不同维度纳米增强环氧树脂复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环氧树脂纳米复合材料以其质轻、化学稳定以及较好的力学、热学和阻隔等性能在航空航天、航海潜水、国防军事等领域显示了良好的应用前景。但是已有此类材料一般只含有一种维度的纳米材料,尽管提高了材料的某些性能,却往往伴随着其它性能的下降。目前,这种提高了某些性能却要下降其它性能的难题仍无法解决,限制了其广泛应用。本论文提出了将不同维度的纳米材料同时复合的思路,试图解决这一难题,经过实验和理论探讨,达到了预期的目的。
     制备出了单一维度纳米材料增强的纳米复合材料——环氧树脂/零维纳米SiO_2纳米复合材料和环氧树脂/二维蒙脱土纳米复合材料,两种维度纳米材料增强的纳米复合材料——环氧树脂/零维纳米SiO_2/二维蒙脱土纳米复合材料。运用热重分析、差式扫描量热分析、力学性能测试、X射线衍射分析、扫描电子显微分析、透射电子显微分析等实验手段研究了其性能与结构,探讨了相应的机理。研究结果表明:
     与纯环氧树脂相比,零维纳米SiO_2增强的环氧树脂/零维纳米SiO_2纳米复合材料的力学性能有170%的提高,但热力学稳定性却有下降。与纯环氧树脂相比,二维蒙脱土增强的环氧树脂/二维蒙脱土纳米复合材料的热分解温度、弯曲性能和冲击性能分别有12.3℃、14%和21%的提高,但玻璃化转变温度和拉伸强度却有0.9℃和25%的下降。与纯环氧树脂相比,零维纳米SiO_2和二维蒙脱土增强的环氧树脂/零维纳米SiO_2/二维蒙脱土纳米复合材料的热力学稳定性和力学性能均得到了极大的提高,其中热分解温度和拉伸模量分别有17.3℃和248%的增长。
     与单一维度纳米材料增强的环氧树脂/零维纳米SiO_2纳米复合材料和环氧树脂/二维蒙脱土纳米复合材料相比,不同维度纳米材料增强的环氧树脂/零维纳米SiO_2/二维蒙脱土纳米复合材料,无论是热力学稳定性还是力学性能均有着全面和大幅度的提高。
     三种环氧树脂纳米复合材料性能的变化,源于其微观结构存在着的显著差异。在环氧树脂/零维纳米SiO_2纳米复合材料中,零维纳米SiO_2在环氧树脂基质中分布不均匀,存在富集区。在环氧树脂/二维蒙脱土纳米复合材料中,二维蒙脱土保持着明显的层状结构,形成的是典型的插层型纳米复合材料。在环氧树脂/零维纳米SiO_2/二维蒙脱土纳米复合材料中,零维纳米SiO_2分布均匀;蒙脱土的层状结构已不存在,被离析为单个的纳米薄片;两者交错散布于环氧树脂基体中,组成了一种新的结构。
     对不同维度纳米材料大幅度提高材料全面性能的原因和相应微观结构的变化进行了探究。通过理论计算和推导,阐明了这种性能的提高是由其独特的微观结构形成的,表明这种独特的微观结构是通过不同维度的纳米材料间的不同作用力而产生的。
     以上工作说明:选择适宜的不同维度的纳米材料复合于环氧树脂中,是制备新型综合性高性能环氧树脂纳米复合材料的成功思路。这也为今后开发新型综合性高性能纳米复合材料提供了新的途径。
The rapid development of aerospace, submarine, and weaponry industries raises anurgent need for lightweight materials with good comprehensive performance. Epoxynanocomposites hold great promise for meeting this need. They not only retain such epoxymerits as light total weight and high chemical resistance, but also obtain impressivelyenhanced mechanical, thermal, and barrier properties due to the incorporation ofnanoparticles. However, most epoxy nanocomposites now available only containnanoparticles of the same dimensionality. Although these nanocomposites can improve insome properties, the improvement is frequently accompanied by decrease in some otherproperties. So far, this compromise is still a problem that defies solution. In this study, anew strategy was presented to solve this problem that multiple dimensionally differentnanoparticles were co-incorporated into epoxy matrix. Through experimental andtheoretical exploration, the intended purpose was achieved.
     In this study, nanocomposites reinforced by nanoparticles of single dimensionalitywere prepared by separately incorporating zero-dimensional nanoSiO_2andtwo-dimensional montmorillonite (MMT) into epoxy resin, termedepoxy/zero-dimensional nanoSiO_2nanocomposite and epoxy resin/two-dimensional MMTnanocomposite, respectively. Nanocomposites reinforced by nanoparticles of two differentdimensionalities were prepared by co-incorporating zero-dimensional nanoSiO_2andtwo-dimensional MMT into epoxy resin, termed epoxy/zero-dimensionalnanoSiO_2/two-dimensional MMT nanocomposite. Thermogravimetric analysis (TGA),differential scanning calorimetry (DSC), mechanical property tests, X-ray diffraction(XRD), scanning electronic microscopy (SEM), and transmission electronic microscopy(TEM) were used to study the properties and structures of the nanocomposites, as well asexplore their enhancing mechanism. The results are as follows:
     The zero-dimensional nanoSiO_2reinforced epoxy/zero-dimensional nanoSiO_2nanocomposites exhibited enhancement in mechanical properties but decrease in thermalstability, when compared with pure epoxy.
     The two-dimensional MMT reinforced epoxy/two-dimensional MMTnanocomposites displayed improved thermal decomposition temperature, flexuralperformance, and impact performance, but showed declined glass transition temperatureand tensile strength in comparison with pure epoxy.
     As to the epoxy/zero-dimensional nanoSiO_2/two-dimensional MMT nanocomposites,co-reinforced by zero-dimensional nanoSiO_2and two-dimensional MMT, they obtainedgreatly improved thermal stability and mechanical properties compared with pure epoxy.
     Both thermal stability and mechanical properties of the epoxy/zero-dimensionalnanoSiO_2/two-dimensional MMT nanocomposites, which are reinforced by multipledimensionally different nanoparticles, were comprehensively and considerably higher thanthose of the epoxy/zero-dimensional nanoSiO_2nanocomposites andepoxy/two-dimensional MMT nanocomposites, which are reinforced by dimensionallysingle nanoparticles.
     Corresponding to the above performance variations, the three kinds of epoxynanocomposites showed significant differences in microstructure. In theepoxy/zero-dimensional nanoSiO_2nanocomposites, zero-dimensional nanoSiO_2particleswere unevenly distributed in the matrix, with some enriching regions present. In theepoxy/two-dimensional MMT nanocomposites, the two-dimensional MMT retainedlayered structure, forming typical intercalated nanocomposites. In theepoxy/zero-dimensional nanoSiO_2/two-dimensional MMT nanocomposites, thezero-dimensional nanoSiO_2particles were evenly distributed, and the MMT lost itslayered structure and was disassembled into individual nano-plateletts. Thezero-dimensional nanoSiO_2particles and the MMT nano-plateletts dispersed in the epoxymatrix in an interlacing manner and formed a new structure.
     The reasons for the considerable and comprehensive improvement in materialperformance, generated by co-reinforcement with nanoparticles of multiple dimensionalies,were investigated; the corresponding changes in material microstructure were alsoexplored. Through theoretical calculation, it was elucidated that the performanceimprovement is due to the distinctive microstructure of the epoxy/zero-dimensionalnanoSiO_2/two-dimensional MMT nanocomposites, and that this distinctive microstructureis derived from the interaction between the dimensionally different nanoparticles.
     The experimental and theoretical calculation results indicate that co-incorporation ofproper, dimensionally different nanoparticles into epoxy matrix is a successful way toprepare new comprehensive and high performance epoxy nanocomposites. Furthermore,this study provides a new path to comprehensive and high performance nanocompositedevelopment in the future.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:9-10
    [2] Shang S W, Williams J W, Soderholm K J M. Work of Adhesion Influence on the RheologicalProperties of Silica Filled Polymer Composites[J]. Journal of Materials Science,1995,30(17):4323-4334
    [3] Qian D, Kickey E C, Andrews R, et al. Load Transfer and Deformation Mechanisms in CarbonNanotube-Polystyrene Composites[J]. Applied Physics Letters,2000,76(20):2868-2870
    [4]曹正艳,杨春明,李海银,等.聚苯胺/CoC2O4纳米复合物的制备与电磁性质[J].应用化学,2009,26(11):1264-1268
    [5] Bhimaraj P, Burris D L, Action J, et al. Effect of Matrix Morphology on the Wear and FrictionBehavior of Alumina Nanoparticle/Poly (ethylene) Terephthalate Composites[J]. Wear,2005,258(9):1437-1443
    [6] Allaoui A, Bai S, Cheng H M, et al. Mechanical and Electrical Properties of a MWNT/EpoxyComposite [J]. Composites Science and Technology,2002,62(15):1993-1998
    [7]陈平,王德中.环氧树脂及其应用[M].北京:化学工业出版社,2004:1-2
    [8]任华.新型耐热、阻燃环氧树脂及固化剂的合成和性能研究[D].杭州:浙江大学博士学位论文,2008:4-5
    [9]王德中.环氧树脂生产与应用[M].北京:化学工业出版,2001:4-11
    [10] S rensen P A, Johansen K D, Weinell C E, et al. Cathodic Delamination of Seawater-ImmersedAnticorrosive Coatings: Mapping of Parameters Affecting the Rate[J]. Progress in OrganicCoatings,2010,68(4):283-292
    [11] Raftery G M, Harte A M, Rodd P D. Bonding of FRP Materials to Wood Using thin EpoxyGluelines[J]. International Journal of Adhesion and Adhesives,2009,29(5):580-588
    [12] Kim Y K, Kim E K, Kim S W, et al. Low Temperature Epoxy Bonding for Wafer Level MEMSPackaging[J]. Sensors and Actuators A: Physical,2008,143(2):323-328
    [13] Leung C M, Or S W, Zhang S Y, et al, Ring-type Electric Current Sensor Based on Ring-shapedMagnetoelectric Laminate of Epoxy-Bonded Tb0.3Dy0.7Fe1.92Short-Fiber/NdFeB MagnetMagnetostrictive Composite and Pb (Zr, Ti) O3Piezoelectric Ceramic[J]. Journal of AppliedPhysics,2010,107(9):09D918-09D918-3
    [14] Taillade F, Quiertant M, Benzarti K, et al. Shearography and Pulsed Stimulated InfraredThermography Applied to a Nondestructive Evaluation of FRP Strengthening Systems Bondedon Concrete Structures[J]. Construction and Building Materials,2011,25(2):568-574
    [15] Wang W Q, He H Y. Study on Performance of Epoxy Asphalt Concrete Applied in the DeckPavement of Pingsheng Steel Bridge[J]. Advanced Materials Research,2011,150-151:470-474
    [16] Toldy A, Szolnoki B, Marosi G. Flame Retardancy of Fibre-Reinforced Epoxy Resin Compositesfor Aerospace Applications[J]. Polymer Degradation and Stability,2011,96(3):371-376
    [17] Bhuva B D, Parsania P H. Studies on Jute/Glass/Hybrid Composites of Polyurethane Based onEpoxy Resin of9,9′-bis (4-hydroxy phenyl) anthrone-10(EBAN) and PEG-200[J]. Journal ofApplied Polymer Science,2010,118(3):1469-1475
    [18] Kumar K S S, Ameduri B. Synthesis and Characterization of Epoxy Functionalized CooligomersBased on Chlorotrifluoroethylene and Allyl Glycidyl Ether[J]. Journal of Polymer Science PartA: Polymer Chemistry,2010,48(16):3587-3595
    [19] Raetzke K, Shaikh M Q, Faupel F, et al. Shelf Stability of Reactive Adhesive Formulations: aCase Study for Dicyandiamide-cured Epoxy Systems[J]. International Journal of Adhesion andAdhesives,2010,30(2):105-110
    [20] Thomas R, Boudenne A, Ibos L, et al. Thermophysical Properties of CTBN and HTPB LiquidRubber Modified Epoxy Blends[J]. Journal of Applied Polymer Science,2010,116(6):3232-3241
    [21] Prokopec R, Humer K, Maix R K, et al. Characterization of Advanced Cyanate Ester/EpoxyInsulation Systems Before and After Reactor Irradiation[J]. Fusion Engineering and Design,2010,85(2):227-233
    [22] Kiliaris P, Papaspyrides C D. Polymer/Layered Silicate (Clay) Nanocomposites: an Overview ofFlame Retardancy[J]. Progress in Polymer Science,2010,35(7):902-958
    [23] Nolte H, Schilde C, Kwade A. Production of Highly Loaded Nanocomposites by DispersingNanoparticles in Epoxy Resin[J]. Chemical Engineering and Technology,2010,33(9):1447-1455
    [24] Johnsen B B, Kinloch A J, Mohammed R D, et al. Toughening Mechanisms ofNanoparticle-Modified Epoxy Polymers[J]. Polymer,2007,48(2):530-541
    [25] Chatterjee A, Islam M S. Fabrication and Characterization of TiO2-Epoxy Nanocomposite[J].Materials Science and Engineering A,2008,487(1-2):574-585
    [26] Zhao S, Schadler L S, Hillborg H, et al. Improvements and Mechanisms of Fracture and FatigueProperties of Well-Dispersed Alumina/Epoxy Nanocomposites[J]. Composites Science andTechnology,2008,68(14):2976-2982
    [27] Jin F L, Park S J. Interfacial Toughness Properties of Trifunctional Epoxy Resins/CalciumCarbonate Nanocomposites[J]. Materials Science and Engineering A,2008,475(1-2):190-193
    [28] Zhang B W, Li B W, Xie C S. Epoxy Resin/Nano Ni@C Composites Exhibiting NTC Effect withTunable Resistivity[J]. Journal of Materials Science and Technology,2009,25(2):159-163
    [29] Hwang K Y, Kim S D, Kim Y W, et al. Mechanical Characterization of Nanofibers Using aNanomanipulator and Atomic Force Microscope Cantilever in a Scanning ElectronMicroscope[J]. Polymer Testing,2010,29(3):375-380
    [30] Schadler L S, Giannaris S C, Ajayan P M. Load Transfer in Carbon Nanotube EpoxyComposites[J]. Applied Physics Letters,1998,73(26):3842-3844
    [31] Sandler J, Shaffer M S P, Prasse T, et al. Development of a Dispersion Process for CarbonNanotubes in an Epoxy Matrix and the Resulting Electrical Properties[J]. Polymer,1999,40(21):5967-5971
    [32] Tang L M, Weder C. Cellulose Whisker/Epoxy Resin Nanocomposites[J]. ACS Applied Materialsand Interfaces,2010,4(2):1073-1080
    [33] Deng S Q, Zhang J N, Ye L, et al. Toughening Epoxies with Halloysite Nanotubes[J]. Polymer,2008,49(23):5119-5127
    [34]任鹏刚,梁国正,卢婷利,等. ZnO晶须改性石墨纤维/双酚A二氰酸酯复合材料[J].复合材料学报,2005,22(2):46-51
    [35] Hu Y H, Wang H, Hu B. Thinnest Two-Dimensional Nanomaterial-Graphene for Solar Energy[J].ChemSusChem,2010,3(7):782-796
    [36] Dean D, Walker R, Theodore M, et al. Chemorheology and Properties of Epoxy/Layered SilicateNanocomposites[J]. Polymer,2005,46(9):3014-3021
    [37] Chen C G, Justice R S, Schaefer D W, et al. Highly Dispersed Nanosilica–Epoxy Resins withEnhanced Mechanical Properties[J]. Polymer,2008,49(17):3805-3815
    [38] Akbari B, Bagheri R. Deformation Mechanism of Epoxy/Clay Nanocomposite[J]. EuropeanPolymer Journal,2007,43(3):782-788
    [39] Li J, Sham M L, Kim J K, et al. Morphology and Properties of UV/Ozone Treated GraphiteNanoplatelet/Epoxy Nanocomposites[J]. Composites Science and Technology2007,67(2):296-305
    [40] Chiang C L, Hsu S W. Synthesis, Characterization and Thermal Properties of NovelEpoxy/Expandable Graphite Composites[J]. Polymer International,2010,59(1):119-126
    [41] Tsai T Y, Lu S W, Li F S. Preparation and Characterization of Epoxy/Layered Bouble HydroxidesNanocomposites[J]. Journal of Physics and Chemistry of Solids,2008,69(5-6):1386-1390
    [42]刘泽,李永祥,吴冲若. BaTiO3纳米粒子/环氧精细功能复合材料的制备及其介电性能的研究[J].复合材料学报,1998,15(4):20-23
    [43] Bhattacharya T. Application of Epoxylceramic Nanocomposites as Integral Capacitors[J].Microelectronics,2001,32(1):11-15
    [44] Liu P G, Song J X, He L H, et al. Alkoxysilane Functionalized Polycaprolactone/PolysiloxaneModified Epoxy Resin through Sol–Gel Process[J]. European Polymer Journal,2008,44(3):940-951
    [45] Uddin M F, Sun C T. Improved Dispersion and Mechanical Properties of HybridNanocomposites[J]. Composites Science and Technology,2010,70(2):223-230
    [46] Liu B T, Tang S J, Yu Y Y, et al. High-Refractive-Index Polymer/Inorganic Hybrid FilmsContaining High TiO2Contents[J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2011,377(1-3):138-143
    [47] Chau J L H, Tung C T, Lin Y M, et al. Preparation and Optical Properties of Titania/EpoxyNanocomposite Coatings[J]. Materials Letters,2008,62(19):3416–3418
    [48] Ochi M, Nii D, Suzuki Y, et al. Thermal and Optical Properties of Epoxy/Zirconia HybridMaterials Synthesized via in Situ Polymerization[J]. Journal of Materials Science,2010,45(10):2655-2661
    [49] Zhou Q F, Cha J, Huang Y H, et al. Alumina/Epoxy Nanocomposite Matching Layers forHigh-Frequency Ultrasound Transducer Application[J]. Ultrasonics, Ferroelectrics andFrequency Control,2009,56(1):213–219
    [50] Bhat J S, Patil A S, Swami N, et al. Electron Irradiation Effects on Electrical and OpticalProperties of Sol-Gel Prepared ZnO Films[J]. Journal of Applied Physics,2010,108(4):043513-043513-8
    [51] Johnsen B B, Kinloch A J, Mohammed R D, et al. Toughening Mechanisms ofNanoparticle-Modified Epoxy Polymers[J]. Polymer,2007,48(2):530-541
    [52] Shukla D K, Kasisomayajula S V, Parameswaran V. Epoxy Composites Using FunctionalizedAlumina Platelets as Eeinforcements[J]. Composites Science and Technology,2008,68(14):3055-3063
    [53] Jin F L, Park S J. Interfacial Toughness Properties of Trifunctional Epoxy Resins/CalciumCarbonate Nanocomposites[J]. Materials Science and Engineering A,2008,475(1-2):190-193
    [54] Wisnom M R, Khan B, Hallett S R. Size Effects in Unnotched Tensile Strength of Unidirectionaland Quasi-Isotropic Carbon/Epoxy Composites[J]. Composite Structures,2008,84(1):21-28
    [55] Liang Y L, Pearson R A. Toughening Mechanisms in Epoxy–Silica Nanocomposites (ESNs)[J].Polymer,2009,50(20):4895-4905
    [56] Chen C G, Morgan A B. Mild Processing and Characterization of Silica Epoxy HybridNanocomposite[J]. Polymer,2009,50(26):6265-6273
    [57] Xian G J, Walter R, Haupert F. Friction and Wear of Epoxy/TiO2Nanocomposites: Influence ofAdditional Short Carbon Fibers, Aramid and PTFE Particles[J]. Composites Science andTechnology,2006,66(16):3199-3209
    [58] Medina R, Haupert F, Schlarb A K. Improvement of Tensile Properties and Toughness of anEpoxy Resin by Nanozirconium-Dioxide Reinforcement[J]. Journal of Materials Science,2008,43(9):3245-3252
    [59] Omrani A, Simon L C, Rostami A A. The Effects of Alumina Nanoparticle on the Properties of anEpoxy Resin System[J]. Materials Chemistry and Physics,2009,114(1):145-150
    [60] Soulintzis A, Kontos G, Karahaliou P, et al. Dielectric Relaxation Processes in Epoxy Resin-ZnOComposites[J]. Journal of Polymer Science Part B: Polymer Physics,2009,47(4):445-454
    [61] Okada A, Kawasumi M, Kurauchi T, et al. Synthesis and Characterization of a Nylon6-ClayHybrid[J]. Polymeric Preprints,1987,28:447-448
    [62] Conrad D T, Mast W C, Wathen T M. Thermosetting Coating Composition of AcrylicInterpolymers[P]. United States Patent,1977,4021504
    [63] Nakamura K, Nakamura E. Comprising a Binder Mixture of Two Specified Vinyl ChlorideCopolymers[P]. United States Patent,1993,5244743
    [64] Chen Y C, Zhou S X, Yang H H, et al. Thermosetting Coating Composition of AcrylicInterpolymers. Preparation and Characterization of Nanocomposite Polyurethane[J]. Journal ofColloid and Interface Science,2004,279(2):370-378
    [65] Chen Y M, Liao Y L, Lin J J. Synergistic Effect of Silicate Clay andPhosphazene-Oxyalkyleneamines on Thermal Stability of Cured Epoxies[J]. Journal of Colloidand Interface Science,2010,343(1):209-216
    [66] Chiu C W, Chu C C, Cheng W T, et al. Exfoliation of Smectite Clays by Branched PolyaminesConsisting of Multiple Ionic Sites[J]. European Polymer Journal,2008,44(3):628-636
    [67]王娟娟,赵康,晁小练,等.有机累托石/环氧树脂(OREC/EP)复合材料的制备和性能研究[J].化学推进剂与高分子材料.2008,4:43-45
    [68] Dean K M, Pas S J, Yu L, et al. Formation of Highly Oriented Biodegradable PolybutyleneSuccinate Adipate Nanocomposites: Effects of Cation Structures on Morphology, Free Volume,and Properties[J]. Journal of Applied Polymer Science,2009,113(6):3716-3724
    [69] Hsueh H B, Chen C Y. Preparation and Properties of LDHs/Epoxy Nanocomposites[J]. Polymer,2003,44(18):5275-5283
    [70] Tsai T Y, Lu S W, Li F S. Preparation and Characterization of Epoxy/Layered Double HydroxidesNanocomposites[J]. Journal of Physics and Chemistry of Solids,2008,69(5-6):1386-1390
    [71] Becker C M, Gabbardo A D, Wypych F, et al. Mechanical and Flame-Retardant Properties ofEpoxy/Mg-Al LDH Composites[J]. Composites Part A: Applied Science and Manufacturing,2011,42(2):196-202
    [72] Sun X B, Ramesh P, Itkis M E, et al. Dependence of the Thermal Conductivity ofTwo-Dimensional Graphite Nanoplatelet-Based Composites on the Nanoparticle SizeDistribution[J]. Journal of Physics: Condensed Matter,2010,22(33):334216
    [73] Startsev O V, Krotov A S, Startseva L T. Interlayer Shear Strength of Polymer CompositeMaterials during Long Term Climatic Ageing[J]. Polymer Degradation and Stability,1999,63(2):183-186
    [74] Lee J R, Park S J, Seo M K, et al. A Study on Physicochemical Properties of Epoxy CoatingSystem for Nuclear Power Plants[J]. Nuclear Engineering and Design,2006,236(9):931-937
    [75] Sarathi R, Sahu R K, Rajeshkumar P. Understanding the Thermal, Mechanical and ElectricalProperties of Epoxy Nanocomposite[J]. Materials Science and Engineering: A,2007,445-446(15):567-578
    [76] Theodore M, Hosur M, Thomas J, et al. Influence of Functionalization on Properties ofMWCNT-Epoxy Nanocomposites[J]. Materials Science and Engineering: A,2011,528(3):1192-1200
    [77] Mahrholz T, St ngle J, Sinapius M. Quantitation of the Reinforcement Effect of SilicaNanoparticles in Epoxy Resins Used in Liquid Composite Moulding Processes[J]. CompositesPart A: Applied Science and Manufacturing,2009,40(3):235-243
    [78] Verónica P S, JoséM M M. Influence of the Curing Temperature in the Mechanical and ThermalProperties of Nanosilica Filled Epoxy Resin Coating[J]. Macromolecular Symposia,2006,233(1):137-146
    [79] Ratna D. Toughened FRP Composites Reinforced with Glass and Carbon Fiber[J]. CompositesPart A: Applied Science and Manufacturing,2008,39(3):462-469
    [80] Kondyurin A, Bilek M. Etching and Structure Transformations in Uncured Epoxy Resin underRf-Plasma and Plasma Immersion Ion Implantation[J]. Nuclear Instruments and Methods inPhysics Research Section B: Beam Interactions with Materials and Atoms,2010,268(10):1568-1580
    [81] Jang J S, Varischetti J, Lee G W, et al. Experimental and Analytical Investigation of MechanicalDamping and CTE of both SiO2Particle and Carbon Nanofiber Reinforced Hybrid EpoxyComposites[J]. Composites Part A: Applied Science and Manufacturing,2011,42(1):98-103
    [82] Kumara A P, Depana D, Tomerb N S, et al. Nanoscale Particles for Polymer Degradation andStabilization—Trends and Future Perspectives[J]. Progress in Polymer Science,2009,34(6):479-515
    [83] Laachachia A, Leroyb E, Cocheza M, et al. Use of Oxide Nanoparticles and Organoclays toImprove Thermal Stability and Fire Retardancy of Poly(methyl methacrylate)[J]. PolymerDegradation and Stability,2005,89(2):344-352
    [84]郑道德.塑料工业国际标准手册[M].北京:中国标准出版社,2007:134-134
    [85]于伯龄,姜胶东.实用热分析[M].北京:纺织工业出版社,1990:27-28
    [86]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.塑料差示扫描量热法(DSC)第1部分:通则[S].北京:中国标准出版社,2004:3-3
    [87]高家武,周福珍,刘士昕,等.高分子材料热分析曲线集[M].北京:科学出版社,1990:27-28
    [88] Liang Y L, Pearson R A. Toughening Mechanisms in Epoxy–Silica Nanocomposites (ESNs)[J].Polymer,2009,50(20):4895-4905
    [89] Chen C, Justice R S, Schaefer D W, et al. Highly Dispersed Nanosilica–Epoxy Resins withEnhanced Mechanical Properties[J]. Polymer,2008,49(17):3805-3815
    [90] Zhang H, Tang L C, Zhang Z, et al. Fracture Behaviours of in Situ Silica Nanoparticle-FilledEpoxy at Different Temperatures[J]. Polymer,2008,49(17):3816-3825
    [91] Johnsen B B, Kinloch A J, Mohammed R D, et al. Toughening Mechanisms ofNanoparticle-Modified Epoxy Polymers[J]. Polymer,2007,48(2):530-541
    [92] Baller J, Becker N, Ziehmer M, et al. Interactions between Silica Nanoparticles and an EpoxyResin Before and During Network Formation[J]. Polymer,2009,50(14):3211-3219
    [93] Chen C, Morgan A B. Mild Processing and Characterization of Silica Epoxy HybridNanocomposite[J]. Polymer,2009,50(26):6265-6273
    [94] Thostenson E T, Li C Y, Chou T W. Nanocomposites in Context[J]. Composites Science andTechnology,2005,65(3-4):491-516
    [95] Wang M, Hsieh A J, Rutledge G C. Electrospinning of Poly (MMA-co-MAA) Copolymers andTheir Layered Silicate Nanocomposites for Improved Thermal Properties[J]. Polymer,2005,46(10):3407-3418
    [96] Mishra J K, Hwang K J, Ha C S. Preparation, Mechanical and Rheological Properties of aThermoplastic Polyolefin (TPO)/Organoclay Nanocomposite with Reference to the Effect ofMaleic Anhydride Modified Polypropylene as a Compatibilizer[J]. Polymer,2005,46(6):1995-2002
    [97] Ren J, Huang Y X, Liu Y, et al. Preparation, Characterization and Properties of Poly(Vinylchloride)/Compatibilizer/Organophilic-Montmorillonite Nanocomposites by MeltIntercalation[J]. Polymer Testing,2005,24(3):316-323
    [98] Podsiadlo P, Kaushik A K, Arruda E M, et al. Ultrastrong and Stiff Layered PolymerNanocomposites[J]. Science,2007,318:80-83
    [99] Wang K, Chen L, Kotaki M, et al. Preparation, Microstructure and Thermal MechanicalProperties of Epoxy/Crude Clay Nanocomposites[J]. Composites Part A: Applied Science andManufacturing,2007,38(1):192-197
    [100] Wu F M, Yang G S. Poly(Butylene Terephthalate)/Organoclay Nanocomposites Prepared byin-situ Bulk Polymerization with Cyclic Poly(Butylene Terephthalate)[J]. Materials Letters,2009,63(20):1686-1688
    [101] Pustkova P, Hutchinson J M, Román F, et al. Homopolymerization Effects in Polymer LayeredSilicate Nanocomposites Based upon Epoxy Resin: Implications for Exfoliation[J]. Journal ofApplied Polymer Science,2009,114(2):1040-1047
    [102] Glaskova T, Aniskevich A. Moisture Effect on Deformability of Epoxy/MontmorilloniteNanocomposite[J]. Journal of Applied Polymer Science,2010,116(1):493-498
    [103] Quaresimin M, Varley R J. Understanding the Effect of Nano-Modifier Addition upon theProperties of Fibre Reinforced Laminates[J]. Composites Science and Technology,2008,68(3-4):718-726
    [104] Hussain F, Chen J H, Hojjati M. Epoxy-Silicate Nanocomposites: Cure Monitoring andCharacterization[J]. Materials Science and Engineering: A,2007,445-446(15):467-476
    [105] Basara C, Yilmazer U, Bayram G. Synthesis and Characterization of Epoxy BasedNanocomposites[J]. Journal of Applied Polymer Science,2005,98(3):1081-1086
    [106] Dean D, Walker R, Theodore M, et al. Chemorheology and Properties of Epoxy/Layered SilicateNanocomposites[J]. Polymer,2005,46(9):3014-3021
    [107] Xie W, Gao Z, Pan W P, et al. Thermal Degradation Chemistry of Alkyl Quaternary AmmoniumMontmorillonite[J]. Chemistry of Materials,2001,13(9):2979-2990
    [108] Gao F. Clay/Polymer Composites: the Story[J]. Materials Today,2004,7(11):51-55
    [109] Wang J W, Qin S C. Study on the Thermal and Mechanical Properties of Epoxy–NanoclayComposites: The Effect of Ultrasonic Stirring Time[J]. Materials Letters,2007,61(19-20):4222-4224
    [110]漆宗能,高文宇.聚合物/层状硅酸盐纳米复合材料[M].北京:化学工业出版社,2002:129
    [111]刘竞超,李小兵,张华林.纳米SiO2/环氧树脂复合材料的制备和性能[J].湘潭大学自然科学学报.1999,21(3):36-39
    [112] Goyanes S N, K nig P G, Marconi J D. Dynamic Mechanical Analysis of Particulate-FilledEpoxy Resin[J]. Journal of Applied Polymer Science,2003,88(4):883-892
    [113] Zhang M Q, Rong M Z, Yu S L, et al. Improvement of Tribological Performance of Epoxy bythe Addition of Irradiation Grafted Nano-Inorganic Particles[J]. Macromolecular Materials andEngineering,2002,287(2):111-115
    [114]邱海霞,于九皋,林通.羧甲基纤维素钠/蒙脱土纳米复合膜的制备及性能[J].高分子学报,2004,3:419-423
    [115] Lingaiah S, Shivakumar K N, Sadler R, et al. A Method of Visualization of Dispersion ofNanoplatelets in Nanocomposites[J]. Composites Science and Technology,2005,65(14):2276-2280
    [116] Hermes H E, Frielinghaus H, Pyckhout-Hintzen W, et al. Quantitative Analysis of Small AngleNeutron Scattering Data from Montmorillonite Dispersions[J]. Polymer,2006,47(6):2147-2155
    [117] Triantafillidis C S, LeBaron P C, Pinnavaia T J. Homostructured Mixed Inorganic Organic IonClays: A New Approach to Epoxy Polymer Exfoliated Clay Nanocomposites with a ReducedOrganic Modifier Content[J]. Chemistry of Materials,2002,14(10):4088-4095
    [118] Rizvi R, Khan O, Naguib H E. Development and Characterization of Solid and PorousPolylactide-Multiwall Carbon Nanotube Composites[J]. Polymer Engineering and Science,2011,51(1):43-53
    [119] Sengupta R, Chakraborty S, Banbyopadhyay S, et al. A Short review on Rubber/ClayNanocomposites with Emphasis on Mechanical Properties[J]. Polymer Engineering and Science,2007,47(11):1956-1974
    [120] Wang K, Wang L, Wu J S, et al. Preparation of Highly Exfoliated Epoxy/Clay Nanocompositesby “Slurry Compounding”: Process and Mechanisms[J]. Langmuir,2005,21(8):3613-3618
    [121] Wang L, Wang K, Chen L, et al. Preparation, Morphology and Thermal/Mechanical Properties ofEpoxy/Nanoclay Composite[J]. Composites Part A: Applied Science and Manufacturing,2006,37(11):1890-1896
    [122] Yasmin A, Abot J, Daniel IM. Processing of Clay/Epoxy Nanocomposites by Shear Mixing[J].Scripta Materialia,2003,49(1):81-86
    [123] Zerda A S, Lesser A J. Intercalated Clay Nanocomposites: Morphology, Mechanics, and FractureBehavior[J]. Journal of Polymer Science Part B: Polymer Physics,2001,39(11):1137-1146
    [124] Zhao R G, Luo W B. Fracture Surface Analysis on Nano-SiO2/Epoxy Composite[J]. MaterialsScience and Engineering: A,2008,483-484(15):313-315
    [125] Cho J W, Sul K I. Characterization and Properties of Hybrid Composites Prepared fromPoly(Vinylidene Fluoride–Tetrafluoroethylene) and SiO2[J]. Polymer,2001,42(2):727-736
    [126] Yao X F, Yeh H Y, Zhou D, et al. The Structural Characterization and Properties of SiO2-EpoxyNanocomposites[J]. Journal of Composite Materials,2006,40:371-381
    [127] Park J H, Jana S C. Mechanism of Exfoliation of Nanoclay Particles in Epoxy ClayNanocomposites[J]. Macromolecules,2003,36(8):2758-2768
    [128] Izuka A, Winter H H. Self-Similar Relaxation Behavior at the Gel Point of a Blend of aCross-Linking Poly (ε-caprolactone) Diol with a Poly (styrene-co-acrylonitrile)[J].Macromolecules,1997,30(20):6158-6165
    [129] Ngo T D, Ton-That M T, Hoa S V, et al. Effect of Temperature, Duration and Speed ofPre-Mixing on the Dispersion of Clay/Epoxy Nanocomposites[J]. Composites Science andTechnology,2009,69(11-12):1831-1840
    [130] Bishop K J M, Wilmer C E, Soh S, et al. Nanoscale Forces and Their Uses in Self-Assembly[J].Small,2009,14(5):1600-1630
    [131] Gregory J. Particles in Water Properties and Processes[M], Boca Raton: Taylor&Francis Group,2006:128
    [132] Castellanos A. The Relationship between Attractive Interparticle Forces and Bulk Behaviour inDry and Uncharged Fine Powders[J]. Advances in Physics,2005,54(4):263-376
    [133] Cheung D L, Bon S A F. Interaction of Nanoparticles with Ideal Liquid-Liquid Interfaces[J].Physical Review Letters,2009,102:066103
    [134] Buhmann S Y, Welsch D G, Kampf T. Ground-State van der Waals Forces in Planar MultilayerMagnetodielectrics[J]. Physical Review A,2005,72(3):032112
    [135] Sitti M, Hashimoto H. Teleoperated Touch Feedback from the Surfaces at the Nanoscale:Modelling and Experiments[J]. IEEE/ASME Transactions on Mechatronics,2003,8(2):287-298
    [136] Gauthier M, Régnier S, Rougeot P, et al. Forces Analysis for Micromanipulations in Dry andLiquid Media[J]. Journal of Micromechatronics,2006,3(3-4):389-413
    [137] Jouany C. Surface Free Energy Components of Clay-Synthetic Humic Acid Complexes fromContact-Angle Measurements[J]. Clays and Clay Minerals,1991,39(1):43-49
    [138] Mark J E. Polymer Data Handbook[M]. New York: Oxford University Press,1999:91
    [139]魏志钢,张红星,李前树,等.二氧化钛(TiO2)表面能的理论研究[J].高等学校化学学报,2008,29(4):824-826

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700