复合循环养殖系统氮磷的去除研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水产养殖的氮磷排放是重要的面源污染,既影响环境又影响自身,采取一定的水处理方法使养殖水循环利用的循环系统养殖方式是水产养殖业的发展方向。
     本文自主设计并建立了一个牙鲆循环养殖系统,包括鱼池,固体分离装置,硝化滤器,反硝化滤器和大型海藻滤器。该循环养殖系统连续运行130d,养殖密度2-10 kg/m2,鱼池进水氨态氮保持在0.2mg/L以下,亚硝酸态氮在0.2mg/L以下,硝酸态氮在5.0mg/L以下,磷酸盐磷在2.0mg/L以下,其余水质指标均达到养殖标准。本文通过测定水体中氨态氮浓度,研究了以塑料环、火山石和牡蛎壳为载体的硝化滤器生物膜熟化情况,实验条件下3种载体硝化滤器的最佳水力停留时间,并在此条件下的硝化滤器去除效率。结果表明:3种载体上生物膜的熟化时间约为25d。塑料环上异养菌和硝化菌量均为最高,牡蛎壳除磷效果最好。3种载体硝化滤器的最佳水力停留时间为20-30 min;在氮负载为1,3和5 mg/L时,3种载体的最高氨氮去除效率分别17.51,36.39和58.96 g/(m3·d)。以塑料环为载体组装成反硝化滤器,进行以海参残饵粪便为碳源的反硝化细菌挂膜实验,并分别以海参残饵粪便,甲醇和醋酸钠为碳源,在最佳碳氮比条件下比较了3种碳源的反硝化性能,探讨利用养殖生物残饵粪便作为反硝化碳源的可行性。实验结果表明:反硝化滤器以残饵粪便为碳源的挂膜时间为17d左右。3种碳源最佳TOC/N比值分别为0.40、7.5-9.0和6.0-8.0。其硝酸态氮的去除率分别为:24.50、25.99和28.26g/(m3·d),把残饵粪便作为碳源应用在生产中既降低成本,又能减少养殖废水的排放,保护环境,具有好的应用前景。大型海藻吸收氮磷,孔石莼、浒苔和角叉菜对氨氮的吸收可用一级动力学方程描述,吸收速率常数分别为:0.244/h、0.124/h、0.096/h。孔石莼和浒苔对氨氮的吸收分快速、平稳和缓慢吸收三个阶段。而角叉菜则开始较慢,随后加快,最后缓慢。3种海藻吸收硝酸态氮可用一级动力学方程描述。角叉菜对硝酸态氮吸收最好。3种海藻对硝酸态氮的吸收速率远低于氨氮。孔石莼和角叉菜对磷酸盐磷有吸收,浒苔对磷酸盐磷吸收不明显。
The emissions of nitrogen and phosphorus of aquaculture are serious area source pollution. The development of recirculation system for aquaculture wastewater is one of trends on aquaculture in the future.
     In this paper, an aquaculture recirculation system of Paralichthys olivaceus was designed and built, including fish tanks, solids/liquid separation system, nitrification and denitrification filter and algae filter. The aquaculture recirculation system run for 130 days, the concentration of ammonia, nitrite, nitrate and phosphorus of fish tanks were less than 0.2,0.2,5.0 and 2.0 mg/L during the system operation, respectively. The growth of biological membrane on the plastic ring, volcano stone and oysters shell which are used as biofilter media were discussed by determining the concentration of ammonia, nitrite and nitrate. The removal of ammonia was compared under the different hydraulic retention time. Ammonia removal rate were studied. The results showed that the maturation time of three types of filter media were about 25d. The quantity of heterotrophic bacteria and the nitrite bacteria were the highest, and the activity of the oxidation-reduction reaction on the plastic ring was the best of three types filter media. The optimal hydraulic retention time of three types of filter media was in the range of 20-30 min; The ammonia removal rate of three types of nitrification filter was 17.51, 36.39 and 58.96 g/(m3·d) when the load of nitrogen was 1.0 mg/L,3mg/L and 5mg/L, respectively. The plastic ring were used as media of denitrification filter, the growth of biological membrane for denitrification were studied with the carbon source of residual baits and dejects of the sea cucumber by determining the concentration of nitrate nitrogen and TOC (Total Organic Carbon). The effects of denitrification for different carbon source were also compared under the optimal TOC/N. The results showed that the maturation time of biological membrane was about 17d, the nitrate removal rate of three types of carbon source was 24.50,25.99 and 28.26 g/(m3·d), respectively. At the same time, the nutrient removal of Ulva.pertus, Enteromorpha prolifera and Chondrus ocellatus was discussed. The ammonium removal of three macro-algae is consistent with the first-order dynamics, and velocity constants were 0.244,0.124 and 0.09/h, respectively. The removal rate of ammonia is much higher than that of the nitrate and phosphorus.
引文
[1]刘长发,綦志仁,何洁等.环境友好的水产养殖业—零污水排放循环水产养殖系统.大连水产学院学报,2002,17(3):220-226.
    [2]http://finance.sina.com.cn/roll/2009-08-26/18536668284.shtml
    [3]单保田,王修林,赵中华等.海水工厂化养殖废水处理技术进展.海洋科学,2002,26(10):36-38.
    [4]Brix H. How "green" are aquaculture, constructed wetlands and conventional wastewater treatment systems. Water Science Technology,1999,40 (3):45-50.
    [5]Piedrahita R H. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture,2003,226:35-45.
    [6]Barak Y, Cytryn E, Gelfand I et al. Phosphorus removal in a marine prototype, recirculating aquaculture system. Aquaculture,2003,220:313-326.
    [7]Bergheim A, Usgurd T. Waste production from aquaculture. Aquaculture and water resource management. Cambridge:Blackwell Science Ltd,1996.50-80.
    [8]Fivelstad S, Thomassen J M, Smith M J et al. Metabolic production rates from Atlantic salmon (S almosalar L.) and arctic char (S alveli nus alpi nus L.) reared in single pass land-based brackish water and sea-water systems. Aquacultural Engineering,1990,9:1-21.
    [9]Kaw slky N, Evans S. Role of biodeposition by My tilus in the circulation of matter and nutrients in a Baltic coastal ecosystem. Marine Ecology Progress Series,1987,78:201-212.
    [10]Krom M D, Ellner S, Van R J et al. Nitrogen and phosphorus cycling and transform ationsin a prototype non-polluting integreted mariculture system. Marine Ecology Progress Series,1995, 118:25-36
    [12]山形阳一著,梅志平译.循环过滤设备的维护和管理.水产科技情报,1991,18(2):58-60
    [13]Wallin M, Hakason L. Nutrient loading models for estimating the environmental effects of marine fish farms.Makinen T C. Marine Aquaculture and Environment:vol.22. Nordic: Nordic council of ministers,1991:39-55.
    [14]Funge-Smith, Briggs M R P. Nutrient budgets in intensive shrimp ponds:Implications for sustain abifity. Aquaculture,1998,164(18):117-133
    [15]江志兵,曾江宁,陈全震等.大型海藻的富营养化海水养殖区的生物修复.海洋开发与管理,2006,4:57-61
    [16]Porter C B, Krom M D, Robbin M G. et al. Ammonia excretion and total N budget for Gilthead seabream and its effect on water quality conditions. Aquacltural Society,1991,3:15-23
    [17]Sineszko S F. The effects of environmental stress on outbreaks of infections diseases of Fishes. Journal of Fishery Biology.1974,6:197-208
    [18]Trust T J. Pathogenesis of infections dieases of fish. Ann. Rev. Microbio.,1986,40:479-502
    [19]Wedemever G. The role of stress in the deases resistance of fishes. Spec.Pub.Am.Fish Soc.1970,5:305
    [20]雷衍之.淡水养殖水化学.南宁:广西科学技术出版社,1993.
    [21]Yang H C,Chun S K. Histopathological study of acute toxicity of ammonia on common carp (Cyprinus carpio L.).Bull Korean Fish Soc,1986,19 (3):249-256.
    [22]Palackva J, Jirasek J, Paul A. The effect of sublethal ammonia concentration on selected physiological characteristics in carp (Cyprinus carpio L.). Zivocisna Vyrora,1986,31(10): 893-900.
    [23]Lang T, Peters G, Hoffman R,Meyer E1 Experimental investigations on the toxicity of ammonia:Effects on ventilation frequency growth epidermal mucous cells,and gill structure of rainbow trout (Salmo gai rdneri).Dis Aquatic Org,1987,3 (3):159-165
    [24]秦宗显译.集约养殖之水质要求.养鱼世界,1994:100-107.
    [25]叶元土.饲料投喂对养殖水域环境的影响与防治的探讨.饲料工业,1998,19(4):27-28.
    [26]葛国昌.海水鱼类增养殖学.青岛海洋大学出版社,1991:17-55.
    [27]Ball I R. The relative susceptibilities of some species of fresh water fish to poison.I Ammonia, Water Reseach,1967,1:767-775.
    [28]Herbert D W M, Shurben D G. A pre;iminary study of the effect of physical activity on the resistance of rainbow trout(salmo gairdneri Richardson) to two poisons.Annual applied. Biology,1963,52:321-326
    [29]Herbert D W M, Shurben D G. The susceptibility of salmonid fish to poisons under estuarine conditions. II.Ammonium chloride.Int.J.Air.Water Pollution,1965,9:89-91
    [30]Loyd L R, Orr D L. The diuretic response by rainbow trout to sublethal concentrations of Ammonia. Water Reseach,1969,3:335-344
    [31]里贝林,W.E等著,华鼎可等译.鱼类病理学.北京:农业出版社,1981.
    [32]Larmoyeux J D, Piper C R. Effects of water re-use on rainbow trout in batcheries.Prolg Fish Cult,1973.35:2-8
    [33]Smart G. The effect of ammonia exposure on gill structure of the rainbow trout(salmo Gairdnery). Fisher Biology,1976,8:471-475
    [34]章晨静.浅谈氨氮对养殖水体的影响.河北渔业.2002,3:49
    [35]G.L罗杰斯著,许苑丛译.四种水产养殖循环水生物滤器的去氨效果.水产科技情报,1987,14(4):23-27
    [36]王鸿泰,胡德高.池塘中亚硝酸盐对草鱼种的毒害及防治.水产学报,1989,13(3):207-213.
    [37]Hilmy A M. Acute and chroric toxicity of nitrite to Clarias lajera.Comp Biochem Phusio,1987,86(2):247-254.
    [38]余瑞兰,聂湘平,魏泰莉等.分子氦和亚硝酸盐对鱼类的危害及其对策的研究.中国水产科学,1999,6(3):73-77
    [39]魏泰莉,余瑞兰,聂湘平等.水中亚硝酸盐对彭泽鲫血红蛋白及高铁血红蛋白的影响.大连水产学院学报,2001,16(1):67-71
    [40]陈瑞明.铵态氮和亚硝酸盐氮对鳜鱼苗的急性毒性试验[J].水利渔业,1998,15(1):17-20
    [41]蓝伟光,陈霓.氮及亚硝酸盐对真鲷仔鱼的急性毒性研究[J].海洋科学,1991,(3):68-69
    [42]吴中华,刘昌彬,刘存仁等.中国对虾慢性亚硝酸盐和氨中毒的组织病理学研究.华中师范大学学报,1999,33(1):119-121
    [43]Wu W N, Guo L J, Lin H S et al. The analysis of shrimp maricultural water by factor analysis method. Environmental Monitoring in China,1998,14 (2):43-44
    [44]李志华,谢松,王维娜等.亚硝酸钠和多聚磷酸钠对日本沼虾的毒性研究.动物学杂志,2004,39(3):12-16
    [45]孙国铭,汤建华,仲霞铭.氨氮和亚硝酸氮对南美白对虾的毒性研究.水产养殖,20021:22-24
    [46]郭增华,王秋燕.亚硝酸盐氮对方斑东风螺毒性的研究.海洋水产研究,2006,27(6):88-92
    [47]谭烨辉,杨凤,雷衍之.总氨、亚硝酸氮及养鲍污水对皱纹盘鲍生长的影响.大连水产学院学报,2003,18(3):204-209
    [48]何望,杨品红,曾艳君.亚硝酸盐对河蟹蚤状幼体及蟹苗毒性试验.内陆水产,1999,(7):5-6.
    [49]杜守恩,水产养殖工程技术.青岛:青岛海洋大学出版社,1992:237-262.
    [50]Wheaton F W. Aquacultural engineering. John wiley & Sons Inc,1977.
    [51]徐崇仁.自动化超集约鳗鱼养殖管理..养殖世界,1997,(1):20-26.
    [52]彭自然,臧维玲,高杨等.氨和亚硝酸盐对凡纳滨对虾幼虾的毒性影响.上海水产大学学报,2004,13(3):274-278.
    [53]严方明译.海虾养殖的水质要求和管理.水产科技情报,1997,24(2):90-91;24(4)173-174.
    [54]丁永良.工业化养鱼技术改造刍仪.水产科技情报,1998,25(2):82-84.
    [55]訾乃涛,常巧玲.植酸酶在水产养殖中的应用研究.饲料研究,2005(4):53-55.
    [56]袁宇,朱京海,侯永顺等.辽东湾入海污染物调查及海域水质安全分析.中国安全科学学报,2008,18(2):12-16.
    [57]盖美,田成诗.辽宁沿海经济发展与近岸海域环境的关系研究.地域研究与开发,2007,26(6):60-64.
    [58]Krom M D, Neori A. A total nutrient budget for an experimental intensive fish pond with circularly moving seawater. Aquaculture,1989,88:345-358
    [59]Shpigel M, Neori A, Popper M D et al.A proposed model for "environmentally "clean" land-based culture of fish,bivalves and seaweeds. Aquaculture,1993,117:115-128
    [60]徐宁,吕颂辉,段舜山等.营养物质输入对赤潮发生的影响.海洋环境科学,2004.23(2):20-23
    [61]吴玉霖,周成旭,张永山等.烟台四十里湾海域红色裸甲藻赤潮发展过程及其成因.海洋与湖沼,2001,32(2):159-167.
    [62]Cripps S J. Minimizing outputs:treatment. Journal of Applied Ichthyology,1994,10(4): 284-294
    [63]Cripps S J, Asbj&rn B. Solids management and removal for intensive land-based aquaculture production systems. Aquacultural Engineering,2000,22:33-56.
    [64]Ebeling J M, Sibrell P L, Ogden S R et al. Evaluation of chemical coagulation flocculation aids for the removal of suspended solids and phosphorus from intensive recirculating aquaculture effluent discharge. Aquacultural Engineering,2003,29:23-42
    [65]罗国芝,谭洪新,施正峰等.泡沫分离技术在水产养殖中的应用.水产科技情报,1999,26(5):202-206
    [66]Dwivedy, Ramesh C. Removel of dissolved organics Through Foam Fractionation in Closed Cycle Systems for Oyster Production. American Society of Agricultural Engineers,1973,73:561
    [67]潘厚军.水处理技术在水产养殖中的应用.水产科技情报,2001,28(2):68-72.
    [68]Rossignol N, Vandanjon L, Jaouen P et al. Membrane technology for the continuous separation microalgae/culture medium:compared performances of cross-flow micro-filtration and ultra-filtration. Aquacultural Engineering,1999,20:191-208.
    [69]Viadero J R C, Noblet J A. Membrane filtration for removal of fine solids from aquaculture process water. Aquacultural Engineering,2002,26 (3):151-169.
    [70]Wheaton F W, Hochheimer J N, Kaiser G E et al. Nitrification filter principles. TIMMONSM B, LOSORDO TM. Aquaculture water reuse systems:engineering design and management. Amsterdam:Elsevier Science B V,1994:101-126
    [71]Grady J C P L, Daigger G T, Lim H C著,张锡辉,刘勇弟译.废水生物处理(第2版).北京:化学工业出版社,2003.
    [72]张自杰.排水工程.下册.北京:建筑工业出版社.1996
    [73]Wheaton F W, Hochheimer J N, Kaiser G E et al, Nitrification filter design methods. TIMMONSM B, LOSORDO TM.Aquaculture water reuse systems:engineering design and management. Amsterdam, Elsevier Science B V,1994:127-171.
    [74]Lekang O I, Kleppe H. Efficiency of nitrification in trickling filters using different filtermedia. Aquacultural Engineering,2000,21:181-199.
    [75]何洁,刘长发,张红霞.3种载体上生物膜的硝化性能.中国水产科学,2003,10(1):65-68.
    [76]Hagopian D S, Riley J G. A closer look at the bacteriology of nitrification. Aquacultural Engineering,1998,18:223-244.
    [77]Greiner A D, Timmonsm B. Evaluation of the nitrification rates of microbead and trickling filters in an intensive recirculating tilapia production facility. Aquacultural Engineering,1998, 18:189-200.
    [78]Zhu S, Chen S. Effects of organic carbon on nitrification rate in fixed film biofilters. Aquacultural Engineering,2001,25:1-11.
    [79]Sandu S I, Boardmqn G D, Watten B J. Factors influencing the nitrification efficiency of fluidized bed filterwith a plastic beadmedium. Aquacultural Engineering,2002,26:41-59.
    [80]战培荣,刘伟,卢玲等.净化育苗循环水生物流化床特性的研究.水产学报,1998,22(4):328-333.
    [81]Skjtrup J, Nielsen P H, Frier J O et al. Performance characteristics of fluidised bed biofilters in a novel laboratory-scale recirculation system for rainbow trout:nitrification rates, oxygen consump tion and sludge collection. Aquacultural Engineering,1998,18:265-276.
    [82]Zhu S, Chen S. An experimental study on nitrification biofilm performances using a series reactor system. Aquacultural Engineering,1999,20:245-259.
    [83]Sastry B N, Delosreyes J A A, Rusch K A et al. Nitrification performance of a bubble-washed bead filter for combined solidsremoval and biological filtration in a recirculating aquaculture system. Aquacultural Engineering,1999,19:105-117.
    [84]何洁,刘长发,吴钰.三种载体上生物膜硝化作用动力学初步研究.应用与环境生物学报,2003,9(5):546-548.
    [85]Suzuki Y, Maruyama T, Numata H et al. Performance of a closed recirculating system with foam separation, nitrification and denitrification units for intensive culture of eel:towards zero emission. Aquacultural Engineering,2003,29:165-182.
    [86]Carrera J, Jubany I, Carvallo L et al. Kinetic models for nitrification inhibition by ammonium and nitrite in a Suspended and an immobilized biomass system. Process Biochemistry,2004, 39:1159-1165.
    [87]Golz J, Rusch K A, Malone R F. Modeling the major limitations on nitrification in floating- bead filters. Aquacultural Engineering,1999,20:43-61.
    [88]Seo J K, Jung I H, Kim M R et al. Nitrification performance of nitrifiers immobilized in PVA (polyvinyl alcohol) for a marine recirculating aquarium system. Aquacultural Engineering, 2001,24:181-194.
    [89]Kim S K, Kong I, Lee B H et al. Removal of ammonium-N from a recirculation aquacultural system using an immobilized nitrifier. Aquacultural Engineering,2000,21:139-150.
    [90]Grguric G, Wetmore S S, Fournier R W. Biological denitrification in a closed seawater system. Chemosphere,2000,40:549-555.
    [91]Lee P G, Lea R N, Dohmann E, et al. Denitrification in aquaculture systems:an example of a fuzzy logic control problem. Aquaculture Engineering,2000,23:37-59.
    [92]Sauthier N, Grasmick A, lancheton J P. Biological denitrification app lied to a marine closed aquaculture system. Water Reseach,1998,32 (6):1932-1938.
    [93]Aboutboul Y, Arviv R, Vanrijn J. Anaerobic treatment of intensive fish culture effluents: volatile fatty acid mediated denitrification. Aquaculture,1995,133:21-32.
    [94]Menasveta P, Panritdam T, Sihanonth P et al. Design and function of a closed, recirculating seawater system with denitrification for the culture of black tiger shrimp broodstock. Aquacultural Engineering,2001,25:35-49.
    [95]陆轶峰.城市污水生物脱氮除磷常规工艺分析.云南环境科学.2002,21(1):47-49.
    [96]尹军,霍玉丰,焦畅等.生物脱氮技术研究进.吉林建筑工程学院学报.2006,23(3):12-15.
    [97]王宝贞,王琳.水污染治理新技术:新工艺,新概念,新理论.北京:科学出版社.2004,13-18.
    [98]曹国民,赵庆祥,张彤.单级生物脱氮技术的进展.中国给水排水.2000,16(2):20-24.
    [99]Verstraete P P. Nitrification-denitrification processes and technologies in new contexts. Environmental Pollution,1998,102:717-726.
    [100]白莉,杨云龙.生物脱氮新技术.科技情报开发与经济.2007,13(7):101-102.
    [101]常丽春,王凯军.污水生物脱氮的理论研究与工程应用新进展.城市管理与科技.2005,7(1):17-19.
    [102]Keeney D.R., The nitrogen cycle in sediment-water systems. Environ.Qual.1973,2:15-29.
    [103]Kang L, Kleppe H. Efficiency of nitrification intrickling filtersusing different filter media. Aquacultural Engineering,2000,21:181-199.
    [104]许保玖,龙腾锐.当代给水与废水处理原理.北京:高等教育出版社.2001,10(2):26-30.
    [105]徐斌.悬浮生物填料床处理微污染原水硝化试验研究.环境科学学报.2003,23(6):11-15.
    [106]王晋,马文林,齐嵘等.新型固定床生物膜反应器硝化性能的研究.环境污染治理技术 与设备.2001,2(1):90-92.
    [107]宋协法,曹涵,彭磊等.一种新型滤料在循环养殖水处理中的应用.环境工程学报,2007,1(12):27-31
    [108]蔡云龙,臧维玲,姚庆祯等.四种滤料去除氨氮的效果.上海水产大学学报,2005,14(2)138-142
    [109]张竹青,赵勇胜,赵晓波等.硝化载体选择试验研究.吉林地质.2005,24(4):100-104.
    [110]周利,刘凯,兰星等.多孔颗粒载体—膜生物反应器脱氮效果研究.资源开发与市场.2007,23(12):1061-1092.
    [111]刘飞,李小龙,赵强忠等.PVC纤维棉上生物膜的形成及其硝化性能研究.生态环境.2007,16(2):394-398.
    [112]齐素芳,余煜棉,赖子尼等.复合载体固定化硝化细菌去除水体中氨氮的研究.广东工业大学学报.2007,24(2):15-19.
    [113]刘雨,赵庆良,郑心灿.生物膜法污水处理技术.北京:中国建筑工业出版社.2000:128-158.
    [114]康春莉,郭晶,郭平等.自然水体生物膜有机组分对CA的吸附特征.生态环境.2005,14(5):636-639.
    [115]Fontenot, Qbonvil L C, Kilgen I M et al. Efects of temperature, salinity and carbon:nitrogen ratio on sequencing batch reactor treating shrimp aquaculture wastewater. Bioresource Technology.2007,98(9):1700-1703.
    [116]李红岩,张昱,高峰等.水力停留时间对活性污泥系统的硝化性能及其生物结构的影响.环境科学.2006,27(9):1862-1865.
    [117]董远湘,李小明,尹疆等.溶解氧对OLAND生物膜反应器硝化性能的影响及其微生物种群动态研究.环境污染与防治.2005,27(8):561-564.
    [118]杨莎莎,宋英豪,赵宗升等.pH值和碳氮比对亚硝酸型反硝化影响的研究.环境工程学报.2007,1(12):15-19.
    [119]陈庆选,李志荣,张振家.温度对两种固定化硝化菌硝化反应的影响.水资源保护,2007.23(1):80-83.
    [120]郑兰香,鞠兴华.温度和C/N比对生物膜反硝化速率的影响.工业安全与环保,2006,32(10):13-15.
    [121]阎宁,金雷标,张俊清.甲醇与葡萄糖为碳源在反硝化过程中的比较.上海师范大学学报(自然科学版),2002,31(3):41-44.
    [122]王丽丽,赵林,谭欣等.不同碳源及其碳氮比对反硝化过程的影响.环境保护科学.2005,2(12):24-27.
    [123]Lawson T B. Fundamentals of aquacultural engineering. Massachusetts. USA:Kluwer Academic Publishers.1995.192-196.
    [124]吴万夫,张荣权.渔业工程技术.郑州:河南科学技术出版社.2000,79-82
    [125]中国水产科学研究院东海水产研究所和北京自动化系统工程设计院(译).水产养殖工程.北京:农业出版社.1987:530-533.
    [126]朱学宝,谭洪新,罗国芝.封闭循环工厂化水产养殖---水质净化系统的技术构成.内陆水产.2000:25.
    [127]罗国芝,孙大川,冯是良等.闭合循环水产养殖系统生产过程中生物过滤器功能的形成.水产学报.2005,29(4):574-577.
    [128]冯志华,俞志明,刘鹰等.封闭循环海水育苗系统生物滤池的应用.中国环境科学.2004,23(3):350-354.
    [129]宋协法,黄志涛,彭磊.封闭循环水产养殖系统中三种生物滤池除氨氮效果的比较.渔业现代化.2007,(1):1-4.
    [130]战培荣,刘伟,曹广斌等.流化床生物滤器去除养鱼循环水中氨和亚硝酸盐的研究.农业环境科学学报.2007,26(1):81-87.
    [131]孙大川,罗国芝,谭洪新等.循环水工厂化养殖系统中浮球式生物滤器在不同工况下的水处理效果.上海水产大学学报.2005,14(4):390-296.
    [132]Neori A, Krom M D, Rijn J V. Biogeochemical processes in intensive zero-effluent marine fish culture with recirculating aerobic and anaerobic biofilters. Journal of Experimental Marine Biology and Ecology,2007,349(2):235-247.
    [133]Muangkeow B, Ikejima K, Powtongsook S et al. Effects of white shrimp, Litopenaeus vannamei (Boone), and Nile tilapia, Oreochromis niloticus L., stocking density on growth, nutrient conversion rate and economic return in integrated closed recirculation system. Aquaculture,2007,269(4):363-376.
    [134]Al-Hafedh Y S, Alam A, Alam M A. Performance of plastic biofilter media with different configuration in a water recirculation system for the culture of Nile tilapia(Oreochromis niloticus). Aquacultural Engineering,2003,29:139-154.
    [135]张俊新;刘长发;魏海峰等.水力负荷对处理海水和养殖废水的无纺布滤器性能的影响农业环境科学学报,2008,27(1):323-326.
    [136]Ellner S, Neoria, Krom M D et al. Simulation model of recirculatingmariculture with seaweed biofilter:development and experimental tests of the model. Aquaculture,1996,143:167-184.
    [137]Chopin T, Buschmann A H, Halling C et al. Integrating seaweeds into marine aquaculture systems:a key toward sustainability. Journal of Phycology,2001,37:975-986.
    [138]刘长发,张泽宇,雷衍之.盐度、光照和营养盐对孔石莼Ulva pertusa光合作用的影响.生态学报,2001,21(5):795-798
    [139]Evans F, Langdon C J. Co-culture of dulse Palm aria m ollis and red abalone Haliotis rufescens under limited flow conditions. Aquaculture,2000,185:137-158.
    [140]Tamn F Y, Wong Y S. Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environmental Pollution,2000,107:145-151.
    [141]Pfeiffer T J, Rusch K A. An integrated system for microalgal and nursery seed clam culture. Aquacultural Engineering,2000,24:15-31.
    [142]Wang J K. Conceptual design of a microalgae-based recirculating oyster and shrimp system. Aquaculture Engineering,2003,28:37-46.
    [143]李志勇,郭祀远,李琳等.藻类富集微量元素的机理研究.华南理工大学学报(自然科学版).1998,26(2):33-37.
    [144]曲克明,卜雪峰,马绍赛.贝藻处理工厂化养殖废水的研究.海洋水产研究.2006,27(4):36-43.
    [145]李文权,郑爱榕,王宪等.环境因子对高盒形藻生长及其生化组成的影响.海洋学报,1996,18(2):50-57.
    [146]李秀辰,崔引安,雷衍之.主要环境因子对孔石莼净水作用的影响(Ⅰ)对氨氮吸收的影响.农业工程学报.1997,13:192-196.
    [147]Lopes P F, Oliveira M C, Colepicolo P. Diurnal fluctuation NR activity in the marine red algae Gracilaria tenustip itata. Journal of Phycology,1997,33:225-231.
    [148]Lopoibte B E, Dawes C J, Tebire K R. Interaction between light and temperature on the physiological ecology of Gracilaria tikvahiae:NO3- uptake and levels of pigments and chemical constituents. Marine Biology,1984,80:171-178.
    [149]Lomas M W, Glibert P M. Interaction between NH4+ and NO3- uptake and assimitation: Comparison of diatoms and dinoflagellates at several growth temperature. Marine Biology. 1999,541-551.
    [150]Pasciak W J, Gavis J. Transport limitation of nutrient uptake in phytoplankton. Limnology Oceanography,1974,19:881-888.
    [151]Thomas T E, Turpin D H, Harrison P J. Desiccation enhanced nitrogen uptake rates in intertribal seaweed. Marine Biology,1987,94:293-298
    [152]Pederson M F, Palinge I, Walker D I, et al. Nitrogen uptake and allocation in the seagrass A mphibolis Antarctica. Aquatic Botany,1997,56:105-117.
    [153]许忠能,林小涛,林继辉,等.营养盐因子对细基江蓠繁枝变种氮、磷吸收速率的影响.生态学报,2002,22(3):366-374.
    [154]Thoreson S S. The effect of short-term fluctuation pH on NO3- uptake and intracellular constituents in skeletonema costatum. Journal of Experimental Marine Ecology,1984,83:149-157.
    [155]Duke C S, Litaker W, Ramus J. Effect of temperature, N supply, and tissue N on ammonium uptake rates of the Ulva curuata and Codium decorticatum. Journal of Phycology,1989, 25:113-120.
    [156]Fujita R M. Metabolic regulation of ammonium uptake by Ulva rigida:a compartmental analysis of the fate-limiting step for uptake. Journal of Phycology,1988,24:560-566
    [157]Hwang S P L, Williams S L, Brinkhuis B H. Changes in internal dissolved nitrogen pools as related to nitrate uptake and assimilation in Gracilaria tikvaniae M clachlan. Botany Marine, 1987,30:11-19
    [158]Thomas T E, Harrison P J. Effects of supply on N uptake, accumulation and assimilation on Porphyra perforate. Marine Biology,1985,85:269-278.
    [159]Harrison P J, Parslow J S, Conway, H L et al. Determination of nutrient uptake kinetic parameters:a comparison of methods. Marine Ecology Progress Series,1989,52:301-312.
    [160]Hein M, Pedersen M F, Jensen K S. Size-dependent nitrogen uptake in micro-and macroalgae. Marine Ecology Progress Series,1995,118:247-253.
    [161]Pedersen M F, Borum J. Nutrient control of estuarine macroalgae:growth strategy and the balance between nitrogen requirements and uptake. Mar Eco Prlg Ser,1997,161:155-163.
    [162]Oswald W J, Gotass H B. Photosynthesis in sewage treatment. Trans. Am. Soc. Clv. Eng., 1957,122(1):73-105,
    [163]Balloni W, Shelet G. Algae Biomass. Amsterdam:Elsevier/North Holland Biomedical Press, 1980:217-222.
    [164]许春华,周琪.高效藻类塘的研究与应用.环境保护,2001,8:5-8
    [165]Parker H S. Influence of relative water motion on the growth, ammonium uptake and carbon composition of Ulva lactuca (chlorophyta). Marine Biology,1981,63:309-318
    [166]Ryther J H, Corwin N, Debusk T A et al. Nitrogen uptake by the red algae Gracilaria tikvahiae. Aquaculture,1981,26:107-115
    [167]Debusk T A, Blakeslee M, Ryther J H. Studies on the outdoor cultivation of Ulva lactuca. Journal of Botany Marine,1986,24:381-386.
    [168]Rosenberg G, Probyn T A, Mann K H. Nutrient uptake and growth kinetics in brown seaweeds:response to continuous and single additions of ammonium. Experimental Marine Biology Ecology,1984,80:125-146.
    [169]Fujita R M. The role of N status in regulating transient ammonium uptake and N storage by macroalgae. Experimental Marine Biology Ecology,1985,92:283-301.
    [170]Noue D L, Laliberte G J, Pronlx D. Algae and wastewater. Journal of Applied Phycology, 1992,15(4):247-254.
    [171]Rees T A V, Grant C M, Harmens H E et al. Measuring rates of ammonium assimilation in marine algae:Use of the protonophore carbonyl cyanide m2chlorophenylhydrazone to distinguish between uptake and assimilation. Journal of Phycology,1998,34:264-272.
    [172]岳维忠,黄小平,黄良民等.大型藻类净化养殖水体的初步研究.海洋环境科学.2004,23(1):13-15.
    [173]黄道建,黄小平,岳维忠.大型海藻体内TN和TP含量及其对近海环境修复的意义.台湾海峡.2005,24(3):316-321.
    [174]钱鲁闽,徐永健,王永胜.营养盐因子对龙须菜和菊花江蓠氮磷吸收速率的影响.台湾海峡.2005,24(4):546-551.
    [175]李飞,邢丽贞,闫春玲,等.环境因素对微藻去除氮磷的影响.山东建筑工程学院学报.2006,21(3):268-272.
    [176]王悠,俞志明,宋秀贤,等.大型海藻与赤潮微藻以及赤潮微藻之间的相互作用研究.环境科学,2006,27(2):274-280.
    [177]Flower E M, Margareth S K, Dotto S. The performance of the seaweed Ulva reticulata as a biofilter in a low-tech, low-cost, gravity generated water flow regime in Zanzibar Tanzania. Aquaculture,2006,254:284-292.
    [178]泮进明,苗香雯,崔绍荣等.工厂化水产养殖污水处理的植物性滤器研究及应用.水利渔业.2003,23(5):43-45.
    [179]沈根祥,朱荫湄,雷萍.藻类净化含氮磷有机污水及其利用研究进展.农业环境保护,2009,20(5):382-384.
    [180]Tam N F Y. Algal growth and nutrient removal in HongKong domestic waste water. Environmental Pollution,1989,58:19.
    [181]Diver S. Aquaponics-integration of hydroponicswith aquaculture[J/OL]. http://www. attra. ncat.org,2000.
    [182]Adler P R, Summerfelt S T, Glenn D M, et al. Mechanistic app roach to phytore mediation of water. Ecological Engineering,2003,20 (3):251-264.
    [183]Seawright D E, Stichney R R, Walker R B. Nutrient dynamics in integrated aquaculture-hydroponics systems. Aquaculture,1998,160:215-237.
    [184]张士良,刘鹰.水培番茄对甲鱼养殖废水的净化和滤清.农业环境保护,2002,21(2):171-172,182.
    [185]邵志鹏,苗香雯,崔绍荣.水产养殖系统中多花黑麦草生物过滤效果研究.上海交通大学学报(农业科学版),2002,20(4):317-321.
    [186]Ghate S R, Burtle G J, Vellid I G, et al. Effectiveness of grass strip s to filter catfish (Ictalurus punctatus) pond effluent. Aquacultual Engineering,1997,16:149-159
    [187]刘东阁,孙爱花,谢文.人工湿地污水处理技术研究综述.山东林业科技,2009,4:124-128.
    [188]Tilley D R, Badrinarayanan H, Rosati R et al. Constructed wetlands as recirculation filters in large-scale shrimp aquaculture. Aquacultural Engineering,2002,26:81-109.
    [189]Lin Y F, Jing S R, Lee D Y et al. Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture,2002,209:169-184.
    [190]Lin Y F, Jing S R, Lee D Y. The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture. Environmental Pollution,2003,123:107-113.
    [191]Michael J J H. Nutrients in salmon hatchery wastewater and its removal through the use of a wetland constructed to treat off-line settling pond effluent. Aquaculture,2003,226:213-225.
    [192]Halide H, Ridd P V, Peterson E L et al. Assessing sediment removal capacity of vegetated and non-vegetated settling ponds in prawn farms. Aquacultural Engineering,2003,27 (4):295-314.
    [193]Bullock G L, SummerfelT S T, Noble A C et al. Ozonation of a recirculating rainbow trout culture system:I. Effects on bacterial gill disease and heterotrophic bacteria. Aquaculture,1997, 158:43-55.
    [194]Suantika G, Dhert P, Rombaut G et al. The use of ozone in a high density recirculation system for rotifers. Aquaculture,2001,201:35-49.
    [195]Summerfelt S T. Ozonation and UV irradiation an introduction and examples of current application. Aquacultural Engineering,2003,28:21-36.
    [196]Krumins V, Ebeling J, Wheaton F. Part-day ozonation for nitrogen and organic carbon control in recirculating aquaculture systems. Aquacultural Engineering,2001,24:231-241.
    [197]Summerfelt S T, Hankins J A, Weber A L et al. Ozonation of a recirculating rainbow trout culture system:Ⅱ. Effects on micro screen filtration and water quality. Aquaculture,1997,158: 57-67.
    [198]Edwards M, Boller M, Benjamin M. Effect of pre-ozonation on removal of organic matter during water treatment plant operations. Water Science Technology,1993,27 (11):37-45
    [199]Krumins V, Ebeling J, Wheaton F. Ozoneps effects on power-law particle size distribution in recirculating aquaculture systems. Aquacultural Engineering,2001,25:13-24.
    [200]Tango M S, Gagnon G A. Impact of ozonation on water quality in marine recirculation systems. Aquacultural Engineering,2003,29:125-137.
    [201]Hunter G L, Opbrien W J, Hulsey R A et al. Emerging disinfection technologies:medium-p ressure ultraviolet lamp s and other systems are considered forwastewater app lications. Water Environment and Technology,1998,10 (6):40-44.
    [202]何绪文,龚彦宇,王培等.电化学法用于微污染水脱氮处理实验.环境工程,2009,27(1):5-7.
    [203]Lin S H, Wu C L. Electrochemical removal of nitrite and ammonia for aquaculture. Water Research,1996,30(3):715-721.
    [204]Antonio Tovar A, Carlos Moreno, Manuel P. M. Environmental impacts of intensive aquaculture in marine water. Water Research,2000,34 (1):334-342.
    [205]Blancheton J P, Coves D. Closed systems in intensive marine finfish hatcheries. State of the art and the future prospects. Bordeaux Aquaculture,2002,92:25-27.
    [206]Christopher J J, Nigel P, Michele A B. Managing the development of sustainable shrimp farming in Australia:the role of sedimentation ponds in treatment of farm discharge water. Aquaculture,2003,226 (124):23-34
    [207]Schuenhoff A, Shpigel M. Ingrid L. A semirecirculating, integrated system for t he culture of fish and seaweed. Aquaculture,2003,221 (124):167-181.
    [208]Twarowska J G, Westerman, P W. Losordo T M.Water treatment and waste characterization evaluation of an intensive recirculating fish production system. Aquacultural Engineering. 1997,16,133-147.
    [209]丁永良,胡伯诚,孙家骇等.关于工业化养鱼设施与技术的探讨.现代渔业信息,1998,13(1):11-16.
    [210]Muki S, Amir N, Dan M P et al. A proposed model for "environmentally clean" land-based culture of fish.bivalves and seaweeds. Aquaculture,1993,117:115-128.
    [211]Yoshihiro S, Tohiroh M, Hiroyuki N et al. Performance of a closed recirculating system with foam separation, nitrification and denitrification units for intensive culture of eel:towards zero emission. Aquacultural Engineering,2003,29:1652182.
    [212]Neori A, Krom D M, Ellner P S. Seaweed biofilters as regulators of water quality in integrated fish seaweed culture units. Aquaculture,1996,141 (324):183-198.
    [213]Troell M, Ronnback P, Halling C. Ecological engineering in aquaculture use of seaweeds for removing nut rient s from intensive mari-culture. Journal of Applied Phycology,1999,11: 89-97.
    [214]Jaw-Kai W. Conceptual design of a microalgae-based recirculating oyster and shrimp system. Aquacultural Engineering.2003,28(1-2):37-46.
    [215]Chuntapa B, Powtongsook S, Menasveta P. Water quality control using S pi rul ina platensis in shrimp culturetanks. Aquaculture,2003,220 (1-4):355-366
    [216]Brown J J, Edward P G, Kevin M F. Halophytes for the treatment of saline aquaculture effluent. Aquaculture,1999,175 (3-4):255-268
    [217]Forni C, Chen J, Tancioni L. Evaluation of the fern Azolla for growth, nitrogen and phosphorus removal from wastewater. Water Research,2001,35 (6):1592-1598
    [218]吴凡,刘晃,宿墨.工厂化循环水养殖的发展现状与趋势.科学养鱼,2008(9):72-74
    [219]陈军,徐皓,倪琦等.我国工厂化循环水养殖发展研究报告.渔业现代化,2009,36(4):1-7
    [220]李秋芬,袁有宪.海水养殖环境生物修复技术研究展望.中国水产科学,2000,7(2):90- 92.
    [221]莫照兰,王祥红,俞勇等.虾池有机污染物降解细菌的筛选.水产学报,2000,24(4):334-338.
    [222]俞勇,李会荣,李筠.虾池养殖环境有机污染物降解细菌的筛选.青岛海洋大学报,2003,33(1):65-70.
    [223]孙舰军,丁美丽.改善虾池环境增加中国对虾抗病力的研究.海洋科学,1999,(1):3-5.
    [224]徐宾铎,杜守恩,朱杰,等.海水工厂化养鱼排污水处理的实验研究与工程设计.海洋湖沼通报,2001,3:70-77.
    [225]江伟,江远清.生物转盘处理水产养殖废水的氨氮研究.北京水产,2002,3:12-13
    [226]姜国华,全封闭循环流水式高密度养殖罗非鱼.渔业机械仪器,1994,21(3):15-16.
    [227]马悦欣,许兵玲,何洁等.牙鲆自净式养殖槽中异养细菌和硝化细菌数量及消化速率.中国水产科学,2001,8(1):33-36.
    [228]谭洪新,朱学宝,罗国芝.闭合循环养殖系统中构建藻皮净化装置的初步研究.上海水产大学学报,2001,10(3):276-278.
    [229]朱建新,曲克明,杜守恩等.海水鱼类工厂化养殖循环水处理系统研究现状与展望.科学养鱼,2009,5:3-4.
    [230]常忠岳,胡志伟.影响工厂化养殖牙鲆生长及成活的因素.科学养鱼,2000,7:26-27.
    [231]张兆琪,张美昭,李吉清,等.牙鲆鱼耗氧率、氮排泄率与体重及温度的关系.青岛海洋大学学报.1997,27(4):483-489.
    [232]姜志强,赵祥东,王国祖.不同盐度下牙鲆幼鱼存活、生长和摄食的研究.大连水产学院学报,2002,2:1-5
    [233]刘慧,朱建新.影响牙鲆幼鱼摄食的环境因素实验研究.海洋科学,1994,6:64-67
    [234]张起信.牙鲆工厂化养殖的几个问题.海洋科学,1995,4:28-30.
    [235]线薇薇,朱鑫华.摄食水平对褐牙鲆幼鱼生长影响的初步研究[J].青岛海洋大学学,2000,30(3):453-458.
    [236]线薇薇,朱鑫华.摄食水平对褐牙鲆幼鱼能量收支的影响[J].青岛海洋大学学,2001,31(5):695-700.
    [237]Losordo T.M, Westers H. System carrying capacity and flow estimation. AQUACULTURE WATER REUSE SYSTEMS. Engineering Design And Management,1994:9-60.
    [238]雷衍之,藏维玲,刘长发等.养殖水环境化学.北京:中国农业出版社,2004
    [239]Arbiv R, Rijn J V. Performance of a treatment system for inorganic nitrogen removal in intensive aquaculture systems. Aquacultural Engineering,1995,14:189-203.
    [240]刘晃,陈军,倪琦等.基于物质平衡的循环水养殖系统设计.农业工程学报, 2009,25(2):161-166
    [241]Shnel N, Barak Y et.al. Design and performance of a zero-discharge tilapia recirculating system. Aquacultural Engineering.2002,26:191-203.
    [242]何洁,姜志强,张弼等.牙鲆自净式工厂化生产性养殖的水质研究.大连水产学院学报.2001,16(3):188-193.
    [243]张明.硝化细菌应用技术研究:(博士学位论文).上海:华东师范大学.2003
    [244]高廷耀,顾国维主编.水污染控制工程,下册(第二版).北京:高等教育出版社.1999.
    [245]崔玉川,刘振江,张绍怡等.城市污水厂处理设施设计计算.北京:化学工业出版社.2004.
    [246]《室外排水设计规范》,GBJ14-87,1997.
    [247]褚良银,陈文梅,等.水力旋流器.北京:化学工业出版社,1998
    [248]黄珏.硝化细菌的分离和鉴定.水产科技情报,2004,31(3):130-134.
    [249]菊池弘太郎著,朱永良译.高效率鱼类生产的水质净化技术—利用微生物净化氨.国外水产,1990,(4):33-37.
    [250]张一波,诸葛斌,邹华等.水体污染指示微生物的初步研究.安徽农业科学,2009,37(20):9621-9623.
    [251]连晋.水产养殖水体好氧同时硝化—反硝化脱氮的研究.山西大学学报(自然科学版),2005,28(3):328-333.
    [252]郑元景,沈光范,邬扬善.生物膜法处理污水.北京:中国建筑工业出版社,1983
    [253]马悦欣,刘长发,邵华等.两种载体生物膜中异养细菌数量动态及其氨化作用.大连水产学院学报,2004,19(2):138-141.
    [254]刘慧慧,薛超波.滩涂贝类养殖环境的细菌分布.生态学报,2008,28(1):436-444.
    [255]王伟宁.固定化硝化细菌对氨氮的去除.广西轻工业,2007,7(7):86-87
    [256]汪晓军,张洁敏,何翠萍.表面亲水性塑料填料在好氧处理中的应用.上海环境科学,2003,22(4):269-271,282
    [257]Maurer M, Abrmovich D, Siegrist H et al. Kinetics of biologically induced phosphorus precipitation in water treatment. Water Research,1993,33 (2):484-493
    [258]熊小京,黄智贤,景有海等.牡蛎壳填料浸没式生物滤池的除磷特性.环境污染与防治,2003,25(6):329-331
    [259]Pujol R, Lemmel H, Gousailles M. A key point of nitrification in an up flow biofilt ration reactor. Water Science and Technology,1998,38(3):43-49.
    [260]Hellinga C, Schellen J C, Mulder J W et al. The Sharon process:an innovative method for nitrogen removal from ammonium to rich wastewater. Water Science and Technology,1998, 37(9):135-142
    [261]石芳永,宋奔奔,傅松哲等.竹子填料海水曝气生物滤器除氮性能和硝化细菌群落变化 研究.渔业科学进展,2009,30(1):92-96.
    [262]王华,刘长发,秦传新.用火山石载体生物膜和角叉菜去除水中氮和磷的效果.大连水产学院学报,2007,22(6):421-425.
    [263]张美昭,张兆琪,郑春波等.牙鲆幼鱼能量代谢的初步研究.中国水产科学,1999,6(1):75-78.
    [264]康媞,林铁.溶解氧对硝化反硝化反应的影响.贵州环保科技.2006,9(3):13-16.
    [265]高景峰,彭永臻,王淑莹.有机碳源对低碳氮比生活污水好氧脱氮的影响.安全与环境学报.2005,5(6):11-15.
    [266]李军,杨秀山,彭永臻.微生物与水处理工程.北京:化学工业出版社.2003,3:291-301
    [267]陈清艳,胡群义.亚硝酸氮积累的影响因素.安徽化工.2003,5:38-39.
    [268]梁境.低溶解氧对活性污泥系统降解有机物和脱氮性能的影响.贵州环保科技.2002,8(4):5-10.
    [269]Chiu Y C, Chung M S. Determination of optimal COD/nitrate ratio for biological denitrification. International Biodeterioration & Biodegradation.2003,51:43-49.
    [270]Labelle M A, Juteau P, Jolicoeur M et al. Seawater denitrification in a closed mesocosm by a subme-rged moving bed biofilm reactor. Water Research,2005,35:3409-3417.
    [271]周海红,王建龙,赵璇.pH对以PBS为反硝化碳源和生物膜载体去除饮用水源水中硝酸盐的影响.环境科学.2006,27(2):67-71.
    [272]李鱼,刘金凤,董德明等.自然水体生物膜上有机质COD与TOC之间的比例关系.科学技术与工程.2003,(5):479-481.
    [273]苏秀榕,李太武,常少杰.孔石莼营养成份的研究.中国海洋药物.1997,61(1):33-39.
    [274]苏乔,栾日孝,安利佳,等.中国角叉菜属(Chondrus)的分类研究:形态观察和rbcL序列分析.植物研究.2002,22(1):10-18.
    [275]周革非,徐坤,赵增芹,等.气象色谱-质谱联用法分析角叉菜中的化学成分.中国海洋药物.2004,4:11-13.
    [276]栾日孝,张淑梅.大连角叉菜属(杉藻科)的研究.植物分类学报.1998,36(3):268-272.
    [277]吴洪喜,徐爱光,吴美宁.浒苔实验生态的初步研究[J].浙江海洋学院学报(自然科学版).2000,19(3):230-234.
    [278]吉宏武,赵素芬.南海3种可食绿藻化学成分及其营养评价.湛江海洋大学学报.2005,25(3):19-23.
    [279]李秀辰,张国琛,崔引安,等孔石莼对养鲍污水的静态净化研究.农业工程学报,1998,14(1):173-176
    [280]Gao K Y, Aruga K A, Kiyohara M. Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. And G. chilensis. Journal of Applied phycology.1993,5:563-571.
    [281]Pedersen M F. Transient ammonium uptake in the Macroalga (chlorophyta):Nature, regulation, and the consequences for choice of measuring technique. Journal of Phycology.1994,30:989-986.
    [282]Mcglathery K J. Changes in intracellular nitrogen pools and feedback controls on nitrogen uptake in Choeiomopha linum. Jounal of Phycology,1996,31:393-401.
    [283]刘靖雯,董双林.氮饥饿细基江蓠繁枝变型和孔石莼氨氮的吸收动力学特征.海洋学报.2004,26(2):95-102.
    [284]Lean D R S, Pick F R. Photosynthetic response of lake plankton to nutrient enrichment:a test for nutrient limitation. Limnology Oceanography,1981,26:1001-1019
    [285]Yao N Y. Physiology of algae. Dalian:Dalian Science and Engineering University Publication, 1987:267-287
    [286]Arzul G, Seguel M, Clement A. Effect of marine animal excretions on differential growth of phytoplankton species. Marine Science,2001,58:386-390.
    [287]Collos Y, Vaquer A, Bibent B et al. Response of coastal phytoplankton to ammonium and nitrate pulses:seasonal variations of nitrogen uptake and regeneration. Aquatic Ecology,2003, 37:227-236.
    [288]Kazimierz M, Magdalena P J, Krystyna L G et al. Studies on the Purification of Wastewater for the Nitrogen Fertilize Industry by Intensive Algal Cultures II. Removal of Nitrogen from the Wastewater. Acta Microbiologica,1976,25(4):361-374.
    [289]Flynn K J. Algal carbon nitrogen metabolism:A biochemical basis for modeling the interactions between nitrate and ammonium uptake [J]. Journal of Plankton Research,1991, 13(2):373-387.
    [290]Przytocka-Jusiak M, Duszota M, Matusiak K. Intensive culture of Chlorella vulgaris/AA as the second stage of biological purification of nitrogen industry wastewater. Water Research,1984, 18:1-15
    [291]Maestrin S Y, Robert J M, Leftley J W et al Ammonium thresholds for simultaneous uptake of ammonium and nitrate by oyster-pond algae. Journal of Experimental Marine Biology Ecology,1986,102:75-98.
    [292]Azov Y, Goldman J C. Free Ammonia Inhibition of Algal Photosynthesis in Intensive Cultures. Appl Environmental Microbiology,1982,43:735-742.
    [293]张诚,邹景忠.尖刺拟菱形藻氮磷吸收动力学以及氮磷限制下的增殖特征.海洋和湖沼.1997,28(6):599-603.
    [294]Lundberg P, Weich RG, Jansen P et al.31 Pand 14NNMR studies of the Uptake of phosphorus and nitrogen compounds in the marine macroalgae Ulval lactuca. Plant Phusiol,1989,89:1380 -1387.
    [295]洪华生,戴民汉.厦门港浮游植物对磷酸盐吸收速率的研究.海洋与湖沼.1994,25(1):54-59.
    [296]沈根祥,朱荫湄,雷萍.藻类净化含氮磷有机污水及其利用研究进展.农业环境保护,2001,20(5):382-384
    [297]Paraons T R.Biological Oceanographic Processes. Oxford:Pergamon Press,1984:112-118.
    [298]Brinkhuis B H. Nitrite uptake transients and consequences for in vivo algal nitrate reductase assays. Journal of Phycology,1989,25:539-545.
    [299]董双林、刘静雯.海藻营养代谢研究进展——海藻营养代谢的调节.青岛海洋大学学报(自然科学版),2001,(01):21-28.
    [300]张学成,秦松.藻类遗传学.北京:中国农业出版社2004.
    [301]何利君,谢小军,艾庆辉.饲喂频率对南方鲇的摄食率、生长和饲料转化效率的影响.水生生物学报,2003,27(4):434-436.
    [302]崔奕波.鱼类生物能量学的理论与方法.水生生物学报.1989,13(4):369-381.
    [303]Falkowski P G. Enzymology of Nitrogen Assimilation [A]. Nitrogen in the Marine Environment. New York:Academic Press Inc.1983.
    [304]Brett J R,Groves J D D. Physiological energetics In fish physiology. London Academic Press,1979, VOLVIII:279-352
    [305]Beamish E W H, Thomas E. Effects of dietary protein and lipid on nitrogen lesses in Rain-bow trout,salmo garidneri.Aquacultrue,1984,(4):359-373
    [306]苏柯,张和森.封闭式循环海水系统大菱鲆高密度养殖研究.渔业现代化.2003,5:9-12
    [307]苗淑彦,王际英,张利民,等.水产动物残饵及粪便对养殖水环境的影响.饲料研究,2009,2:64-67
    [308]梁程超,赵海鹰,陈少鹏等.牙鲆闭路循环养殖的日常水质管理.齐鲁鱼业,2003,20(10):11-12
    [309]华元渝,胡传林.鱼种重量与长度相关公式(W=aLb)的生物学意义及其运用.中国鱼类学会鱼类学论文集(第一辑).北京:科学出版社,1981,125-131
    [310]Moe M A Jr. The Marine Aquarium Reference:Systems and Invertebrates. Plantation:Green Turtle Publications,1993,510
    [311]王志敏,于学权.工厂化内循环海水鱼类养殖水质净化技术.渔业现代化,2006,4:14-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700