之路[J].世界科技研究与发展.2005,17(4):63-71.
    [20]康绍忠,梁银丽.调亏灌溉对玉米生理指标及水分利用效率的影响[J].1998,14(4): 82-87.
    [21]高占义.农业高效用水技术发展前沿报告[J].中国水利,2004,22(2):37-39.
    [22]张正斌,徐萍,崔玉亭,等.旱地农业研究中“三大观念”的转[J].中国农业科技导报, 2004,2:16-19.
    [23]连彩云.春小麦垄作交替隔沟灌溉研究[J].甘肃农业科技,2006,8:21-22.
    [24]张虎如,杨秀英,杜太生,等.干旱沙漠绿洲区地膜玉米控制性隔沟交替灌溉节水技术研究[J].干旱地区农业研究,2003,21(3):74-77.
    [25]李霆,康绍忠,粟晓玲,等.农作物优化灌溉制度及水资源分配模型的研究进展[J].西北农林科技大学学报,2005,33(12):148-153.
    [26]孙景生,康绍忠,蔡焕杰,等.交替隔沟灌溉提高农田水分利用效率的节水机理[J].水利学报,2002,3(3):64-68.
    [27]康绍忠,潘英华.控制性作物根系分区交替灌溉的理论与试验[J].水利学报,2001,11:80-86.
    [28]梁宗锁,石培泽.隔沟交替灌溉对玉米根系分布和产量的影响及其节水效益[J].中国农业科学,2000,33(6):26-32.
    [29]李彩霞,陈晓飞,王铁良,等.控制性交替灌溉对玉米根系层水分再分布与产量的影响[J].农业工程学报,2007,23(11):59-64.
    [30]中国工程院重大项目咨询项目组.中国水资源现状评价和供需发展趋势分析[J].北京:中国水利水电出版社,2001.
    [31]杨秀英,杜太生,潘英华.沙漠绿洲区不同灌水方式条件下玉米灌溉制度研究[J].灌溉排水学报,2003,22(3):22-24.
    [32]王彩萍,左联忠.起垄种植对冬小麦增产效应的研究[J].山西农业科学,2002,30(1):27-28.
    [33]周苏玫,李潮海.起垄栽培对夏玉米生态环境及生长发育的影响[J].河南农业大学学报,2000,34(3):206-209.
    [34]段爱旺,肖俊夫.控制交替沟灌中灌水控制下限对玉米叶片水分利用效率的影响[J].作物学报,1999,25(6):766-771.
    [35]贾玉柱,王长生.小麦垄作栽培试验[J].现代化农业,1993,12:6-6.
    [36]刘建松.水稻垄作栽培应用效果研究[J].中国农学通报,2002,18(6):16-17.
    [37]孙广玉.黑龙江省三江平均大豆抗涝防旱土壤耕作技术探讨[J].大豆通报,2001,4: 11-12.
    [38]于保静,石培泽,杨秀英等.干旱区大田玉米控制性交替隔沟灌溉需水量及需水规律研究[J].甘肃水利水电技术,2006,42(3):209-212.
    [39]李霆,康绍忠,粟晓玲,等.农作物优化灌溉制度及水资源分配模型的研究进展[J].西北农林科技大学学报,2005,33(12):148-153.
    [40]中国工程院重大项目咨询项目组.中国农业需水与节水高效农业建设[J].北京:中国水利水电出版社,2001.
    [41]康绍忠.农业节水与水资源可持续利用领域发展态势及重大科技问题[J].农业工程学报,2003,19(增刊):130-135.
    [42]杨秀英,杜太生,潘英华.沙漠绿洲区不同灌水方式条件下玉米灌溉制度研究[J].灌溉排水学报,2003,22(3):22-24.
    [43]贾玉柱,王长生.小麦垄作栽培试验[J].现代化农业,1993,12:6-6.
    [44]孙祯禄,任和平.河南玉米[M].北京:中国农业出版社,1994.
    [45]王同朝,卫丽,王燕.夏玉米垄作覆盖对农田土壤水分及其利用影响[J].水土保持学报,2007,21(2):129-132.
    [46]王同朝,王燕,卫丽.作物垄作栽培法研究进展[J].河南农业大学学报,2005,39(4):377-382.
    [47]张宪政.作物生理研究法[M].北京:农业出版社,1992.
    [48]王忠.植物生理学[M].北京:中国农业出版社,1999.
    [49]唐永金.作物垄作的集合数学模型[J].生物数学学报,2005,20(1):83-85.
    [50]唐永金,侯大斌.甘薯栽培适宜垄宽、垄高和垄形的理论探讨[J].西南农业学报,1998,11(1):123-125.
    [51]潘英华,康绍忠.交替隔沟灌溉水分入渗特性[J].灌溉排水,2000,19(1):1-4.
    [52]潘英华,康绍忠.交替隔沟灌溉水分入渗规律及其对作物水分利用的影响[J].农业工程学报,2000,16(1):39-43.
    [53]马金宝,毕建杰,张兴强,等.宽垄沟灌覆膜条件下土壤水分侧向入渗特性[J].灌溉排水学报,2006,25(6):27-29.
    [54]田惠芳,窦爱民.建筑安装工程预算工作手册[M].北京,北京科学技术出版社,1994.
    [55]何春林,郭荣发,郭彪.沟灌渗透对直播水稻根、叶生长特性的影响[J].灌溉排水学报,2004,23(11):52-55.
    [56]李彩霞,陈晓飞,王铁良,等.控制性交替灌溉对玉米根系层水分再分布与产量的影响[J].农业工程学报,2007,23(11):59-64.
    [57]杜建涛,何文清,Vinay Nangia,等.北方旱区保护性耕作对农田土壤水分的影响[J].农业工程学报,2008,24(11):25-29.
    [58]周苏玫,李潮海.起垄栽培对夏玉米生态环境及生长发育的影响[J].河南农业大学学报,2000,34(3):206-209.
    [59]梁宗锁,石培泽.隔沟交替灌溉对玉米根系分布和产量的影响及其节水效益[J].中国农业科学,2000,33(6):26-32.
    [60]郑爱泉,侯煜,赵钢平等.水分胁迫对作物生长及生理代谢的影响[J].陕西农业科学,2008,2:120-121.
    [61]张洪旭,杨德光,李士龙,等.水分胁迫对玉米叶片水分代谢的影响[J].玉米科学,2008, 16(2):88-90.
    [62]闰凤霞,常建忠,刘学义.作物对水分胁迫反应的研究进展[J].山西农业科学,2008,36(7):90-92.
    [63]林秋萍,贡冬花,李普安,等.夏玉米的干旱适应性及其生理机制的研究[J].华北农学报,1990,5(4):54-60.
    [64]乔宏伟,武月莲,王志红,等.不同玉米群体灌浆期叶片生理特性的研究[J].内蒙古民族大学学报,2008,23(6):637-639.
    [65]白向历,齐华,刘明等.玉米抗旱性与生理生化指标关系的研究[J].玉米科学,2007,15(5):79-83.
    [66]远红伟,陆引罡,崔保伟,等.玉米生长发育及生理特征对水分胁迫的感应关系[J].华北农学报,2008,23(增刊):109-113.
    [67]武明宇,郝楠.玉米抗旱性的研究进展[J].现代农业科技,2008,9:124-125.
    [68]张宪政,苏正淑.作物水分亏缺伤害生理研究概况[J].沈阳农业大学学报,1996,27(1): 85-91.
    [69]刘祖贵,陈金平,段爱旺,等.不同土壤水分处理对夏玉米叶片光合等生理特性的影响[J].干旱地区农业研究,2006,24(1):90-95.
    [70]裴英杰,郑家玲,王金胜,等.用于玉米品种抗旱性鉴定的生理生化指标[J].华北农学报,1992,7(1):31-35.
    [71]于同泉,刘宗萍,路萍.水分胁迫小麦SOD、MDA动态变化与抗旱性的关系[J].北京农学院学报报,1995,10(1):22-26.
    [72]席章营,吴克宁,王同朝.玉米抗旱性生理生化鉴定指标及利用价值分析[J].河南农业大学学报,2000,34(1):7-13.
    [73]王邦锡,黄久常,王辉,等.不同植物在水分胁迫条件下脯氨酸的累积与抗旱性的关系[J].植物生理学报,1989,15(1):46-51.
    [74]孟兆江,卞新民,刘安能,等.调亏灌溉对夏玉米光合生理特性的影响[J].水土保持学报,2006,20(3):182-186.
    [75]郭相平,郭枫,刘展鹏,等.水分胁迫及复水玉米光合速率及可溶性糖的影响[J].玉米科学,2008,16(6):68-70.
    [76]赵丽英,邓西平,山仑.渗透胁迫对小麦幼苗叶绿素荧光参数的影响[J].应用生态学报, 2005,16(7):1261-1264.
    [77]梁忠锁,康绍忠,石培泽,等.隔沟效法灌溉对玉米根系分布和产量的影响及其节水效益[J].中国农业科学,2000,33(6):26-32.
    [78]段爱旺,肖俊夫.控制交替沟灌中灌水控制下限对玉米叶片水分利用效率的影响[J].作物学报,1999,25(6):766-771.
    [79] Zwart S J,Bastiaanssen W G M.Review of measured crop water productivity values for irrigated wheat,rice,cotton and maize[J].Agricultural Water Management,2004,69(2): 115–133.
    [80] Shaozhong Kang,Zongsuo Liang,Wei Hu,et al.Water use efficiency of controlled alternate irrigation on root-dividedmazie plants[J].Agriculural water Managemant.1998,38(1):69-76.
    [81]于保静,石培泽,杨秀英,等.干旱区大田玉米控制性交替隔沟灌溉需水量及蓄水规律研究[J].甘肃水利水电技术,2006,42(3):209-212.
    [82]孙景生,康绍忠,王景雷,等.沟灌夏玉米棵间土壤蒸发规律的试验研究[J].农业工程学报,2005,21(11):20-24.
    [83]陈素英,张喜英,裴冬,等.秸秆覆盖对夏玉米田棵间蒸发和土壤温度的影响[J].灌溉排水学报,2004,28(4):32-36.
    [84]王健,蔡焕杰,陈风,等.夏玉米田蒸发蒸腾量与棵间蒸发的试验研究[J].水利学报, 2004,11:108-113.
    [85]刘小飞,孙景生,刘祖贵,等.交替隔沟灌溉条件下夏玉米棵间蒸发研究[J].节水灌溉, 2007,6:10-13.
    [86]刘昌明,张喜英,由燮正.大型蒸渗仪与小型棵间蒸发器结合测定冬小麦蒸散的研究[J].水利学报,1998,10:36-39.
    [87]于保静,石培泽,杨秀英,等.干旱区大田玉米控制性交替隔沟灌溉需水量及需水规律研究[J].甘肃水利水电技术,2006,42(3):209-212.
    [88] Xi-Ping Deng,Lun Shan,Heping Zhang.Improving agricultural water use efficiency in arid and semiarid areas of China[J].Agricultural Water Management,2006,80:23–40.
    [89] Roberto Tognetti1,Riccardod’Andria,Giovanni Morelli,et al.The effect of deficit irrigation on seasonal variations of plant water use in Olea europaea L[J].Plant and Soil,2005,273:139–155.
    [90]刘钰, Fernando R M,Pereira L S.微型蒸发器实测麦田与裸地土面蒸发强度的试验研究[J].水利学报,1999,6:45-50.
    [91]陈玉民,郭国双,王广兴,等.中国主要作物需水量与灌溉[M].北京:水利水电出版社, 1995.
    [92] Barlow E W R.Water relations of expanding leaves[J].Australian Journal of Plant Physiology,1986,13(1):45-58.
    [93]杨涛杨,明超,梁宗锁,等.不同玉米品种耗水特性及其水分利用效率的差异研究[J].种子,2008,24(2):3-6.
    [94]王会肖,刘昌明.农田蒸散、土壤蒸发与水分有效利用[J].地理学报,1997,52(5):447-454.
    [95]张喜英,陈素英.秸秆覆盖下的夏玉米蒸散、水分利用效率和作物系数的变化[J].地理科学进展,2002,21(6):583-592.
    [96]许迪,刘钰.测定和估算田间作物腾发量研究综述[J].灌溉排水,1997,16(4):54-59.
    [97]孙景生.控制性交替隔沟灌溉的节水机理与作物需水量估算方法研究.西北农林科技大学博士研究生论文,2002.
    [98] Stone J F,Nofziger D L.Water use and yields of cotton grown under wide-spaced furrow irrigation.Agricultural Water Management,1993,24(1): 27-38.
    [99]梁宗锁,胡炜.控制性分根交替灌水的节水效应[J].农业工程学报,1997,13(4):58-63.
    [100]于晓芳,高聚林,宋国栋,等.玉米叶片水分利用效率及其相关性状的研究[J].玉米科学,2008,16(3):64-69.
    [101]王和洲,张晓萍.调亏灌溉条件下的作物水分生态生理研究进展[J].灌溉排水,2001,20 (10):73-75.
    [102]施关正,赵致,袁玉清.干旱胁迫下玉米杂交抗旱性及水分利用的研究[J].玉米科学, 2008,16(5):103-107.
    [103]魏良明,贾了然,胡学安,等.玉米抗旱性生理生化研究进展[J].干旱地区农业研究, 1997,15(4):66-71.
    [104]张步羽,李凤民,齐广平.调亏灌溉对干旱环境下春小麦产量与水分利用效率的影响[J].中国生态农业学报,2007,15(1):58-62.
    [105]裴冬,孙振山,陈四龙,等.水分调亏对冬小麦生理生态的影响[J].农业工程学报,2006,22(8):68-72.
    [106]Xi Ping Deng,Lun Shan,Heping Zhang, et al.Improving agricultural water use efficiency in arid and semiarid areas of China[J].Agricultural Water Management, 2006,80(1-3):23–40.
    [107]Yuan Tian,Derong Su,Fengmin Li,et al.Effect of rainwater harvesting with ridge and furrow on yield of potato in semiarid areas[J].Field Crops Research,2003,84(3):385–391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700