高效藻类塘处理农村生活污水氮磷去除机理及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究基于国家“863”计划“河网区面源污染控制成套技术”(编号:2002AA601012),在太湖流域面源污染控制示范区内调查了农村生活污水的水质水量特征,建立了高效藻类塘处理设施以及相应的小试装置,重点研究了高效藻类塘的启动过程、对农村生活污水中氮磷的去除效率和去除机理及其影响因素,其次对高效藻类塘后续处理设施水生生物塘的除藻、脱氮和除磷效率进行了研究,并对高效藻类塘系统进行了强化氮磷去除工艺探索,最后通过高效藻类塘小试装置探讨了不同水深、水温和停留时间以及搅拌方式对高效藻类塘氮磷去除效率和转化途径的影响,得出了适宜的运行参数。
     太湖流域农村地区人均用水量为100L/d,收集量大约是用水量的40~45%,可收集的人均生活污水最大量约为45L/d。
     高效藻类塘系统位于江苏省宜兴市大浦镇洋渚村(30°16′42″N,119°54′24″E),整个工艺包括化粪池、一级高效藻类塘、二级高效藻类塘和水生生物塘,各个处理设施依次串联运行。
     采用农村生活污水直接培养的方式对高效藻类塘进行藻类培养和驯化,在水深为0.5m、流速为0.35m/s以及适宜的气候条件下约4d可培养成功。培养完成时优势藻为四尾栅藻(Scenedesmus quadricauda),叶绿素a浓度为0.28mg/L。高效藻类塘藻菌共生系统在培养过程中存在藻类、好氧异养菌、亚硝酸菌、硝酸菌依次生长过程,当亚硝酸菌和硝酸菌达到平衡时,藻菌共生系统培养成熟。藻菌共生系统的培养约25~30d可完成。高效藻类塘培养简单、启动快,有利于其在农村地区的推广应用。
     两级高效藻类塘全年对TN的去除效率为29.4%,其中一级高效藻类塘占全年处理量的70.9%、二级占29.1%;两级高效藻类塘全年对NH_4~+-N的去除效率为91.6%,其中一级高效藻类塘占NH_4~+-N处理量的80.7%、二级占19.3%。
     高效藻类塘对TN的去除以藻类等颗粒有机氮的沉降为主,氨氮挥发较少。一级高效藻类塘全年对NH_4~+-N的转化量中硝化作用、藻类吸收和氨氮挥发的比例分别为61.6%、35.7%和2.7%;二级高效藻类塘全年对NH_4~+-N的转化量中硝化作用、藻类吸收和氨氮挥发的比例分别为70.9%、20.3%和8.8%。经风速校正
Based on the National High-tech Research and Development Program "the Complete Set Technology of Non-point Source Pollution Control in River Network Area"(Grant No. 2002AA601012), the quantity and quality of rural domestic wastewater were investigated in Yangzhu village and both the lab-scale high rate algal ponds(HRAP) and the pilot-scale high rate algal pond system were constructed. After the build-up of experiment facilities, following subjects were studied: start-up of high rate algal pond;the removal efficiencies and mechanism of nitrogen and phosphorus from rural domestic wastewater in the HRAP;the removal efficiencies of nitrogen, phosphorus and algae in the aquatic pond as a next facility of the HRAP;enhanced nitrogen and phosphorus removal of the HRAP system;the influence of water depth, water temperature, HRT and mixing method to the removal efficiencies and mechanism of nitrogen and phosphorus in the HRAP;the best operation parameters of the HRAP.The water quantity per person in rural area of Tai-lake basin was 100L/d. About 40-45% wastewater could be collected through pipe network system corresponding to 45L/d per person.The pilot plant located at Yangzhu Village, Jiangsu Province(30°16'42"N, 119°54'24"E). The process consisted of the septic tank, the first-stage HRAP, the second-stage HRAP and the aquatic pond in series.The algae in the the HRAP were cultivated directly in domestic sewage under 0.5m water deep, 0.35m/s flow rate and good weather conditions. After about 4-day cultivation, algae in the HRAP were dominated by Scenedesmus quadricauda and the Chlorophyll-a concentration was 0.28mg/L. It was concluded that there was a time sequence of the growth of algae, aerobic heterotrophic bacteria, nitrosomonas, nitrobacter in cultivation of algae-bacteria symbiosis system in the HRAP .The cultivation took about 25~30d. The algae cultivation in the HRAP was simple and the startup was quick. Both were good for the application of the HRAP in rural area.
    The annual removal efficiency of TN in the two-stage HRAPs was 29.4%. The percentage of TN removal in the first-stage HRAP and the second-stage HRAP were 70.9% and 29.1%, respectively. The annual removal efficiency of NH/-N in the two-stage HRAPs was 91.6%. The percentage of NH4+-N removal in the first-stage HRAP and the second-stage HRAP were 80.7% and 19.3%, respectively.The percentages of NH/-N transformation through nitrification, algae assimilation and ammonia volatilization in the first-stage HRAP were 61.6%, 35.7% and 2.7%, respectively. Those in the second-stage HRAP were 70.9%, 20.3% and 8.8%, respectively. After corrected by wind velocity the average ammonia volatilization rate in the first-stage HRAP in the summer was 415.01mgN/(m2-d), i.e. 0.83mgN/(L-d). The concentration variation of NOX'-N(NO3"-N+NO2"-N) in the HRAP was linear with time(h). The nitrification rate in the first-stage HRAP was 0.1362mgN/(L-h), i.e. 1.2382mgN/(gMLSS-h). The nitrification rate in the second-stage HRAP was 0.1016mgN/(L-h), i.e. 0.8835mgN/(gMLSS-h). The process of TN removal in the HRAP was mainly through the precipitation of particulate organic nitrogen which was maily consisted of algae debris. The TN removal through ammonia volatilization could be ignored.The annual removal efficiency of TP in the two-stage HRAPs was 21.8%. The percentage of TP removal in the first-stage HRAP and the second-stage HRAP were 73.5% and 26.5%, respectively. The annual removal efficiency of PO43"-P in the two-stage HRAPs was 39.0%. The percentage of PCV'-P removal in the first-stage HRAP and the second-stage HRAP were 76.1% and 23.9%, respectively.The main approach of TP removal in the HRAP was the precipitation of particulate organic phosphorus which was maily consisted of algae debris, next was chemical precipitation. Chemical precipitation dominated the diurnal variation of PO43"-P concentration in the HRAP. High pH could lead to phosphate precipitation. However, this phosphate would be resolubilized when the pH dropped at night. Therefore the phosphate removal through chemical precipitation was temporary and unstable.More than 50% phosphorus in the sediment of the two-stage HRAPs was organic phosphorus, next were Ca and Mg combined phosphorus, Fe combined phosphorus
    and adsorption phosphorus in turn.The annual removal efficiency of SS, Chl-a, TN and TP in the aquatic pond treating the effluent from the second-stage HRAP were 88.8%, 87.6%, 24.4% and 21.2%, respectively. The aquatic pond was a feasible supplemental facility of the HRAP and could well integrate with the HRAP. The improved lab-scale aquatic pond had a good performance on TN and TP removal, the average concentrations of TN and TP in effluent of the aquatic pond were 4.75mg/L and 0.67mg/L. The efficiencies of TN and TP removal were 82.6% and 79.5%. The TN concentration in the effluent met A level of the first standard of Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant(GB 18918-2002) and TP concentration met B level of the first standard.Based on the results of the lab-scale HRAPs research, it was concluded that when water temperature was high, the removal efficiency of Dissolved TN in the HRAP increased with the decrease of water depth;when water temperature was low, the efficiency was unaffected by water depth.When water temperature is under 15°C, HRT=8d is recommended to achieve well nitrogen and phosphorus removal efficiencies in the HRAP of 0.2-0.3m water depth. When water temperature is in range of 15~25°C, HRT=6d is recommended. When water temperature is upon 25 °C, HRT=4d is recommended.Underwater propeller is recommended as the mixing equipment of the HRAP to gain higher nitrogen and phosphorus removal efficiencies and stable operation.
引文
[1] 国家环境保护总局.2004年中国环境状况公报[R].北京:国家环境保护总局,2004
    [2] 王建龙译.环境工程导论(第3版)[M].北京:清华大学出版社,2002
    [3] 陈吉宁,李广贺,王洪涛.滇池流域面源污染控制技术研究[J].中国水利,2004,第9期:47~50
    [4] 杨爱玲,朱颜明.地表水环境非点源污染研究[J].环境科学进展,1999,7(5):60~67
    [5] 卓慕宁,吴志峰,王继增,万洪富.珠海非点源污染控制区划[J].城市环境与城市生态,2003,16(1):28~30
    [6] 范成新.太湖非点源污染负荷与对策研究[J].河海大学学报,1996,24(海洋湖沼专辑):64~69
    [7] 夏立忠,杨林章.太湖流域非点源污染研究与控制[J].长江流域资源与环境,2003,12(1):45~49
    [8] 国家环境保护总局.国家环境保护“十五”计划[R].北京:国家环境保护总局,2000
    [9] 陈能汪,张珞平,洪华生,刘建昌.九龙江流域农村生活污水污染定量研究[J].厦门大学学报(自然科学版),2004,43(增刊):249~253
    [10] 周律主编.中小城市污水处理投资决策与工艺技术[M].北京:化学工业出版社,2002
    [11] 张自杰主编.废水处理理论与设计[M].北京:中国建筑工业出版社,2002
    [12] 白晓慧,王宝贞,秦晓荃.稳定塘系统与城镇污水资源化[J].西北水资源与水工程,1998,9(2):20~24
    [13] 张自杰主编.排水工程(下册)(第四版)[M].北京:中国建筑工业出版社,1999
    [14] 高廷耀,顾国维主编.水污染控制工程(下册)(第二版)[M].北京:高等教育出版社,1999
    [15] 张建,黄霞,施汉昌,胡洪营,钱易.滇池流域村镇生活污水地下渗滤系统设计[J].给水排水,2004,30(7):34~36
    [16] 苏东辉,郑正,王勇,罗兴章,吴文继.农村生活污水处理技术探讨[J].环境科学与技术,2005,28(1):79~82
    [17] 何少林,周琪.人工湿地控制非点源污染的应用[J].四川环境,2004,23(6):71~74,97
    [18] 刘超翔,胡洪营,张建,黄霞,施汉昌,钱易.表面流与潜流式生态床处理农村污水[J].中国给水排水,2002,18(11):5~8
    [19] 曾令芳.简评国外农村生活污水处理新方法[J].中国农村水利水电,2001,第9期:30~31,33
    [20] 许保玖,龙腾锐.当代给水与废水处理原理(第二版)[M].北京:高等教育出版社,2000
    [21] Ueda, T., Hata, K. and Kikuoka, Y. Treatment of domestic sewage from rural settlements by a membrane bioreactor [J]. Wat. Sci. Tech., 1996, 34(9): 189~196
    [22] Oswald, W.J., Gotaas H.B., Golucke, C.C. and Kellen, W.R. Algae in waste treatment [J]. Sewage and Industrial Wastes, 1957, 29(4): 437~457
    [23] Oswald, W.J. and Golueke, C.G. The high-rate pond in waste disposal [J]. Developments in Industrial Microbiology, 1963, 4:112~119
    [24] 陈鹏.高速率藻类塘处理城市污水的研究[D].上海:同济大学环境科学与工程学院,2001
    [25] Picot, B., Halouani, H.El, Casellas, C., Moersidik, S. and Bontoux, J. Nutrient removal by high rate pond system in a Mediterranean climate (France) [J]. War. Sci. Tech., 1991,23(7): 1535~1541
    [26] Picot, B., Bahlaoui, A., Moersidik, S., Baleux, B. and Bontoux, J. Comparison of the purifying efficiency of high rate algal pond with stabilization pond [J]. Wat. Sci. Tech., 1992, 25(12): 197~206
    [27] 许春华,周琪.高效藻类塘的研究与应用[J].环境保护,2001,第8期:41~43
    [28] Costa, R.H.R., Medri, W. and Perdomo, C.C. High-rate pond for treatment of piggery wastes [J]. Wat. Sci. Tech., 2000, 42(10~11): 357~362
    [29] Pagand,P., Blancheton, J.-P., Lemeoalle, J. and Casellas, J. The use of high rate ponds for the treatment of marine effluent from a recirculating fish rearing system [J]. Aquaculture Research, 2000, 31(10): 729~736
    [30] Brune, D.E., Schwartz, G., Eversole, A.G., Collier, J.A. and Schwedler, T.E. Intensification of pond aquaculture and high rate photosynthetic systems [J]. Aquaculture Engineering, 2003, 28(1~2): 65~86
    [31] Deviller, G., Aliaume, C., Nava, M.A.F., Casellas, C. and Blancheton, J.P. High-rate algal pond treatment for water reuse in an integrated marine fish recirculating system: effect on water quality and sea bass growth [J]. Aquaculture, 2004, 235(1~4): 331~344
    [32] Hamouri, B.El, Jellal, J., Khallayoune, K., Benkerroum, A., Hajli, A. and Firadi, R. The performance of a high-rate algal pond in the Moroccan climate [J]. War. Sci. Tech., 1995, 31(12): 67~74
    [33] Hamouri, B.El, Rami, A. and Vasel, J.-L. The reasons behind the performance superiority of a high rate algal pond over three facultative ponds in series [J]. War. Sci. Tech., 2003, 48(2):269~276
    [34] Nurdogan, Y. Microalgal separation from high rate ponds [D]. University of California. Berkeley. USA. 1988
    [35] Nurdogan, Y. and Oswald, W.J. Enhanced nutrient removal in high-rate ponds [J]. War. Sci. Tech., 1995, 31(12): 33~43
    [36] Green, F.B., Lundquist, T.J. and Oswald, W.J. Energetics of advanced integrated wastewater pond systems [J]. Wat. Sci. Tech., 1995, 31(12): 9~20
    [37] Oswald, W.J. Micro-algae and waste-water treatment [A]. In: Borowitzka, M.A. and Borowitzka, L.J. Micro-algal biotechnology[C]. Cambridge: Cambridge University Press, 1988.304~328
    [38] 韩仕群,张振华,严少华.国内利用藻类技术处理废水、净化水体研究现状[J].农业环境与发展,2001,18(1):13~16
    [39] Oren, G., Shelef, G., Levi, A., Meydan, A. and Azov, Y. Algae/Bacteria ratio in high-rate ponds used for waste treatment[J]. Applied and Environmental Microbiology, 1979, 38(4): 570~576
    [40] Mayo, A.W. and Noike, T. Effects of temperature and pH on the growth of heterotrophic bacterial in waste stabilization ponds [J]. Wat. Res., 1996, 30(2): 447~455
    [41] Oswald, W.J., Gotaas, H.B., Ludwig, H.F. and Lynch, V. Algae symbiosis in oxidation ponds. Ⅱ. Growth characteristics of Chorella pyrenoidosa cultured in sewage [J]. Sewage and Industrial Wastes, 1953, 25(1): 26~37
    [42] Picot, B., Moersidik, S., Casellas, C. and Bontoux, J. Using diurnal variations in a high rate algal pond for management pattern [J]. Wat. Sci. Tech., 1993, 28(10): 169~175
    [43] 许春华.高效藻类塘系统处理氨氮废水的研究[D].上海:同济大学环境科学与工程学院,2002
    [44] McCarthy, J.J., Taylor, W.R. and Taft, J.L. Nitrogenous nutrition of the plankton in the Chesapeake Bay. I. Nutrient availability and phytoplankton preferences [J]. Limnology and Oceanography, 1977, 22(6): 996~1011
    [45] Nurdogan, Y. and Oswald, W.J. Tube settling of high-rate pond algae [J]. Wat. Sci. Tech., 1996, 33(7): 229~241
    [46] Rose, P.D., Maart, B.A., Phillips, T.D., Tucker, S.L., Cowan, A.K. and Rowswell, R.A. Cross-flow ultrafiltration used in algal high rate oxidation pond treatment of saline organic effluents with the recovery of products of value [J]. Wat. Sci. Tech., 1992, 25(10): 319~327
    [47] Konig, A., Pearson, H.W. and Silva, S.A. Ammonia toxicity to algal growth in waste stabilization ponds [J]. War. Sci. Tech., 1987, 19(12): 115~122
    [48] Gomez, E., Casellas, C., Picot, B. and Bontoux, J. Ammonia elimination processes in stabilization and high-rate algal pond systems [J]. Wat. Sci. Tech., 1995, 31 (12): 303~312
    [49] Shelef, G., Moraine, R. and Oron, G. Nutrient removal and recovery in a two-stage high rate algal wastewater treatment system[J]. Wat. Sci. Tech., 1982, 14:87~100
    [50] Garcia, J., Mujeriego, R. and Hernandez-Marine, M. High rate algal pond operating strategies for urban wastewater nitrogen removal [J]. Journal of Applied Phycology, 2000, 12(3~5): 331~339
    [51] Cromar, N.J. and Fallowfield, H.J. Effect of nutrient loading and retention time on performance of high rate algal ponds [J]. Journal of Applied Phycology, 1997, 9(4): 301~309
    [52] Cromar, N.J., Fallowfield, H.J. and Martin, N.J. Influence of environmental parameters on biomass production and nutrient removal in a high rate algal pond operation by continuous culture [J]. War. Sci. Tech., 1996, 34(11): 133~140
    [53] Matulewich, V.A. and Finstein, M.S. Distribution of autotrophic nitrifying bacteria in a polluted river (the Passaic) [J]. Applied and Environmental Microbiology, 1978, 35(1): 67~71
    [54] Mesple, F., Troussellier, M., Casellas, C. and Bontoux, J. Difficulties in modeling phosphate evolution in a high-rate algal pond [J]. War. Sci. Tech,, 1995, 31(12): 45~54
    [55] Garcia, J., Hernandez-Marine, M. and Mujeriego, R. Analysis of key variables controlling phosphorus removal in high rate oxidation ponds provided with clarifiers [J]. Water SA, 2002, 28(1): 55~62
    [56] Moutin, T., Gal, J.Y., Halouani, H. El, Picot, B. and Bontoux, J. Decrease of phosphate concentration in a high rate pond by precipitation of calcium phosphate: theoretical and experimental results [J]. Wat. Res., 1992, 26(11): 1445~1450
    [57] Craggs, R.J., Davies-Colley, R.J., Tanner, C.C. and Sukias, J.P. Advanced pond system: performance with high rate ponds of different depths and areas [J]. War. Sci. Tech., 2003, 48(2): 259~267
    [58] Doran, M.D. and Boyle, W.C. Phosphorus removal by activated algae [J]. Wat. Res., 1979, 13(8): 805~812
    [59] Golterman, H.L. and Booman, A. Sequential extraction of iron-phosphate and calcium-phosphate from sediments by chelating agents [J]. Verh. Int. Verein. Limnol., 1988, 23(2):904~909
    [60] Sukenik, A., Schroder, W., Lauer, J., Shelef, G. and Soeder C.J. Coprecipitation of microalgal biomass with calcium and phosphate ions [J]. War. Res., 1985, 19(1): 127~129
    [61] Jenkins, D., Ferguson, J.F. and Menar, A.B. Chemical processes for phosphate removal [J]. Wat. Res., 1971, 5(7): 369~389
    [62] Ferguson, J.E and McCarty, P.L. Effects of carbonate and magnesium on calcium phosphate precipitation [J]. Environ. Sci. Technol., 1971, 5(6): 534~540
    [63] Cromar, N.J., Martin, N.J., Christofi, N., Read, P.A. and Fallowfield, H.J. Determination of nitrogen and phosphorus partitioning within components of the biomass in a high rate algal pond: signification for the coastal environment of the treated effluent discharge [J]. Wat. Sci. Tech., 1992, 25(12): 207~214
    [64] Green, F.B., Bernstone, L.S., Lundquist, T.J. and Oswald, W.J. Advanced integrated wastewater pond systems for nitrogen removal [J]. Wat. Sci. Tech, 1996, 33(7): 207~217
    [65] 况琪军,吴振斌,夏宜??.人工湿地生态系统的除藻研究[J].水生生物学报,2000,24(6):655~658
    [66] 唐萍,吴国荣,陆长梅,顾龚平,宰学明.太湖水域几种高等水生植物的克藻效应[J].农村生态环境,2001,17(3):42~44,47
    [67] 许航,陈焕壮,熊启权,王宝贞.水生植物塘脱氮除磷的效能及机理研究[J].哈尔滨建筑大学学报,1999,32(4):69~73
    [68] 刘超翔.提高人工湿地处理生活污水效能的研究[D].北京:清华大学环境科学与工程系,2003
    [69] 国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四 版)[M].北京:中国环境科学出版社,2002
    [70] 李海,孙瑞征,陈振选等编.城市污水处理技术及工程实例[M].北京:化学工业出版社,2002
    [71] 沈韫芬,章宗涉,龚循矩,顾曼如,施之新,魏印心.微型生物监测新技术[M].北京:中国建筑工业出版社,1990
    [72] 青岛市海洋与渔业局.2001年青岛市海洋环境质量公报[R].青岛:青岛市海洋与渔业局,2002
    [73] 华东师范大学,东北师范大学编.植物学(下册)[M].北京:高等教育出版社,1982
    [74] 章宗涉,黄祥飞编著.淡水浮游生物研究方法[M].北京:科学出版社,1991
    [75] Canovas, S., Picot, B., Casellas, C., Zulkifi, H., Dubois, A. and Bomoux, J. Seasonal development of phytoplankton and zooplankton in a high-rate algal pond [J]. War. Sci. Tech., 1996, 33(7): 199~206
    [76] Ouarghi, H.El,Boumansour, B.E., Dufayt, O., Hamouri, B.El and Vasel, J.L. Hydrodynamics and oxygen balance in a high-rate algal pond [J]. War. Sci. Tech., 2000, 42(10~11): 349~356
    [77] 王晓蓉编著.环境化学[M]。南京:南京大学出版社,2000
    [78] 国家城市给水排水工程技术研究中心译.污水生物与化学处理技术[M].北京:中国建筑工业出版社,1999
    [79] Clement, B. and Merlin, G. The contribution of ammonia and alkalinity to landfill leachate toxicity to duckweed [J]. Science of The Total Environment, 1995, 170(1~2): 71~79
    [80] Weiler, R.R. Rate of loss of ammonia from water to the atmosphere [J]. Journal of the Fisheries Research Board of Canada, 1979, 36(6): 685~689
    [81] Stratton, F.E. and Asoe, A.M. Nitrogen losses from alkaline water impoundments [J]. J. Sanit. Eng. Div., Am. Soc. Civ. Eng., 1969, 95(SA2): 223~231
    [82] 庄源益,戴树桂,张明顺.水中氨氮挥发影响因素探讨[J].环境化学,1995,14(4):343~346
    [83] Zimmo, O.R., van der Steen, N.P. and Gijzen, H.J. Comparison of ammonia volatilization rates in algae and duckweed-based waste stabilization ponds treating domestic wastewater [J]. War. Res., 2003, 37(19): 4587~4594
    [84] 雷衍之主编.养殖水环境化学[M].北京:中国农业出版社,2004
    [85] 雷衍之主编.淡水养殖水化学[M].南宁:广西科学技术出版社,1993
    [86] Reddy, K.R., Fisher, M.M. and Ivanoff, D. Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake [J]. J. Environ. Qual., 1996, 25(2): 363~371
    [87] 郑平,徐向阳,胡宝兰编著.新型生物脱氮理论与技术[M].北京:科学出版社,2004
    [88] 陈楠.田螺养殖技术之一:田螺人工养殖技术[J].中国水产,2005,第1期:41~42
    [89] 王烈华.田螺养殖技术之二:稻田养殖田螺技术[J].中国水产,2005,第1期:43~44
    [90] Mesple, F., Casellas, C., Troussellier, M. and Bontoux, J. Modelling orthophosphate evolution in a high rate algal pond [J]. Ecological Modelling, 1996, 89(1~3), 13~21
    [91] Borowitzka, M.A. Limits to growth [A]. In: Wong, Y. and Tam, N.F.Y. Wastewater treatment with algae[C]. Berlin: Springer-Verlag and Landes Bioscience, 1998, 203~226
    [92] 侯红娟.低碳高氮磷城市污水脱氮除磷研究[D].上海:同济大学环境科学与工程学院,2005
    [93] 张军.表面流人工湿地处理生活污水的除磷机理及生态模型研究[D].上海:同济大学环境科学与工程学院,2004
    [94] Roske, I. and Schonborn, C. Interaction between chemical and advanced biological phosphorus elimination [J]. Wat. Res., 1994, 28(5): 1103~1109
    [95] Uhlmann, D., Roske, I., Hupfer, M. and Ohms, G. A simple method to distinguish between polyphosphate and other phosphate fractions of activated sludge [J]. Wat. Res., 1990, 24(11): 1355~1360
    [96] 况琪军,夏宜(王争),吴振斌,邱东茹.人工模拟生态系统中水生植物与藻类的相关性研究[J].水生生物学报,1997,21(1):90~93
    [97] 庄源益,赵凡,戴树桂,金朝辉.高等水生植物对藻类生长的克制效应[J].环境科学进展,1995,3(6):44~49
    [98] 赵晟,吴学灿,夏峰.滇池水生植物研究概述[J].云南环境科学,1999,18(3):4~8
    [99] 李维新,颜京松,陈建国,尹宇.以凤眼莲为主净化乡镇企业有机废水的研究[J].农村生态环境,1991,7(4):54~58,43
    [100] 国家环境保护总局,国家质量监督检验检疫总局.中华人民共和国国家标准:城镇污水处理厂污染物排放标准(GB 18918-2002)[R].北京:中国环境出版社,2003
    [101] 郑兴灿,李亚新编著.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998
    [102] Mihalyfalvy, E., Johnston, H. T., Garrett, M. K., Fallowfield, H. J. and Cromar, N. J. Improved mixing of high rate algal ponds [J]. Wat. Res., 1998, 32(4): 1334~1337

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700