固定化藻类去除污水中氮磷及其机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过大量的藻类生长特性实验、藻类对氮磷去除实验及其结果分析,得出了适宜城市污水氮磷营养物质去除的优良藻种及相应的固定化方法。
     研究发现,褐藻胶微观结构具有四通八达的网络通道,褐藻胶基质把细胞粘附在基质表面,这种网络结构十分有利于胶球内小球藻对氮磷营养物质的吸收。胶球内藻细胞密度越高,氮磷的去除率越高,胶球接种为高密度时,3d的NH_4~+-N、PO_4~(3-)-P的去除率分别达91.2%和100%。对固定化胶球进行加固处理后,可使胶球最大细胞密度比未加固处理提高近2倍,加固措施对克服褐藻胶在含磷污水中结构易疏松、小球藻易泄漏等问题是有效的,显著改善了固定化性能,进一步提高了氮磷的去除效率。鞘丝藻附着固定化的静态实验表明,鞘丝藻在氮磷比为10∶1、中等填料密度、生物量1.0g/L、饥饿2天的条件下对氮磷的去除效果最好。动态实验表明,鞘丝藻和颤藻附着固定化系统在水力停留时间为3d的情况下,NH_4~+-N、PO_4~(3-)-P的平均去除率分别达85.9%、68.5%。出水溶解氧含量高,水质大大改善。这些结果展示了固定化藻类在污水脱氮除磷方面的潜在应用前景。
     固定化小球藻对氮磷的去除包括了褐藻胶的初期吸附、氮磷营养的传质、藻细胞对氮磷的吸收同化以及由于pH值升高引起的氨的气提和磷酸盐的沉淀。固定化小球藻对不同氮源吸收能力不同,其吸收的顺序为:氨氮>简单有机氮>硝态氮和亚硝态氮。在同等条件下,小球藻对不同磷的去除顺序则为:正磷酸盐>>偏磷酸盐>聚磷酸盐>>有机磷酸盐。
     藻类包埋固定化与附着固定化相比较,包埋固定化去除氮磷的效率更高,藻类更易收获。附着固定化则更具有工程可操作性。
     本文还对固定化藻类脱氮除磷机理进行了初步探讨,为固定化藻类去除污水中的氮磷物质提供了理论依据。
Via a series of experiments on algae growth characteristics and removal of nitrogen and phosphorus, together with analysis of the experimental results, proper algae species and reasonable methods of immobilization is presented in this dissertation.During the investigations, the author found that the micro-structure in the carrier of consists of complex network channels. The algae cells are attached to the surface of algin. This kind of network structure is very helpful for the absorption of nutrition with nitrogen and phosphorus by the algae cells. The removal efficiency of nitrogen and phosphorus in wastewater was directly proportional to the holding capacity of algae cells in alginate balls. With high inoculating density of the immobilized Chlorella, the experiments got removal efficiency of 91.2% and 100% for NH_4~+-N and PO_4~(3-)-P respectively, in 3 days. After reharding, the maximum holding capacity was almost doubled than that of the system without reharding. The method of immobilization with reharding is effective to solve the problem that the balls loose their integrity and the algaes cells leach easily in the wastewater with phosphate. Therefore, the characteristics of immobilized balls and the removal efficiency for NH_4~+-N and PO_4~(3-)-P were greatly improved with reharding system. The static experiment of Lyngbya limnetica. attached system showed that the best removal efficiency of NH_4~+-N、PO_4~(3-)-P was achieved by conditions of 10:1 proportion of N/P, middling density of attaching material, 2 days hungry and biomass at 1.0g/L. According to the dynamic experiments, Lyngbya limnetica and Oscillatoria amoena Gom attached system got 85.9%、 68.5% removal efficiency for NH_4~+-N and PO_4~(3-)-P respectively in HRT 3 days. The dissolved oxygen in the effluent was increased obviously, and the water quality was greatly improved. All these show that immobilized algae have the potential application feasibility for the removal of nitrogen and phosphorus.The major manners of removal for nitrogen and phosphorus include: adsorption by algin balls at the starting phase; transmission of nitrogen and phosphorus; assimilation by Chlorella cells; gas stripping of NH_3 and phosphate precipitation caused by rising in pH. Immobilized Chlorella has unequal capability to assimilate various nitrogen resources. The sequence of absorption priority of different nitrogen by algae is NH_4~+-N , urea, NO_3~- -N and NO_2~- -N. Within the same condition, the experiments of different phosphorus uptake by immobilized Chlorella showed that the order of
    different phosphorus uptake by Chlorella is ortho-phosphate, metaphosphate, polyphosphate, organic phosphate.Compared with attached algae system, embedded algae system has higher nutrient removal efficiency, and ingathering of algae is easier. However, attached algae system is easier to operation in engineering practice than the embedded one.Preliminary mechanism research on removal of nitrogen and phosphorus by immobilized algae is also presented in the dissertation.
引文
1.王占生,刘文君.微污染水源饮用水处理[M],清华大学出版社.
    2.张自杰主编,排水工程下册(第三版)[M],中国建筑工业出版社,1997.11,14~16.
    3 卢升良,滇池的污染及其控制对策[J],重庆环境科学,1997-06,19(3):2~4.
    4 石健华,王华.太湖富营养化改善对策[J],水资源保护,1997,1:12~15.
    5 冷家峰,董捷.大明湖水质污染现状与防治对策[J],山东环境,2000,97(3):16~17.
    6 单志欣等,渤海莱州湾的富营养化及其研究[J],海洋湖沼通报,2000,2:41~46.
    7.钱群,朱鸣跃,余荧昌.城市污水生物脱氮除磷技术[J],交通部上海船舶运输科学研究所学报,2000-12,23(2):129~134.
    8. W. J. Oswald, Ponds in the Twenty-first Century[J]. Water Science & Technology, 1995, 31(12): 1~8.
    9.黄晟,吴慧英,陈建红.城市污水除磷中的有关问题[J],重庆环境科学,2001-10,23(5):39~42.
    10 郑兴灿.城市污水生物脱氮除磷工艺方案的选择阴,给水排水,2000,26(5):1~4.
    11 Rupert J. Craggs, Paul J. Mcauley and Valerie J. Smith, Wastewater nutrient removal by marine microalgae grown on a corrugated raceway[J], wat. Res., 1997, 31(7): 1701~1707.
    12. O. Hammouda, A. Gaber, and N. Abdel-Raouf, Microalgae and wastewater treatment[J], Ecotoxicology and environmental safety, 31,205-210(1995).
    13. Eugenia J. Olguy'n, Phycoremediation: key issues for cost-effective nutrient removal processes[J], Biotechnology Advances 22 (2003) 81-91.
    14. Radmer R.J. Algae diversity and commercial algae products[J], Bioscience 1996, 7,1~62.
    15. J.L.Zhou, P.L. Huang, R.G Lin, Sorption and desorption of Cu and Cd by macroalgae and microalgae[J], Environmental Pollution 101(1998) 67~75.
    16. A. Saglam, Y. Yalcinkaya, A. Denizli, et. al., Biosorption fo mercury by carboxymethylcellulose and immobilized Phanerochaete chrysosporium[J],Microchemical Jorunal 71(2002) 73~81.
    17. Oswald W.J. Microalgal Biotechnology(Borowitzda.M.A and Borowizka.L.J.Eds), Cambridge University Press. Cambridge,1988,305~328.
    18. Carlos Vilchez, Ines Garbayo, et. al., Microalgae-mediated chemicals production and wastes removal[J], Enzyme and Microbial Technology 20:562~572,1997.
    19. G. Schumacher and I. Sekoulov, Polishing of secondary effluent by an algal biofilm process, Institute of Wastewater, Technical University of Hamburg-Harburg[J], Eissendorfer Str. 42, Hamburg, Germany 21073.
    20. EMILY J. Y. T. M. LEENEN, VITOR A. P. DOS SANTOS et al. Characteristics of and selection criteria for support materials for cell immobilization in wastewater treatment[J], Wat. Res. Vol 30, No. 12, pp. 2985~2996,1996.
    21.周定,王建龙,等.固定化细胞在废水处理中的应用及前景[J].环境科学,1993,14(5):51~59.
    22.罗建中,张新霞,等.固定化细胞技术用于废水深度处理[J].环境污染治理技术与设备,2002,3(6):69~71.
    23. Mallick, N., Rai, L.C., Influence of culture density, pH, organic acids and divalent cations on the removal or nutrients and metals by immobilized Anabaena doliolium an Chlorella vulgaris. World Journal of Microbial Biotechnology 9, 196~201.
    24.张希衡主编,水污染控制工程(修订版)[M],冶金工业出版社,1997,北京,284~286.
    25. U.S. Environmental Protection Agency. 1975. Process design manual for nitrogen control, Office of Technology Transfer. Washington, DC.
    26.王志盈编.水污染控制现代生物反应理论[M],西安建筑科技大学,2002,130~133.
    27.茹至刚.环境保护与治理[M],冶金工业出版社.1988,95.
    28. Peter Gerdes and Sabine Kunst, Bioavailability of phosphorus as a tool for efficient Preduction schemes[J], Wat. Sci. Tech., 1998,37(3):241~247.
    29. P. EKHOLM and K. KROGERUS, Bioavailability of phosphorus in purified municipal wastewaters[J], Wat. Res. 1998, 32(2):343~351.
    30. Rupert J. Caraggs, etc., Phosphorus removal from wastewater using an algal turf scrubber[J], Water science technology, Vol. 33, No. 7, pp. 191~198, 1996.
    31.钟卫鸿,单剑峰等,氮和磷对铜山源水库优势藻生长影响实验研究[J],环境污染与防治,Vol.25,No.1,20~22.
    32.吴燕,安树林.废水除磷方法的现状与展望[J],天津工业大学学报,20(1):74~77.
    33.田玉红,霍杰等,富营养化水体中氮、磷的去除[J],广西工学院院报,2000-09,11(3):89~92.
    34.杨桢奎,水域的富营养化及其防治对策[M],北京:中国科学出版社,1989:71~73
    35. Fritz, J.J., Dynamic Process Modeling of Wastewater Stabilization Ponds[J], JWPCF. Vol.51, No. 11,1979.
    36.郝晓地.欧洲水环境控磷策略与污水除磷技术(上)[J],给水排水,1998,24(8):69~73.
    37. Ramadori, R.(ED)(1987)Biological Phosphate removal from wastewaters, Advances in Water Pollution Control, Pergamon Press, Oxford, 379pp.
    38.李海,孙瑞征,陈振选,城市污水处理技术及工程实例[M],化学工业出版社,2002.5
    39.陈峰,姜悦主编.藻类生物技术,中国轻工出版社,1999.1.
    40. Pearson,H.W.(1987) Algae associated with sewage treatment. Oxford University Press, Oxford.pp.260~268.
    41. Oswald W. and GotaasH.B, Photosynthesis in sewage treatment, American Society of Civil Engineers Transactions, 1957, 122,73~105.
    42. M.E. Martinez, et. al., Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus[J], Bioresource technology 73(2000): 263~272.
    43.李志勇等.利用藻类去除与回收工业废水中的金属[J],重庆环境科学,1997-12,19(6).
    44.韩仕群,张振华等.国内外利用藻类技术处理废水、净化水体研究现状[J],农业环境与发展,2000,63(1):13~16.
    45.张自杰主编,排水工程下册(第四版)[M],2001年6月,北京,中国建筑工业出版社,263~264.
    46.许春华,周琪.高效藻类塘的研究与应用[J],环境保护,2001-08:41~43.
    47. Matheickal, Jose T., Yin, Pinghe, Kaewsam, Pairat, Heavy metal uptake capacities of common marine macro algal biomass[J], Water Research, 1999-04, 33 (6): 1534-1537.
    48. Roy, Dipak, Crreenlaw, Paul N., Shane, Barbara S, Adsorption of heavy metals by green algae and ground rice hulls[J], Journal of Environmental Science and Health,1993-01, 28 (1): 37-50.
    49. Wilkinson, S.C., Goulding, K.H. and Robinson, P.K.(1990) Mercury removal by immobilized algae in batch culture systems[J], Journal of Applied Phycology, 2:223~230.
    50. Ayla Ozer et al., Application of Freudlich and Langmuir models to multistage purification process to remove heavy metal ions by using Schizomeris leiblenii. Process Biochemistry 34(1999):919~927.
    51.何金兰,鱼腥藻对某些重金属离子的吸附效应研究——鱼腥藻对金的吸附[J],岩矿测试,1995.9,14(3):231~233.
    52.孙红文,等.藻类固定化技术在环境领域中的应用[J].上海环境科学,1999,18(8):356~359.
    53.严国安,谭智群.藻类净化污水的研究及其进展[J].环境科学进展,1995,3(3):45~54.
    54.刘金齐,刘厚田.藻对偶氮燃料降解作用的研究[J].水生生物学报,1992,16(2):133~143.
    55. Zhang Li et al. Immobilization of Microalgae for Biosorption and Degradation of Butyltin Chloride. Art. Cells, Blood Subs., and Immob. Biotech., 1998, 26(4): 399~410.
    56. Rose, P.D.; Boshoff, G.A.; van Hille, R.P.; Wallace, L.C.M.; Dunn, K.M.; Duncan, J.R. Integrated algal sulphate reducing high rote ponding process for the treatment of acid mine drainage wastewaters[J], Biodegradation, 1998, v9, p 247-257
    57.Benefield,L.D.,邢建译,废水生物处理过程设计[M],中国建筑出版社,1984.
    58. O.V.Shipin,P.G.J Mering and J.R. Hoffmann, Petro concept: a tentative approach to biological phosphorus removal incorporating waste stabilization ponds[J], Water science and technology 2000,42(10-11):223~229.
    59. Wen,Xiang-Hua, Qian, Yi, Gu, Xia-Sheng, Graphical representation of the tansformation of some nutrients in a wastewater stabilization pond system[J], Water Research v 28 n 7 Jul 1994 Publ by Pergamon Press Inc p 1659-1665 0043-1354
    60. Yakup Nurdogan and William J. Oswald, Enhanced nutrient removal in high-rote ponds[J], Wat. Sci. Tech., Vol,31 No., 12, pp.33~43,1995
    61.陈鹏,周琪.高效藻类氧化塘处理有机废水的研究和应用[J],上海环境科学,2001,20(7):309~311.
    62. Baozhen Wang, Wenyi Dong, Jinlan Zhang and Xiangdong, Experimental study of high rate pond system treating piggery wastewater[J], Water science technology, Vol.34, No. 11,pp.125-132,1996.
    63. N.J.Cromar, N. J. Martin, N.Christofi, P. A. Read and H. J. Fallowfield, Determination of nitrogen and phosphorus partitioning within components of the biomass in a high rate algal pond: significance for the coastal environment of the treated effluent discharge[J], Water science technology, Vol.25, No. 12, pp.207-214,1992
    64.李晔,李凌,等.生物固定化技术在含氮废水处理中的研究[J].工业安全与环保,2004,30(6):18~20.
    65.黄国兰,孙红文等,固定化藻类的生理特征和对染料的脱色能力研究[J],环境科学学报2000-07,20(4):445~449.
    66. N. F. Y. Tam, P. S. Lan and Y. S. Wong, wastewater inorganic N and P removal by immobilized Chlorella vulgaris[J], Water science technology, 1994,30(6),368~374
    67. M. A. Aziz and W. J. Ng, Industrial wastewater treatment using an activated algae-reactor[J], Water research technology, 1993, 28(7): 71-76
    68.姚爱莉等,鸡粪厌氧消化废液的生物处理研究[J],中国沼气,1997,15(3):16~21
    69.张国治等,藻类对沼液中氮、磷去除作用的初步研究[J],中国沼气,1997,15(4):11~15
    70. P. S. Lau, N. F. Y. Tam and Y. S. Wong, Effect of carrageenan immobilization on the physiological activities of Chlorella vulgaris[J], Bioresource technology, 63(1998) 115-121
    71. Flora, J.R.V.; Suidan, M.T.; Biswas, P.; Sayles, G.D., Modeling algal biofilms. Role of carbon, light, cell surface charge, and ionic species[J], Water Environment Research, v 67, n 1, Jan-Feb, 1995, p 87-94.
    72. M. E. Martinez, J.M. Jimenez, F. EI Yousfi, Influence of phosphorus concentuation and temperature on and phosphorus uptake by the microalga Scenedesmus pbiliquus[J] ,Bioresource technology, 2000, (67): 233~240.
    73.王建龙编,生物固定化技术与水污染控制[M].科学出版社,2002.
    74. Guo-min Cao, Qing-xiang, Xian-bo Sun, Tong Zhang, Characterization of nitrifying and denitrifying bacteria coimmobilized in PVA and kinetics model of biological nitrogen removal by coimmobilized cells[J], Enzyme and Microbial Technology, 30(2002) 49~55.
    75.程树培主编,环境生物技术[M],南京大学出版社,1994.8,115~136.
    76. Bozeman J. et al. Toxicity Testing Using Immobilized Algae[J]. Aquat. Toxicol., 1989, 14: 345~352.
    77. Faafeng B. A. et al. In-situ Measurement of Algae Growth Potential in Aquatic Ecosystem by Immobilized Algae[J]. J. Appl. Phycol., 1994, 6: 301~308.
    78. Monika P., Elizabeth A. H. Mediated Herbicide Inhibition in a Pet Biosensor[J]. Anal. Chem., 1995, 67: 1940~1949.
    79. Naessens M., Leclerc J. C., Tran-Minh C. Fiber Optic Biosensor Using Chlorella Vulgaris for Determination of Toxic Compounds[J]. Ecotoxicology and Environmental Safety, 2000, 46(2): 181~185.
    80. Twist H. et al. A Noval In-situ Biomonitor Using Alginate Immobilized Algae(Scenedesmus Subspicatus) for the Assessment of Eutrophication in Flowing Surface Waters[j]. Water Res., 1997, 31: 2066~2072.
    81. Lukavsky J. and Marsalek B. The Evaluation of Toxicity by a Biosensor with Immobilized Algae[J].Archiv. Hydrobiol. Supp., 1997, 119: 147~155.
    82.曹晖,彭珍荣,一种制备珠形固定化细胞颗粒的简单方法,微生物学通报,1997,24(4):254~255.
    83. Radovich, J. M., MASS TRANSFER LIMITATIONS IN IMMOBILIZED CELLS., Biotechnology Advances[J], 1985, 3 (1): 1~12.
    84. Scot.C.D., Immobilized cells: a review of recent literature[J], Enzyme Microb.Technol.1987,9:66~72.
    85. Trevan, Michael D.; Mak, Angela L. Michael D. Immobilized algae and their potential for use as biocatalysts, 1988, 6(3):68~72.
    86.肖美艳,徐尔尼等,包埋法固定化细胞技术的研究进展[J],食品科学,2003,24(4):158~161
    86.肖美艳,徐尔尼等,包埋法固定化细胞技术的研究进展[J],食品科学,2003,24(4):158~161
    87. BM McLean, K Baskaran, MA Connor. The use of algal-bacterial biofilms to enhance nitrification rates in lagoons experience under laboratory and pilot-scale conditions[J]. Water Science and Technology. 2000, 42(10): 187~194.
    88.蒋宇红,黄霞,几种固定化细胞载体的比较[J],环境科学,1993,14(2):11~15.
    89. Vichez C. and Vega J.M., Nitrite uptake by Chlamydomonas reinhardtii cells immobilized in calcium alginate, Appl. Microbiology and Biotechnology,42(1):137~141.
    90.胡燕荣,于雪峰.固定化微生物处理有机污染物的研究进展阴.干旱环境检测,2002,16(4):195~196.
    91. M.R. Tredici, M.C.Margheri, G.Chini Zittelli, S.Biagiolini, E.Capolino, Nitrogen and Phosphorus Reclamation from Municipal Wastewater through an Artifical Food-Chain System[J]. Bioresource Technology 42(1992) :247~253.
    92. P.S.Lau, N.F.Y.Tam et al, Effect of density on nutrient removal from primary settled wastewater[J], Environmental pollution 89 (1995):59~66.
    93. Luz Estela Gonzalez, Rosa Olivia Canizares & Sandra Baena, Efficiency of ammonia and phosphorus removal from a colombian agroindustrial wastewater by the microalgae chlorella vulgaris and scenedesmus dimorphus[J], Bioresource Technology 60(1997)259~262.
    94.文湘华,生物稳定塘系统中的碳、氮、磷转移规律的研究,清华大学,博士论文,1990.9.
    95. Ines Urrutia, et al., Nitrate removal from water by Scenedesmus obliquus immobilized in polymeric forms[J], Enzyme and Microbial Technology 17:200~205,1995.
    96. Kaya, Valentino M.; Picard, Gaston. Viability of scenedesmus bicellularis cells immobilized on alginate screens following nutrient starvation in air at 100% relative humidity[j], Biotechnology and Bioengineering, 1995,46(5):459-464.
    97. Brant W. Touchette, JoAnn M. Burkholder, Review of nitrogen and phosphorus etabolism in seagrasses[J], Journal of Experimental Marine Biology and Ecology, 250 (2000) 133-167.
    98. Christine Bailliez, Immobilization of Boryococcus brounity alginate influence on chlorophy Ⅱ content, photosynthetic activity and degeneration during batch culture[J] ,Appl. Microbiol.Biotechnol,(1986) 23:361~366.
    99. Hideo Tanaka, Masatoshi Matsumura, and I. A. Veliky, Diffusion characteristics of substrates in Ca-algae gel beads [J], Biotchnol. Bioeng. 1984, 26:53~58.
    100. Sofia Capelo,et al., Effect of Lead on the uptake of Nutrients by Unicellular Algal[J], Wat.Res. Vol.27, No. 10, pp. 1563~1568,1993.
    101. Guterstam B. Todd. J. Ecological engineering for wastewater treatment and its application in
    102. Fatimah M.Yusoff, Hazel B. Matias, Zarina A. Khalid, Siew-Moi Phang, Culture of microalgae using interstitial water extracted from shrimp pond bottom sediments[J], Aquaculture 201(2001)263~270.
    103.国家环保局《水和废水检测分析方法》编委会.水和废水检测分析方法(第三版).北京:中国环境科学出版社.
    104.刘世名等,生物反应器高密度异养培养小球藻[J],华南理工大学学报.2003,28(2):81~86.
    105.刘学铭等,味精废水异养培养小球藻[J],环境污染与防治.1999,21(6):8~11.
    106.丁香梅等,十二烷基磺酸钠对水网藻的生长及吸收能力的影响[J],苏州大学学报工学版.2002,22(1):39~42.
    107. Jefferry SW, Humphrey GF(1975)New spectrophotometric equations for determining chlorophylls a,b,cl and c2 in high plants, algae and natural phytoplankton. Biochem. Physiol. Pfl. 167:191~194.
    108.中国科学院水生生物研究所,中国淡水藻类口[M],上海科学技术出版社.1980.
    109.李师翁,李虎乾,食品科学,1997,18(7):48~51.
    110.林秋奇等,水网藻治理水体富营养化的可行性研究[J],生态学报.2001,21(5):814~819.
    111.陈汉辉,冬季水网藻对水源水质的净化作用[J],上海环境科学,2002,19(2):76~78.
    112.卿人韦等,藻类对矿石磷转化利用的研究[J],四川大学学报.1998,35(6):957~960.
    113. Geoffrey W, et al, Accumulation of cobalt, zine and manganese by the estuarine green microalga Chlorella Salina immobilized in alginate microbeads[J], Environ Sci. Technol., 1992,26:1764~1771.
    114.周春影,固定化小球藻对市政污水中N、P营养盐的深度净化,辽宁师范大学,2001.
    115. N. F. Y. tam, Y. S. Wong, Effect of immobilized microalgal bead concentrations on wastewater nutrient removal[J], Environmental pollution 107(2000) 145-151.
    116. Oclmuller, R et al .1998 Physiological characterization of a astirdic signal required for nitrate and nitrite reductase plantal.
    117. Domenico Voltolina, Beatriz Cordero, Mario Nieves, Lilia P. Soto, Growth of Scenedesmus sp. In artificial wastewater, 68(1998),265~268.
    118. Sillen, L. G. Stability constants of metal-ion complexes, Publication No. 17. The Chemical Society, London.UK. 1964.
    119.孙翠珍,固定化藻菌脱氮除磷功效用于城市污水处理的研究,天津城市建设学院,硕士
    , #124
    119.孙翠珍,固定化藻菌脱氮除磷功效用于城市污水处理的研究,天津城市建设学院,硕士论文,2004.5.
    120.刘之慧,碳氮磷比对菌胶团的影响与活性污泥膨胀的关系[J],重庆环境科学,1994,Vol.16,No.1,12~15.
    121. Pringsheim E. G, Pure Culture of Algae, Cambridge. Univ. Press, London.,1946,p.42.
    122. Rhee G-Yull. effects Of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrite uptake[J]. Limnol. Oceanogr., 1978,23(1):10~25.
    123.翁稣颖,环境微生物学[M],科学出版社,1985.
    124. Rao Y. Surampalli et al., Phosphorus Removal in ponds[J], Wat. Sci. Tech., 1995, 31(12),331~339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700