工业锅炉尾气处理技术的工程试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上最大的煤碳生产国和消费国,煤碳占我国能源需求总量的75%左右,煤碳燃烧产生的硫、氯、氮氧化物是大气污染的主要污染源,它除了形成酸雨,破坏生态环境,还能形成光化学烟雾,危害人类健康。大型电站锅炉和众多的工业锅炉是主要排放源。国内外对于脱硫除尘有一定研究,但脱硫除尘的问题到目前为止仍然没有彻底解决。本文结合工程的需要,开展了实际工程的脱硫除尘设备的设计与调试;为能够对煤碳的燃烧机理有一定的认识,文中还进行了煤热解特征的分析研究,试验煤样为大同烟煤(DT)和元宝山褐煤(YB),铁法烟煤(TF)。酸性气体主要是HCl、SO2,其净化机理是利用了酸碱中和反应。论文中的工程试验是天津市河西区艺林路原有锅炉房的尾气处理技术与设备的更新与改造,经运行试验检测,达到地方标准严格规定的排放要求,满足天津市DB12/151-2003《锅炉大气污染物排放标准》规定的Ⅱ时段要求,处理后烟尘排放浓度≤50mg/m3;脱硫效率≥90%,处理后二氧化硫排放浓度≤200mg/m3。
China is the biggest coal production and consumption country in the world.Coal occupies 75 percent of the total energy demand in our country. Sulfur, chlorin and nitric oxides which emitted from coal burning are the main air pollutants. Also coal burning contributes to formation of acid rain which damage of ecological environment and the Photochemical Smog which threaten human health. Large capacity utility boilers and numerous industry boilers are the main these gases emission source. Although significant amounts of research in Domestic and Overseas on desulfurization and dedusting had been carried out, the problem on the techniques still have not been solved thoroughly until now. The paper carried out the design and debugging of desulfurization and dedusting equipments combining engineer demand as well as the analysis of coal pyrolysis characteristics in order to get a deep coginition of coal combustion mechanism with the samples of Datong soft coal (DT), Yuanboshan wood coal (YB), Tiefa soft coal (TF). HCl, SO2 was main acidic gases. The gas clean mechanism was utilization of acid-base neutralization. The engineer experiment was performed on the reform and update of tail-gas treatment technology and equipment of boiler room located in Yilin Road, Nankai District, Tianjin. By test, tail-gas emission reached local emission standards, met theⅡprescribed requirements in DB12/151-2003 < The Standards of Boiler emissions> in Tianjin. After tail-gas treatment, the concentration of dust discharge was less than 50mg/m3; desulfurization efficiency was more than 90%; the concentration of sulfur dioxide emission was less than 200mg/m3.
引文
[1]李水清,池涌,固定床PVC燃烧脱氯的机理和实验,环境科学,2001,22(2): 95-100
    [2]王雷,前置碱雾发生器烟气脱硫试验研究及数值模拟: [博士学位论文],上海:上海交通大学,2005
    [3]李香排,蒋旭光,李琦,等,钙基脱氯剂固定床脱氯动力学模型,化工学报, 2004,55(8):1280-1284
    [4] M daoudi, J K Walters. The reaction of HC1 gas with calcined commercial limestone particles: the effect of particle size. Chemical Engineering Journal, 1991, 47: 11-16
    [5] Claust Weinell, Peter I Jensen, Kim Dam-Johansen, et al. Hydrogen Chloride Reaction with lime and limestone: Kinetics and Sorption Capacity. Industrial&Engineering Chemistry Research, 1992, 31(1): 164-171
    [6] Wuyin Wang, Zhicheng Ye, Ingemar Bjerle, The kinetics of the reaction of hydrogen chloride with fresh and spent Ca-based desulrization sorbents. Fuel, 1996, 75(2): 207-212
    [7] Szekely J, Evans J W. A structural model for gas-solid reactions with a moving boundary.Ⅱ: The efect of grain size, porosity and temperature on the reaction of porous of pellets. Chemical Engineering Science, 1971, 26: 1901-1913
    [8] G Mura, A Lallai.Reaction kinetics of gas hydyogen chloride and limestone. Chemical Engineering Science, 1994, 49(24): 4491-4500.
    [9]郭小汾,谢克昌.钙化物对HCl脱除的动力学研究.中国环境科学, 2000, 20(3): 211-214
    [10]陈德珍,张鹤声.垃圾焚烧尾气中HCl干式净化过程的数学模拟.同济大学报, 1996, 24(3): 281-286
    [11]李香排,蒋旭光.钙基脱氯剂固定床脱氯动力学模型.化工学报, 2004, 55(8): 1280-1284
    [12] Jozewicz W, G.T Rochelle. Modeling of SO2 moval by spray dryers.Proceedings: First Pittsburgh coal conference, Pittsburgh, USA, 1984, 663
    [13] Karlsson H T, Klingspor J. Tentative modeling of spray-dry scrubbing of SO2. Chemical Engineering technology, 1987, 10: 104-112
    [14] Damle A S, Sparks L E. Modeling of SO2 removal by spray dryer flue-gas desulfurization system. Proc.AIChE Meeting, New Orlean, 1986
    [15] Partridge G P, Davis W T, Counce R M. A mechanistically based mathematical model of sulfur dioxide absorption into a calcium hydroxide slurry in a spray dryer. Chemical Engineering Communication, 1990, 96: 97-112
    [16] Gerald H Newton, John Kramlich, Roy Payne. Modeling the SO2 slurry droplet reaction. AIChE Journal, 1990, 36(12): 1865-1872
    [17] James K Neathery. Model for flue gas desulfurization in a circulating dry scrubber. AIChE Jouranl, 1996, 42(1): 259-268
    [18] Liu C F, Shih S. A surface coverage model for the reaction of Ca(OH)2 with SO2 at low temperatures. Journal of the Chinese Institute of Chemical Engineers, 2002, 33(4): 407-413
    [19] Claussen R L, Martin C E. Duct injection technology: Engineering and design for commercial applications in proceedings.Utilization and Environmental Control Contractors Conference, Pittsburgy, Pennsylvania, 1992. 177-183
    [20]朱中华.循环流化床烧结烟气脱硫机理及系统模型化过程的研究: [硕士学位论文].西安:西安建筑科技大学, 1995
    [21]黄震.循环流化床烟气脱硫技术的实验和应用研究: [博士学位论文].南京:东南大学, 1997
    [22]李香排,蒋旭光,李琦,等,钙基脱氯剂固定床脱氯动力学模型,化工学报, 2004,55(8):1280-1284
    [23]王乃华,新型半干法烟气脱硫的实验及机理研究::[博士学位论文],杭州:浙江大学,2001
    [24]毛健雄,毛健全,赵树民,煤的清洁燃烧,科学出版社,北京,1998,13-15
    [25]赵坚行,热动力装置的排气污染与噪声,科学出版社,1995,45-47
    [26]Peter M, Maly, Vladimir M,Zamansky, Loc Ho, Roy Payne. Alternative fuel eburning, Fuel, 1999(78):327-334
    [27]陈理,国外烟气脱硫脱销技术开发近况,化工环保,1997(17):145-150,
    [28]李平,卢冠忠,肖文德,面向21世纪的脱硫脱销一体化工艺,化学世界,2000(7):343-347
    [29]Grzyb B, Machnikowshi J, Weber J V et al. Mechanism of co-pyrolysis of coal-tar pitch with pOlyacrylonitrile, Journal of Analytical and Applied Pyrolysis, 2003, 67(1):77-97
    [30]Gtiniz A Gtirtiz, Unalp Uctepe, TIllay Durusoy. Mathematical modeling of thermal decomposition of coal, Journal of Analytical and Applied Pyrolysis, 2004, 71(2):537-551
    [31]BuchanIII A C, Britt P F. Investigations of restricted mass transport effects on hydrocarbon pyrolysis mechanisms through silica immobilization, Journal of Analytical and Applied Pyrolysis,2000, 54(1):127-151
    [32]Hauserman, William B. Relating catalytic coal or biomass gasification mechanisms to plant capital cost components, International Journal of Hydrogen Energy, 2002, 65(1):57-70
    [33]陈镜泓,李传儒,热分析及其应用,北京,科学出版社,1985,147
    [34]K E Benfell, B B Beamish, K A Rodgers. Aspects of Combustion behavior of coal from some New Zeal and Lignite coal regions determined by thermogravimetry, Thermochimica Acta, 1997, 21(6):42-49
    [35]Y Chen, Shigeikatsu Mori, WeiPing Pan. Estimating the combustibility of various coals by TG-DTA, Energy and Fuel, 1995, 9(4):71-75
    [36]Jiang Xiumin, Zheng Chuguang, Yah Che Liu Dechang, Qiu Jianrong, Li Jubin. Physical structure and combustion properties of super fine pulverized coal particle, Fuel, 2002, 81(6):793-797
    [37]Qiu Jihua. Variation of Surface Area and Pore Structure of Pulverized Coal during Pyrolysis, Journal of Fuel Chemistry and Technology, 1994, 22(3):316-320
    [38]于伯龄,实用热分析,北京,纺织工业出版社,1988,138
    [39]Hao Liu, Edward Hampartsoumian and Bernard M Gibbs. Evaluation of the optimal fuel characteristics for efficient NO reduction by coal reburning, Fuel, 1997, 76(11):985-993
    [40]Smart J P, Morgan D J. The effectiveness of multi-fuel reburning in an internally fuel-staged burner for NOx reduction, Fuel, 73(9):1437-1442
    [41]Kicherer H, Spliethoff H, Maier and K R G Hein. The effect of different reburning fuels On NOx-reduction, Fuel, 1994, 73(9):1443-1446
    [42]Vlad Zarnescu, Sarma V Pisupai. The effect of mixing model and mixing characteristics on NOx reduction during reburning, Energy & Fuels, 2001, 15(9):363-371
    [43]Joong K L, Dong J S, Sunwon P, Dalkeun P. Effects of pyrolysis conditions on the reacting of char for the reduction of nitric oxide with ammonia, Fuel, 1993, 72(7):939
    [44]Chert W Y, Long M. Effect of the heterogeneous mechanisms during reburning of nitrogen oxide, AICHE J, 1996, 42(8):1968-1975
    [45]Matosd M A A, Pereira E J, Ventura J M P. Kinetics of NO reduction by anthracite char in a fluidized bed reactor, Fuel, 1990, 69(11):1435-1439
    [46]Y H Song, J M Beer, A F Sarfim. Reduction of nitric oxide by coal char at temperature of 1250-1750K,Combust,Sci,Tech,1981,25(3):237-240
    [47]Hiromi Yamashita, Akira Tomita. Influence of char chemistry on the reduction of Nitric oxide with char, Energy & Fuels, 1993, 7(2):85-89
    [48]Ph Chambrion T Kyotani, A Tomita. Role of N-containing surface species on NO reduction by carbon, Energy & Fuels, 1998, 12(2):416-421
    [49]Linares-Solang A, C Sal Lecea. The role of carbon porosity and surface area, Energy & Fuels, 1993, 7(1):146-154
    [50]Thomas E, Burch Wei, Yin Chen, Thomas W, Lester Arthur, M Sterling. Interaction of fuel-N with nitric oxide during reburning with coal, Combustion and Flame, 1994, 98(7):391-401
    [51]徐华东,罗永浩,王恩禄,陆方,再燃技术及其在我国的应用前景,动力工程,2001,21(4):1320-1323
    [52]Gdcherer H, Spliethoff H, Maier K, R G Hein. The effect of different reburning fuels on NOx-reduction, Fuel, 1994, 73(9):1443-1446
    [53]Chen W Y, Long M. Effect of the heterogeneous mechanisms during reburning of nitrogen oxide, AICHE J, 1996, 42(12):1968-1975
    [54]Song Y H, Beer J M, Sarfim A F. Reduction of nitric oxide by coal char at temperature of 1250-1750K, Combust Sci, Tech, 1981, 25(10):237-240
    [55]Nakamura M, Takashi K, Kuwahara M, et al. Demonstration test and practical studies on combustion technologies of micro-pulverized coal, International Conference on Power Engineering-97, Tokyo, 1997, 453-458
    [56]Despina Vamvuka, Edward T, Woodburn Peter, Senior R. Modelling of an entrained folw coalgasifieer 1, Development of the model and general predictions, Fuel, 1995, 74(10):1452-1460
    [57]QiZhi Ni, Alan Williams. A simulation study on the performance of an entrained-flow coal gasifier, Fuel, 1995, 74(1):102-110
    [58]Solomon R R, Fletcher T H. Impact of coal pyrolysis on combustion, Twenty-Fifth Symposium(International) on Combustion, The Combustion Institute, Pittsburgh, PA, 1994, 463-474
    [59]Fletcher T H. Time-resolved temperature measurements of individual coal particles durng devolatiliation, Combust Sci and Tech, 1989, 63(12):89-105
    [60]Badzioch S, Gregory D R, Field M A. Investigation of The Temperature Variation of the Thermal Conductivity and Thermal Diffusivity of Coal, Fuel, 1964, 43(10):267-280
    [61]Hnsan Dindi, Xiao-bong Bai, William Krant B. Themal And Electrical Property Measurements For Coal, Fuel, 1989, 168:182-192
    [62]Monazam E R, Maloney D J, Lawson L O. Measurment of heat capacity, temperatures, and absorptivities of single particles in an electrodynamic balance, Rev. Sci, Instrum, 1989, 60(15):3460-3465
    [63]Maloney D J, Monazam E R, Woodruff S W. Lawson L O. Measurements and Analysis of Temperatures Histories and Coal Particles During The Early Stages of Heating and Devolatilization, Combust, Flame, 1991, 84(12):210-220
    [64]冯杰,李文英,谢克昌,傅立叶红外光谱法对煤结构的研究,中国矿业大学学报,2002,31(5):362-366
    [65]秦匡宗,郭绍辉,李术元,煤结构的新概念与煤成油机理的再认识,科学通报,1998,43(18): 1912-1918
    [66]杨起,潘治贵,汤达祯,廖立兵,马哲生,施倪承,煤结构的STM和AFM研究,科学通报,1994,39(7):633-635
    [67]李东涛,李文,李保庆,煤中氢键研究的新进展,化学通报,2001,7(3):411-415
    [68]刘国根,邱冠周,胡岳华,煤的红外光谱研究,中南工业大学学报,1999,30(4):371-373
    [69]Guo Y T, Bustin R M. Micro-FTIR spectroscopy of liptinite macerals in coal, International Journal of Coal Geolog, 1998, 36(6):259-275
    [70]Guo Y T, John J R, John H P. FTIR microspectroscopy of particular liptinite-(10pinite-) rich Late Permian coals from Southern China, International Journal of Coal Geology, 1996, 26(5):187-197
    [71]Jose V I, Edger M, Rafael M. FTIR study of the evolution of coal structure during the coalification process, Fuel, 1996, 24(3):725-735
    [72]Puente G D, Iglesias M J, Fuente E, Pis J J. Changes in the structure of coals of different rank due to oxidation-effects Oll pyrolysis behaviour, Journal of AnMytical and Applied Pyrolysis, 1998, 47(9):33-42
    [73]Maria J I, Jose’C R, Fatima L D, Maria JC, Isabel S R. Control of the chemicalstructure of perhydrous coals:TIR and Py-GC/MS investigation, Journal of Analytical and Applied Pyrolysis, 2002, 62(1):1-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700