藻—菌体系降解原油性能及其体系生物多态性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油污染导致了世界性的严重的生态问题,对环境以及人类健康造成了巨大的危害,石油污染生物修复技术已经成为人们研究的热点。针对目前水体石油污染生物修复技术中存在实际问题,如降解菌剂在修复环境中存活率低、溶解氧限制等。本研究利用藻-菌体系降解石油污染物,拟进一步提高水体石油污染生物修复技术的修复效率和实际可应用性。
     用平板分离法从石油污染的港口水体中得到两株带菌单种藻,经鉴定为颤藻(Oscillatoriales GH1)和斜生栅藻(Scenedesmus obliqnuus GH2)。两株微藻均有较好的原油耐受性能,能在0.1-1%体积浓度原油培养基中生长良好。
     紫外分光光度法测定单种藻原油降解性能结果表明:单种颤藻具备高效降解原油的性能,而单种栅藻对原油降解效果远不及单种颤藻。因而将栅藻GH2再与三种石油组分降解菌进行人工藻-菌体系的构建:单种栅藻的附生菌与石油组分降解菌不能很好的相互适应,使得降解率反而降低;纯栅藻能与三种石油组分降解菌构建一个高效降解原油的人工藻-菌体系。
     柱层析法-GC/MS对藻-菌体系降解原油的过程进行分析:单种颤藻(颤藻GH1-附生菌体系)4天能完全去除直链烷烃,5天能将烷基环己烷系列同系物全部降解,7天可去除所有的烷基苯系列同系物。7天对多环芳烃物质中萘系列、芴系列、菲系列物质总体降解率分别达98%、85%和80%。多环芳烃的降解基本遵循低环的和取代基少的物质先被降解,高环的和取代基多的物质后降解的规律。人工藻-菌体系4天能基本去除所有直链烷烃,10天则能将支链烷烃也基本除去;烷基环己烷和烷基苯系列同系物也在7天内被完全去除;对多环芳烃物质中萘系列、芴系列、菲系列物质总体降解率分别达90%、76%和70%。菲等高环芳烃能与低环物质同时被降解,降解过程中检测到2-甲基-1丙基萘、1-丙基萘、1-苄基-3甲基苯、二苯甲烷等与已知降解途径相异的中间产物。
     用分子生物学方法对藻-菌体系降解原油的作用机理进行研究:颤藻-附生菌体系中有7种附生菌,包括2种鞘氨醇单胞菌Sphingomonas、1种根瘤菌Rhizobium、1种水单胞菌Aquimonas、1种黄杆菌Flavobacteriaceae以及2种不可培养细菌。根瘤菌、水单胞菌和C5不可培养细菌在烷烃、烷基环己烷、烷基苯的降解过程中一直呈优势菌;当鞘氨醇单胞菌和黄杆菌大量生长时,多环芳烃中高分子物质大量被降解。人工藻-菌体系中,DGGE显示三种石油组份降解菌的生长与原油降解存在密切相关性。GS3C和GP3A在培养初期即大量生长,使得长链烷基类物质从第2天就开始被大量降解;芳烃物质的降解使得GY2B在第4天条带陡然增亮。同时,GY2B与GS3C和GP3的共代谢作用,使得长链烷基苯物质迅速降解。
Oil pollution can lead to serious world-wide ecological problems, and make great threat to the environment and human health. There are considerable interests in microbial degradation and detoxification of these pollutants. Currently, there are some problems in traditional bioremediation technology, such as the degrading-bacteria couldn’t survival in environment, insufficiency of dissolved oxygen, and so on. In this study, microalgal-bacterial consortia were used for crude oil degradation, with the aim to improve the feasibility of bioremediation technology for oil polluted water.
     Two non-axenic microalgae (unialgal culture) were isolated from oil-polluted port water, including one filamentous cyanobacteria named GH1 and one green algae named GH2. GH1 was identified as Oscillatoriales and GH2 was indentified as Scenedesmus obliqnus. Both two algae tolerance for oil, and grew well in medium contain 0.1-1% crude oil. Degradation properties of unialgal culture were tested by UV spectrophotometry and results showed the unialgal GH1 showed high oil degradation efficiency, but unialgal GH2 inferior to GH1. Thus, three oil component degrading bacteria were used for artificial consortia construction with GH2. Unialgal GH2 was not suitable for the consortium construction, axenic Scenedesmus obliquus GH2 combined with the bacteria formed an optimal algal-bacterial consortium.
     Degradation process was analyzed by GC/MS. Consortium of Oscillatoriales GH1 and associated bacteria could eliminate n-alkanes, alkylcycloalkanes and alkylbenzens in 4 days, 5 days and 7 days, respectively. The degradation rates for alkylated naphthalenes, alkylated fluorenes and alkylated phenanthrenes were achieved 98%, 85% and 80% in 7 days, respectively. The orders of degradation were basically follow the regular pattern that the multimethyl tricyclic PAHs are more biorefractory. The artificial consortium (axenic Scenedesmus obliquus GH2- oil component-degrading bacteria) could eliminate n-alkanes and branch- alkanes in 4days and 10days, respectively. Alkylcycloalkanes and alkylbenzens also completely removed in 7days. The degradation rates for alkylated naphthalenes, alkylated fluorenes and alkylated phenanthrenes were achieved 90%, 76% and 70%, respectively. Higher melocular PAHs were degraded with low melocular materials simultaneously by the consortium, and some intermediates were distinct with the known biodegradation pathway.
     Molecular biology method was used to analyze the mechanism of oil degradation by miocroalgal-bacterial consortium. There were seven kinds of associated bacteria in unialgal GH1, including two Sphingomonas, one Rhizobium, one Aquimonas, one Flavobacteriaceae and two unculturable bacteria. Rhizobium, Aquimonas, and C5 unculturable bacteria were dominating through the degradation process of alkanes, alkylcycloalkanes and alkylbenzens. The massive growth of Sphingomonas and Flavobacteriaceae leads to abundant decrease of high melocular PAHs. In the artificial consortium, microorganisms’population dynamics showed the degradation process closely correlated with the growth of bacterial strains and their metabolic activity: GS3C and GP3A were predominated and responsible for the aliphatic hydrocarbons degradation; the extensive decrease of PAHs leaded to sharp increase of GY2B; the cooperation of GS3C and GY2B cause co-oxidation of alkylbenzenes.
引文
[1] Cadevelopment of a sensitiv in strument [J]. Environmental pollution, 2001,112 (3):443-461
    [2]贾燕.石油降解菌和生物表面活性剂在水体石油污染生物修复中的应用及机理研究[D].广州,暨南大学,硕士学位论文, 2007
    [3]杨超.海洋石油污染生物修复的探讨[J].西南民族大学学报, 2008, 29 (71): 62-67
    [4]毛天宇,刘宪斌,李亚娟.海洋石油污染生物修复技术.海洋信息, 2008, (3): 12-13
    [5]陈建秋.中国近海石油污染现状、影响和防治[J].节能与环保, 2002, 6(3): 15-17
    [6]柴田,陈育革.防止油轮污染保护海洋环境[J].天津航海, 2008, 3: 50~51
    [7] http://energymonthly.tier.org.tw/outdatecontent.asp?ReportIssue=9504&Page=24mphuysen J.C., Heubeck M..Marine oil pollution and beaehed bird surveys: the e monitoring.
    [8]濮文虹,周李鑫,杨帆,杨昌柱.海上溢油防治技术研究进展[J].海洋科学, 2005, 6(29): 73~75
    [9]鲍建国.港湾水体有机污染物的分类估算及污染防治对策.交通环保. 1996, 4(17): 11~14
    [10]中国海洋局. 2008年中国海洋环境质量公报[Z].北京:国家海洋局. 2008
    [11]广东省海洋与渔业局. 2004年广东省海洋环境质量公报[Z].广州:广东省海洋与渔业局, 2005
    [12]广东省海洋与渔业局. 2005年广东省海洋环境质量公报[Z].广州:广东省海洋与渔业局, 2006
    [13]广东省海洋与渔业局. 2006年广东省海洋环境质量公报[Z].广州:广东省海洋与渔业局, 2007
    [14]李连健.珠江口水域溢油信息系统的研究[D].大连:大连海事大学,硕士学位论文, 2002
    [15] http://www.china.com.cn/chinese/huanjing/728800.htm
    [16]曲维政,郑声贵.灾难性的海洋石油污染[J].自然灾害学报. 2001, 10(1): 69-74
    [17]刘金雷,夏文香,赵亮,马庆奎.海洋石油污染及其生物修复[J].海洋湖沼通报.2006,3:49-53
    [18]夏文香.海水-沙滩界面石油污染与净化过程研究[D].青岛:中国海洋大学,博士学位论文, 2005
    [19] Colwell R.R., Walker D.J.. Ecolo icrobial degradation of petroleum in the marine environment[J]. Crit Rev Microbiol 1977, 5:423-445
    [21] T. García de Oteyza, Grimalt J.O., Diestra E., SoléA., Esteve I.. Changes in the 4, 66: 226-32 16(1):
    [26]海.溢油风化过程研究进展[J].海洋环境科学. 2000: 75-80
    [28]洋局.海洋监测规范[M]:海水分析方法.北京, 1998 5(2):112-
    [30]油降解菌的筛选-鉴定及其石油降解性能的初步研究[J].北京:中国农
    [31]生物降解柴油过程的评价方法及菌群间协同作用的研究[D].武汉:华
    [32]护总局.水和废水分析监测方法.北京, 2002 ol.. 1991, 25 (10): 1663~1672 .北京:海洋生物技术出gical aspects of m
    [20] T. García de Oteyza, Grimalt J.O., Llirós M., Esteve I.. Microcosm experiments of oil degradation by microbial mats[J]. Sci. Total. Environ. 2006, 357: 12-24 composition of polar and apolar crude oil fractions under the action of Microcoleus consortia[J]. Appl. Microbiol. Biotechnol. 200
    [22]曾国涛,徐梦虹.石油地球化学[M].石油工业出版社. 1990
    [23]陈勇民,港口水域石油污染生物降解及生物修复技术的基础研究[D].西安:长安大学,硕士学位论文. 2002
    [24]李言涛.海上溢油的处理与回收[J].海洋湖沼通报. 1996, 1: 73-83
    [25]赵云英,杨庆霄.溢油在海洋环境中的风化过程[J].海洋环境科学. 1997,45-52严志宇,殷佩
    [27]田立杰.海洋油污染对海洋生态的影响[J].海洋湖泊通报. 1999, 2: 95-99国家海
    [29]吴玉新.紫外分光光度法测定污水中油含量的研究[J].石化技术, 1998, 114阮志勇.石业科学院,硕士论文. 2006田贞乐.微中科技大学,硕士学位论文, 2005国家环境保
    [33] Madsen E.L.. Determining in situ biodegradation: Facts and Challenges [J]. Envrion. Sci . Techn
    [34]张士璀,范晓,马军英.海洋生物技术和应用[M].第二版版社. 1997.
    [35]宋志文,夏文香,曹军.海洋石油污染的微生物降解与生物修复[J].生态学杂志. 2004, 23(3): 99-102
    [36]黄艺,礼晓,蔡佳亮.石油污染生物修复研究进展[J].生态环境学报, 2009, 18(1): 361-367[37] Perry J.J.. Microbial metabolism of cyclic alkanes. In: Atlas R.M. (ed) PetroleumMicrobiology, New York, Macmillan Publ. Co.1984: 61-98[38] Horowitz A., Altas R.M.. Continuous open flow-through system as a model for oildegradation in the Arctic Ocean [J]. Appl.Environ Microbiol. 1977, 33: 647-653[40][41] ness of bioremediation fors [J]. Process. Biochem., 2007, 42: 401-408.ao X.Q., Lu G.N., Dang Z., et al. Isolation of phenantcharacterization of phenanthrene metabolites [J]. World J. Microbiol. Biotechnol., 2007,23: 647-54.[44] ,范晓,胡征字.中国藻类学研究[M].武汉:武汉出版社. 2001: 272许春华周琪.高效藻类塘的研究与应用环境保护, 2001, 08: 41-43.[46]黄魁.藻类去除污水中氮磷及其机理的研究[D].南昌:南昌大学,硕士学位论文,2007,硕士学位论文, 1998[39]甘居利.一种独特的生物降解海上溢油方式[J].海洋技术, 1998, 3(17): 71-73Alxander M.. Biodegradation and bioremediation [M]. San Diego: Academic Press.1994Braggs J.R., Prince R.C., Harrier E.J., Atlas R.M.. Effectivethe Exxon Valdez oil spill [J]. Nature, 1994(368): 413-418[42] Tao X.Q., Lu G.N., Dang Z., et al. A phenanthrene-degrading strain Sphingomonas.spGY2B isolated from contaminated soil[43] T hrene-degrading bacteria and刘永定[45] , [J].[47]王冰.固定化栅藻对市政污水中的氮、磷营养盐深度处理的研究[D].辽宁:辽宁师范大学[48] CarlosVilchez, Inés Garbayo, María V. Lobato, JoséM.Vega. Microalgae-mediatedchemicals production and wastes removal [J].Enzyme and Microbial Technology,1997, 20: 562-572Mu?oz R., Guieysse [49] sse B.. Algal-bacterial processes for the treatment of hazardous815ents on the degradative efficiency of a microbial[51] Mu?oz R., Guieysse B., Mattiasson B.. Phenanthrene biodegradation by analgal-bacterial consortium in two-phase partitioning bioreactors [J]. Appl. Microbiol.Biotechnol., 2003, (61): 261-267.[52] Radwa ing microbial consortia floating in the Arabian Gulf [J].[53] Mu?oz R., K?llner C., Guieysse B., Mattiasson B.. Salicylate biodegradation by variouscontaminants: A review [J]. Water. Res., 2006, (40): 2799– 2[50] Wolfaardt G.M., Lawrence J.R., Robarts R.D., Caldwell D.E.. The role of interactions,sessile growth, and nutrient amendmconsortium [J]. Can. J. Microbiol., 1994, (40): 331-340n S.S.. Oil-consumInternational Biodeterioration & Biodegradation, 2005, (56): 28–33algal-bacterial consortia under photosynthetic oxygenation [J]. Biotechnology Letters, 2003, 25: 1905–1911 [54] Mu?oz R., Jacinto M., Guieysse B., Mattiasson B.. Combined carbon and nitrogen removal from acetonitrile using algal-bacterial bioreactors [J]. Appl. Microbiol. . 1992, ., Radwan S.S.. Utilization of hydrocarbons by cyanobacteria from microbial mats on oily coasts of the Gulf [J]. Appl. Microbiol. san R.H., Al-Bader D., Sorkhoh N.A., Radwan S.. Evidence for nalkane filamentous cyanobacteria from oil-contaminated coasts [61] plied Microbiology, 2001, 91: 533-540 pounds [J]. APPLIED [63] ulletin, 2007, (54): 173–179 [65] Coute′A., Oudot J.. Role of cyanobacteria in the Biotechnol., 2005, (67): 699-707 [55] Safonova E.Th., Dmitrieva I.A., Kvitko K.V.. The interaction of algae with alcanotrophicbacteria in black oil decomposition [J]. Resources, Conservation and Recycling., 1999, (27):193–201 [56] Luther M., Soeder C.J.. Some naphthalene sulphonic acids as sulphur sources for the green microalga, Scenedesmus obliquus [J]. Chemosphere, 1987, 16:1565-1578 [57] Luther M.. Degradation of different substituted aromatic compounds as nutrient sources by the green alga Scenedesmus obliquus [J]. Dechema. Biotechnol. Conf., 1990, (4): 613-615 [58] Sorkhoh N.A., Al-Hasan R., Radwan S., et al.. Selfcleaning of the Gulf [J]. Nature359: 109 [59] Al-Hasan R.H., Sorkhoh N.A., Al-Bader DBiotechnol, 1994, 41:615–619 [60] Al-Haconsumption and oxidation by of the Arabian Gulf [J]. Mar. Biol .,1998,130: 521–527 Radwan S.S.. Hydrocarbon accumulation by picocyanobacteria from the Arabian Gulf [J]. Journal of Ap[62] Raeid M. M. Abed. Microbial Diversity of a Heavily Polluted Microbial Mat and Its Community Changes following Degradation of Petroleum ComAND ENVIRONMENTAL MICROBIOLOGY, 2002, 1674–1683 R.M.M. Abed, Microbial community of cyanobacteria mats in the intertidal zone of oil-polluted coast of Saudi Arabia [J]. Marine Pollution B[64] Florin Musat. Study of nitrogen fixation in microbial communities of oil-contaminated marine sediment microcosms [J]. Environmental Microbiology, 2006, 8(10):1834–1843 Chaillan F., Gugger M., Saliot A., biodegradation of crude oil by a tropical cyanobacterial mat [J]. Chemosphere ,2006, (62): 1574–1582 [66] Rippka R.. Methods in enzymology [M]. San Diego: Academic Press, 1989
    [67]胡鸿钧,魏印心.中国淡水藻类[M].北京:科学出版社.2006
    [68] Sanchez O., Diestra E., Esteve I., Mas J.. Molecular characterization of an oil-degradingcyanobacterial consortium [J]. Microb. Ecol., 2005, 50: 580-585.
    [69] Nlibel U., Garcia-Pichel F., Muyzer G.. PCR primers to amplify 16S rRNA genes fromcyanobacteria [J]. Appl. Environ. Microbiol. 1997. 63: 3327-3332
    [70] Guadalupe Vazquez-Martinez. Mario H. Rodriguez. Fidel Hernandez-Hernandez, et al.Strategy to obtain axenic cultures from field-collected samples of the cyanobacteriumPhormidium animalis [J]. Journal of Microbiological Methods. 2004, 57: 115- 121
    [71] Garbary D.? Hegewald E.. Scenedesmus Genus detail [J]. AlgaeBase. 2007.
    [72]谢树莲,张峰,凌元洁.中国栅藻属植物数量分类初探[J].水生生物学报,1999,23(3):257-263
    [73]屈建航.5种绿藻对几种常用抗生素的敏感性[J].大连轻工业学院学报,2004,23(2):111-13
    [74]张冬宝,隋正红,茅云翔.8种抗生素对塔玛亚历山大藻生长的影响[J].海洋学报,2007,29(2):123-130
    [75]黄振华,刘晓娟,胡章喜.湛江等鞭金藻对抗生素的反应及无菌化培养[J].生态科学,2007,26(2):120-121
    [76]林伟.几种海洋微藻的无菌化培养[J].海洋科学,2000,24(10):4-6
    [77] Su J.Q.. Vang X.R.. Zheng T.L.. An efficient method to obtain axenic cultures of Alexandrium tamarense-a PSP-producing dinofiagellate [J]. Journal of Microbiological Methods. 2007? 69: 425-430
    [78] Fujishiro T., Ogawa T., Matsuoka M., et al. Establishment of a Pure Culture of the Hitherto Uncultured Unicellular Cyanobacterium Aphanothece sacrum and Phylogenetic Position [J]. Appl and Environ microbiol 2004? 70 (6): 3338-3345
    [79] Abed R M.M., Koster J.. The direct role of aerobic heterotrophic bacteria associated with cyanobacteria in the degradation of oil compounds [J]. Int Biodeterior Biodegrad. 2005. 55: 29-37
    [80]杜青平,黄彩娜,贾晓珊.1,2,4-三氯苯对斜生栅藻的毒性效应及其机制研究[J].农业环境科学学报,2007,26(4):1375.1379
    [81]方允中,李文杰.自由基与酶[M].北京:科学出版社.1989
    [82]聂湘平,蓝崇钰,林里,黄铭洪.多氯联苯对蛋白核小球藻和斜生栅藻生长影响的研究[J].中山大学学报(自然科学版),2002,41(1):68-72
    [83]范嫒嫒,袁妙淼,邓梅峰等.高浓度氮、磷胁迫对伊乐藻80D、POD和CAT活性的影响[J].氨基酸和生物资源.2007,29(3):38-41
    [84]唐学玺,李永祺.久效磷对海洋微藻的毒性机理的初步研究[J].环境科学学报,1998,18(2):204-207
    [85]唐学玺,李永祺.久效磷对叉鞭金藻的毒性[J].水产学报,1999,23(2):132-137
    [86]刘华.藻与酞酸酯类化合物的相互作用特性研究[D].天津:天津大学,硕士学位论文,2004
    [87]李如亮.生物化学实验[M].武汉:武汉大学出版社.1998
    [88] Beauchamp C. Fridovich I.. Superoxide dismutase: improved assays and an assayapplicable to acrylamide gel [J]. Annal.Biochem.. 1971. 44:276
    [89] Bewley T.D.. Physiological aspects of desiccation tolerance [J]. Annual Review of PlantPhysiology, 1979,30:195
    [90]唐学玺,李永祺,李春雁等.有机磷农药对海洋微藻致毒性的生物学研究:四种海洋微藻对久效磷的耐受力与其SoD活性的相关性[J].海洋环境科学,1995,14(2):1.
    [91] Chance B.. Maehly A.C.. Assay of catalase and peroxidase [J]. Methods in Enzymology, 1995, 2: 764
    [92]波钦诺克X.H.著,荆家海,丁钟荣译.植物生物化学分析方法[M].北京:科学出版社。1981:197
    [93]汪星,周明,廖兴盛等.邻苯二甲酸二丁酯对蓝藻生长的影响[J].武汉理工大学学报,2006,28(12):48-51
    [94]彭金良,严国安,沈国兴等.α-萘酚胁迫对普通小球藻生长及抗氧化酶活性的影响[J].武汉大学学报,2001,47(4):449-452
    [95] Muyzer G., Waal E. C, Uitterlinden A.. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16SrRNA [J]. Appl. Environ. MicrobioL 1993? 59: 695-700
    [96]杨朝晖.基于分子生态学技术的环境微生物群落结构与功能的研究[D].长沙:湖南大学,博士学位论文,2007
    [97]奥斯伯F.M,金斯顿R.E.,塞德曼J.G,等.精编分子生物学指南[M].北京:科学出版社.2008
    [98] Yabuuchi E., Yano I., Oyaizu H.. Hashimoto Y, Ezaki T, Yamamoto H.. Proposals of Sphingomonas paucimobilis gen. nov. and comb, nov, Sphingomonas parapaucimobilis sp. nov, Sphingomonas yanoikuyae sp. nov., Sphhigomomts adhaesiva sp. nov.,Sphingomonas capsulata comb, nov., and two genospecies of the genus Sphingomonas[J]. Microbiology and Immunology, 1990? 34: 99-119
    [99] Takeuchi M., Kawai F., Shimada Y.. Taxonomic study of polyethylene glycol - utilizingbacteria: emended description for the genus Sphingomonas and new descriptions ofSphingomonas macrogoltabidus sp. nov, Sphingomonas sanguis sp. nov. andSphingomonas terrae sp. nov [J]. Systematic and Applied Microbiology, 1993, 16:227-238
    [100] Fredrickson J.K.. Balkuill D.L.. Drake GR.. .Aromatic-degrading Sphingomonasisolates from the deep subsurface [J]. Applied and Environmental Microbiology, 1995,61: 1917-1922.
    [101] Xia Y, Min H.. Rao G? Lv Z.M.? Liu J.. Ye Y.F.. Duan X.J.? Isolation andcharacterization of phenanthrene-degrading Spingomonas pauciobilis strain ZX4[J].Biodegradation. 2005? 16: 393-402
    [102] Cho J C, Kim S. J.. Detection of mega plasmid from polycyclic aromatichydrocarbon- degrading Sphingomonas sp.strain 14 [J]. Journal of MolecularMicrobiology and Biotechnology, 2001, 3: 503-506
    [103] Kim S.J..Chun J., Bae K.S.. Polyphasic assignment of an aromatic degradingPseudomonassp., strain DJ77. in the genus Sphingomonas as Sphingomonaschungbukensis sp. nov [J]. International Journal of Systematic and EvolutionaryMicrobiology, 2000? 50: 1641-1647
    [104] Feng X.H., Ou L.T., Ogram A.. Plasmid-mediated mineralization of carbofuran bySphingomonas sp. strain CF06 [J]. Applied and Environmental Microbiology, 1997, 63:1332-1337
    [105] Riegert U., Heiss G, Kuhm A.E.. Catalytic properties of the 3 - chlorocatechol -oxidizing 2,3 - dihydroxybiphenyl 1,2 - dioxygenase from Sphingomonas sp. strain BN6[J]. Journal of Bacteriology, 1999? 181: 4812-4817
    [106]苟敏,曲嫒嫒,杨桦等.鞘氨醇单胞菌:降解芳香化合物的新型微生物资源[J].应用与环境生物学报,2008,14(2):276-282
    [107] Kaksonen A.H.. Jussila M.M., Lindstro K.. Suominen L.. Rhizosphere effect of Galega orientalis in oil-contaminated soil [J]. Soil Biology & Biochemistry, 2006, 38: 817-827
    [108] Saha P.. Krishnamurthi S., Mayilraj S., Prasad G S., Bora T.C.. Aquimonas voraii gen. nov., sp. nov., a novelgammaproteobacterium isolated from a warm spring of Assam,India [J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55:1491-1495.
    [109] Remy D. Tadonleke. Brigitte LeBerre. Francois Perreau, Jean-Francois Humbert.Responses of lake bacterioplankton activities and composition to the herbicide diuron [J].Aquatic Toxicology, 2009? (94): 103 - 113.
    [110] Margarete Bauer, Michael Kube. Hanno Teeling. Michael Richter. et.al..Whole genomeanalysis of the marine Bacteroidetes "Gramella forsetii* reveals adaptations todegradation of polymeric organic matter[J]. Environmental Microbiology, 2006, 8(12):2201-2213
    [111] Fahy A., Ball A.S., Lethbridge G, Timmis K.N., McGenity T.J.. Isolation ofalkali-tolerant benzene-degrading bacteria from a contaminated aquifer [J]. Lett. Appl.Microbiol., 2008? (47): 60-66
    [112] Lambo A.J.. Patel T.R.. Biodegradation of polychlorinated biphenyls in Aroclor 1232and production of metabolites from 2. 4. 4"-trichlorobiphenyl at low temperature bypsychrotolerant Hydrogenophaga sp strain IA3-A [J]. J. Appl. Microbiol.. 2007, (102):1318-1329
    [113] Lambo A.J., Patel T.R.. Temperature-de pendent biotransformation of 2,4"-dichlorobiphenyl by psychrotolerant Hydrogenophaga strain IA3-A: highertemperatures prevent excess accumulation of problematic meta-cleavage products [J]. JAppl Microbiol. 2007? (44): 447-453
    [114] Gunji Y, Yasueda H.. Enhancement of L-lysine production in methylotrophMethylophilus methylotrophus by introducing a mutant LysE exporter [J]. J. Biotechnol..2006,(127):l-13
    [115] Schrader J.. Schilling M.. Holtmann D.. Sell D.. Villela Filho M., Marx A., Vorholt J..Methanol-based industrial biotechnology: current status and future perspectives ofmethylotrophic bacteria [J]. Trends. Biotechnol.. 2009? (27): 107-115
    [116]中华人民共和国石油天然气行业标准(SY/T 5119—1995).岩石可溶有机物和原油族组分柱层析分离方法[s]
    [117]孙培艳,周青,李光梅等.原油中多环芳烃内标法指纹分析[J].分析测试学报.2008,4(27):344-48
    [118]徐世平,孙永革.一种适用于沉积有机质族组分分离的微型柱色谱法[J].地球化学.2006,6(35):681-688
    [119] Cerniglia C.E., Van Baalen C, Gibson D.T.. Metabolism of naphthalene by thecyanobacterium Oscillatoria sp., strain JCM [J]. Journal of General Microbiology,1980, (116): 485-494
    [120] Cerniglia C.E., Van Baalen C.? Gibson D.T.. Oxidation of biphenyl by thecyanobacterium Oscillatoria sp., strain JCM [J].. .Archives of Microbiology. 1980, (125):203-207
    [121] Narro M.L., Ceniiglia C.E., Van Baalen C, Gibson D.T.. Metabolism of phenanthreneby the marine cyanobacterium Agmenellum quadruplicatum PR-6 [J]. Applied andEnvironmental Microbiology, 1992? (58): 1351-1359
    [122] Radwan S.S., Al-Hasan R.H.. Oil pollution and cyanobacteria [M]. In: B.A. Whitton.,M. Potts (ed.) The Ecology of Cyanobacteria, The Netherlands. Kluwer Academic. 2000,pp. 307-319.
    [123] Olga Sa'nchez, Isabel Ferrera, Nu* ria Vigue's, Tirso GarcT de Oteyzabjoan Grimalt.Jordi Mas. Role of cyanobacteria in oil biodegradation by microbial mats [J].International Biodeterioration & Biodegradation, 2006, (58): 186 - 195
    [124]陈晓鹏,易筱筠,党志,等.石油污染土壤中芘高效降解菌群的筛选及其降解特性研究[J].环境工程学报,2008,2(3):413-418
    [125]吴仁人,党志,易筱筠,等.氨基酸对烷烃降解菌GS3C降解性能的影响[J].环境科学研究,2009,22(6):702-706
    [126] Baraniecki C.A., Aislable J.. Foght J.M.. Characterization ofSphingomonas.sp. Ant17. an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil [J].Microbial. Ecol., 2002, (43): 44-54
    [127] Bartha R., Atlas R.M.. The microbiology of aquatic oil spills [J]. Appl Microbiol. 1977.(22): 225-266
    [128] Grifoll M.? Selifonov S.A., Gatlin C.V., Chapman P.J.. Actions of a versatilefluorine-degrading bacterial isolate on polycyclic aromatic compounds [J]. ApplEnviron Microbiol, 1995, (61):3711-3723
    [129] Kirk T.S., Ronald B., Stefan S.. Biodegradation of aromatic compounds by microalgae[J]. FEMS. Microbiol. Lett.. 1999? (170): 291-300
    [130] Britton L.N.. Microbial degradation of aliphatic hydrocarbons [M]. In: Gibson DT (ed)Microbial Degradation of Organic Compounds. NewYork: Marcel Dekker. 1984: 89-129
    [131] Morgan P.. Watkinson R.J.. Biodegradation of compounds of petroleum [M]. In:Ratledge C (ed). Biochemistry of Microbial Degradation. Dordrecht: Kluwer AcademicPublishers. 1994
    [132] Sugiura K., Ishihara M., Shimauchi T. H.S.. Physicochemical properties andbiodegradability of crude oil [J]. Environ. Sci. Technol., 1997, 31: 45- 51
    [133] Van Hamme J.D.. Singh A., Ward O.P.. Recent advances in petroleum microbiology[J].Microbiology and molecular biology, 2003, 67(4): 503-549
    [134] Harayama S.. Kishira H., Kasai Y., Shutsubo K.. Petroleum biodegradation in marineenvironments [J]. J.Molec.Micobiol.Biotechnol.. 1999.1(1): 63-70

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700