变刚度复合地基变形控制设计理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合地基的受力机理复杂,影响地基变形的因素很多,诸如天然地基物理特性、桩身强度、桩间距、桩长、桩身尺寸、上部结构刚度等都会对复合地基的变形产生影响。针对这些问题,综合运用理论分析、数值模拟等方法,对不布桩模式下的地基变形情况进行了系统研究,对各种因素影响规律进行了分析。在此基础上,给出了控制复合地基变形的优化设计方法,最后通过工程实践证明该方法适用、经济,满足工程精度要求。
     对地基单一受力区域三维分层中的桩基础,运用分层材料介质的广义Kelvin基本解的边界元法,就单桩位移和群桩共同作用进行了理论分析,并建立了分层地基中桩基础边值问题的边界积分方程;对地基相邻受力区域按照刚性基础分析,假定被影响刚性基础的基底与地基紧密接触,将接触面划分为n个矩形网格,在上部荷载与相邻区域基础荷载影响下,考虑基础埋深和建筑物高度对倾斜的影响,建立了刚性基础地基反力和整体倾斜基本方程,应用迭代法对相邻区域共同作用进行分析。
     本文采用FLAC3D有限差分程序,考虑桩身长L、桩直径D、桩间距S、上部刚度K、复合地基的置换率m等影响因素,对应不同布桩模式建立了8组共39个数值模型,分别就均布荷载和非均布荷载两种受力模式下的地基变形特征展开系统数值模拟研究,并对各种影响要素进行理论分析。数值模拟研究结果表明:
     (1)水平方向变形特征:①桩顶位置在所有变刚度模式下的各关键竖向变形均符合指数衰减特征,最大变形值位于荷载形心,最小值则位于基础端角,其次是板边。水平方向变形等值线均呈现同心圆形状,与基础形状及加载区域形状关系不密切。②桩底位置由于剪切位移的连续性,表现出较好的自适应调节能力,在所有变刚度模式中未出现变形突变,桩底变形情况受桩长影响最大,桩距、桩径对变形无影响,随土层深度增加,变形逐步过渡为平滑的碗形。
     (2)竖向变形特征:①桩顶位置变形表现为“同心圆柱”,而且这种情况会一直持续到约桩长一半。②桩底位置由于不存在上部刚度约束,其变形情况与平面、竖向布桩形式有关。
     (3)应力分布特征:①复合地基4个端角桩顶位置的主应力、竖向反力呈现高度应力集中,使得该范围复合地基进入承载力极限状态,但是变形受邻域影响仍会继续发展,变刚度模式对该范围调节能力有限。次一级应力集中现象出现板边中部,形成一个环绕基础的应力带;地基内部应力水平受地基竖向刚度变化影响较大,表现为随刚度加强而聚集;变桩长模式对调整应力分布最为有效的,变桩径、变桩距模式影响不大;②桩底位置应力特征表现为桩身将竖向荷载传递至土层深部,竖向应力水平在桩端位置有所提高。
     (4)变桩长对地基变形调节能力最强。随着荷载形心区域桩长的增加,边缘区域和角点区域地基变形量都会明显减小;边缘区域和角点区域桩长增加同样会减小中心区域的地基变形量,且各个关键点的变形总量与复合地基的整体桩身体积置换率成线性反比关系。
     (5)最佳控制地基变形的布桩模式为:在均布荷载计算模式下,中区、边区、角区的桩长(其他设计参数一致)满足5:4:3规律;在非均布荷载作用下的中区、边区、角区的理想桩长则是5:4:3乘以各自区域的荷载大小比例系数。
     (6)桩径、桩距的调整导致复合地基应力水平的变化异常复杂;无论改变桩径、桩距对基础局部倾斜没有影响;变桩径模式提高了局部地基刚度,竖向反力向刚度较大区域聚集,桩土共同作用减弱,局部地基变形量反而有增大趋势。
     在此基础之上以先“放”后“抗”为原则,本文给出了系统的变刚度复合地基设计解决方案。简单的归纳为:中、边、角;5:4:3;内强外弱;共同作用;整体考虑;相邻兼顾;反复迭代。
     本文得到的一些规律性的结论和设计理念,在满足整体承载力前提下,对复合地基的变形控制、最小化变形差,降低基础和上部结构次应力,提高建筑物耐久性和使用寿命及开拓岩士工程设计思路等方面具有重要指导意义。
Composite foundation, which force mechanism is complex, has many influence factors for its deformation, such as the physical characteristics of natural foundation, pile strength, pile spacing, pile's length, pile's geometry dimension, the upper structure rigidity and so on. In view of these problems, theory analysis and numerical simulation methods were used to system research the foundation deformation under the condition of piles'different arrangements, and qualitative analysis was made to analysis the various Influence factors. Based on this, optimum design method was proposed to control the deformation of composite foundation. Engineering practice proves that the method is applicable and economic, which can satisfy the request of engineering.
     In light of pile foundation of 3D layered foundation with single stressed region, generalized Kelvin basic solution's BEM about layered properties media was used to made theory analysis on the cooperation work between single pile displacement and pile groups, and boundary integral equation was established about pile foundation's boundary value problem in layered foundation, in which the integrate on layered properties'interface was not included. The foundation adjacent stressed region was analysized according to rigid foundation, assuming basement and foundation soil of rigid foundation were close contact, under the influence of upper loads and adjacent foundation load, the surface contact was divided into n rectangular grids. Considering embedded depth of foundation and building height impact on inclination, subgrade reaction and overall inclination of rigid foundation basic equation is presented, and iterative method is obtained by the analysis above.
     Three-dimensional finite-difference software FLAC3D, considering pile's length L, pile spacing S, Poisson ratio of natural foundation soil and displacement ratio of composite foundation, was adopted for the simulation of deformation characteristic of ground soil, in this paper. Depending on different arrangements of piles,39 numerical models (8 groups) were set. A series of numerical simulations on loading mode of nonuniform load and uniform load were respectively carried out, and qualitative analysis of various influence factors was conducted.
     The numerical simulation showed that the horizontal deformation of the location of composite foundation pile head, variable stiffness in all modes of vertical deformation of the key features are in line with exponential decay, the maximum deformation in the load centroid, the minimum is located in the base-side corner, followed by is the edge. Horizontal contour deformation showed a concentric shape, and it is not close to the foundation shape and the loading area shape; the vertical deformation of the continuity of the shear displacement showed better adaptive ability in the pile location, and all variable stiffness does not appear in the deformation mode of mutation, the pile length have the greatest impact on the pile bottom deformation. Pile spacing and pile diameter has no effect on the deformation, and the gradual deformation of a smooth transition is going to be the bowl shape with the increase of soil depth.
     Vertical deformation of pile top position is characterized as "concentric cylindrical", and this situation will continue until about half the pile length; and the bottom of the pile is in relation to the flat pile in the form the form of vertical pile because there is no upper bound stiffness.
     Through numerical simulations show that stress distribution on pile top position:the basic four horns including principal stress and the vertical force appears highly stress concentration, makes the scope of composite foundation bearing capacity limit state into, but the deformation of neighborhood influence will continue to develop, the scope of variable stiffness mode adjust ability is limited, Sub-tissue stress concentration phenomenon appear in central plate edge, forming a foundation with the stress around, Internal stress level ground by vertical stiffness foundation changes for greater influence over stiffness and strengthening, varied length of piles to adjust the stress distribution pattern is the most effective and varied diameter of piles, varied distance of piles has little effect. The pile bottom position stress characteristics show that pile body make the vertical load transfer to the deep layer, the vertical stress level in the pile tip is somewhat increased.
     Variable pile height has strong adjusted ability on foundation deformation. With the load area length of pile centroid increases, the edge area and corner area will significantly reduce the amount of ground deformation; the increase of the pile length of the edge area and comer area will reduce the ground deformation of the central area, and the key points of each total deformation and the overall composite foundation pile volume replacement ratio have linear inverse relationship.
     Optimal control by numerical simulation of the pile foundation deformation mode:in the uniform load calculation mode, the central, border, corner area of the pile length (consistent with other design parameters) is to satisfy the law 5:4:3; in non-uniform loads under the area, border, corner area the ideal length of pile is to satisfy the law 5:4:3 multiplied by the size of their respective regional load scale factor.
     Stress level of composite foundation varies complicatedly on the grounds that pile diameter and pile spacing are adjusted. While often adjustment of pile diameter and pile spacing have no effect on local foundation inclination, model of pile with varying diameter improves local foundation stiffness,and regions of larger stiffness gather to accumulate vertical force gradually, and pile-soil interaction weakens gradually and deformation quantity of local ground foundation shows an increasing tendency.
     Based on the principle of valuation after resistance, this paper presents some effective solutions to designs of varying stiffness composite foundation.Specifically,it can be classified into seven essential points:medium-edge-angle, five to four to three, strongly inner weakly outer,interaction,considered as a whole,consideration of adjacent elements and repeated iteration.
     In this paper, some regularity conclusions and design concept are obtained. On the premise of general bearing capacity satisfied, conducting a study is of important directive significance in deformation control of composite foundation, minimization of deformation difference, reduction of secondary stress for foundation and superstructure, improvement of durability and service life for building and development plans of main design ideas for geotechnical engineering.
引文
[1]Poulos H G, Bunce G. Foundation Design for the BURJ DUBAI-the World's Tallest Building[C].6th International Conference on Case Histories in Geotechnical Engineering Arlington,VA:2008.
    [2]刘金砺,迟铃泉.桩土变形计算模型和变刚度调平设计[J].岩土工程学报.2000,22(02):151-157.
    [3]叶书麟,韩杰,叶观宝.地基处理与托换技术[J].北京:中国建筑工业出版杜,1994:72-128,515-540.
    [4]袭晓南.地基处理手册[M].北京:中国建筑工业出版社,2000:1-32.
    [5]郑俊杰,吴世明.多元复合地基的理论与实践[J].岩土工程学报.2002,24(002):208-212.
    [6]马骥,张东刚,张震,等.长短桩复合地基设计计算[J].岩土工程技术.2001,2:86-91.
    [7]杨桦,杨敏,王伟.长短桩组合桩基础地基中的应力场和位移分析[J].同济大学学报(自然科学版).2006,34(5):595-598.
    [8]刘奋勇,杨晓斌.混合桩复合地基试验研究[J].岩土工程学报.2003,25(001):71-75.
    [9]王明山,王广驰,闫雪峰,等.多桩型复合地基承载性状研究[J].岩土工程学报.2005,27(010):1142-1146.
    [10]朱奎,徐口庆.带褥垫层刚-柔性桩复合地基性状试验研究[J].建筑结构学报.2006,27(005):123-128.
    [11]宰金珉.桩土明确分担荷载的复合桩基及其设计方法[J].建筑结构学报.1995,16(004):66-74.
    [12]Zeevaert L. Foundation engineering for difficult subsoil conditions[M]. Van Nostrand Reinhold Co,1983: 424-433.
    [13]Burland J B, De Mello V, Broms B B. Behaviour of foundations and structures[M]. Proc.9th Int. Conf. S. M. F. E,1978:495-546.
    [14]Poulos H G, Davis E H. Pile foundation analysis and design[M]. New York:John Wiley & Sons,1980.
    [15]Poulos H G. Piled raft foundations:design and applications[J]. Geotechnique.2001,51(2):95-113.
    [16]刘金砺,黄强.竖向荷载下群桩变形性状及沉降计算[J].岩土工程学报.1995,17(006):1-13.
    [17]宰金珉.桩土明确分担荷载的复合桩基及其设计方法[J].建筑结构学报.1995,16(004):66-74.
    [18]宰金珉.复合桩基沉降计算的最终应力法及其应用[J].土木工程学报.2002.35(002):61-69.
    [19]黄绍铭,王迪民.减少沉降量桩基的设计与初步实践[C].上海:同济大学出版社,1991.405-414.
    [20]刘冬林,郑刚,刘金砺.刚性桩复合地基与合桩基工作性状对比试验研究[J].建筑结构学报.2006.27(004):121-128.
    [21]Liu J, Xiao H B, Tang J, et al. Analysis of load-transfer of single pile in layered soil[J]. Computers and Geotechnics.2004,31(2):127-135.
    [22]Konagai K, Yin Y, Murono Y. Single beam analogy for describing soil-pile group interaction[J]. Soil dynamics and earthquake engineering.2003,23(3):31-39.
    [23]赵锡宏.上海高层建筑桩筏与桩箱基础设计理论[M].上海:同济大学出版社,1989.
    [24]冯国栋,刘祖德,黄绍铿.铅直荷载下桩一台共同作用的计算模式探讨[J].土工基础.1982(01):1-10.
    [25]王明恕,王韶群.高层建筑桩筏联合基础荷载分配测试研究[J].岩土工程界.2000,3(010):34-37.
    [26]杨克己,韩理安.桩基工程[M].北京:人民交通出版社,1992.
    [27]中华人民共和国行业标准.建筑地基基础设计规范GB50007-2002[S].北京,2002.
    [28]中华人民共和国行业标准.建筑桩基技术规范JGJ94-2008[S].北京,2008:2008年10月.
    [29]Poulos H G. Load settlement prediction for piles and piers[J]. Journal of the Soil Mechanics and Foundations Division.1972,98(9):879-897.
    [30]Griffiths D V, Clancy P, Randolph M F. Piled raft foundation analysis by finite elements[C].Pore.7th Int.Conf.on Comp. Methods and Adv.in Geomeeh., Cairns,1991.12.1153-1157.
    [31]Davis E H, Poulos H G. The analysis of piled raft systems[J]. Australia Geotechnique Journal.1972,2(1): 21-27.
    [32]上海市工程建设规范.地基基础设计规范DGJ08-11-1999[S].上海,上海市建设委员会,1999.
    [33]贺武斌.静荷载下单桩沉降的时间效应研究[D].浙江大学,2003.
    [34]黄锋.单桩在压与拔荷载下桩侧摩阻力发展机理研究[D].清华大学,1998.
    [35]宰金珉,宰金璋.高层建筑基础分析与设计[M].北京:中国建筑工业出版杜,1993:334-340.
    [36]孙家乐,刘之珩,张镭.从上部结构与地基基础相互作用研讨基础内力的计算方法[J].北京工业大学学报.1984(1):21-28.
    [37]周正茂,赵福兴.桩筏基础设计方法的改进及其经济价值[J].岩土工程学报.1998,20(006):70-73.
    [38]刘前曦,侯学渊,章旭昌,等.土共同作用分析方法[J].同济大学学报(自然科学版).1996.
    [39]黄熙龄.高层建筑厚筏反力及变形特征试验研究[J].岩土工程学报.2002,24(002):131-136.
    [40]陈仁朋.软弱地基中桩筏基础工作性状及分析设计方法研究[D].浙汀大学,2001.
    [41]朱百里,沈珠汀.计算土力学[M].上海科学技术出版社,1990.
    [42]D'Appolonia E, Romualdi J P. Load transfer in end bearing steel H-piles[J]. Journal of the Soil Mechanics and Foundations Division, ASCE.1963,89:1-25.
    [43]Thurman A G, D'Appolonia E. Computed movement of friction and end bearing piles embedded in uniform and stratified soils[J]. Proc.6. Int.Conf. Soil Mech. Found.Eng.1965,2:323-327.
    [44]Poulos H G, Davis E H. The settlement behaviour of single axially loaded incompressible piles and piers[J]. GEOTECH.1968,18:351-371.
    [45]Mattes N S, Poulos H G. Settlement of single compressible pile[J]. Journal of the Soil Mechanics and Foundations Division.1969.95(1):189-207.
    [46]Mindlin R D. Force at a Point in the Interior of a Semi-Infinite Solid[J]. Physics.1936,7(5):195-202.
    [47]Poulos H G, Davis E H. Pile foundation analysis and design[M]. New York:John Wiley & Sons,1980.
    [48]D G J. Stress in foundation soils due to vertical subsurface load[J]. Geotechnique.1966,16:231-255
    [49]黄结铭,裴捷,贾宗元.软土中桩基沉降估算[C].中国土木工程学会第四届土力学及基础工程学术会议.北京:中国建筑工业出版社,1986.
    [50]尚守平,周芬.桩箱(筏)基础与地基土共同作用的分析研究[J].土木工程学报.2001,34(004):93-97.
    [51]刘前曦,侯学渊.土共同作用分析方法[J].同济大学学报(自然科学版).1996,25:625-630.
    [52]艾智勇.弹性层状理论及其在桩筏基础中的应用研究[D].上海:同济大学,1999.
    [53]杨敏,王伯钧.使用Geddes应力系数公式求解单桩沉降[J].同济大学学报:自然科学版.1997,25(004):379-385.
    [54]Cooke R W, Price G, Tarr K. Jacked piles in London Clay:a study of load transfer and settlement under working conditions[J]. Geotechnique.1979,29(2):113-147.
    [55]Randolph M F, Wroth C P. Analysis of deformation of vertically loaded piles[J]. Journal of the Geotechnical Engineering Division.1978,104(12):1465-1488.
    [56]Randolph M F, Wroth C P. An analysis of the vertical deformation of pile groups[J]. Geotechnique.1979, 29(4):423-439.
    [57]Desai C S, Zaman M M, Lightner J G, et al. Thin-layer element for interfaces and joints[J]. International Journal for Numerical and Analytical Methods in Geomechanics.1984,8(1):19-43.
    [58]Sharma K G, Desai C S. Analysis and implementation of thin-layer element for interfaces and joints[J]. Journal of Engineering Mechanics.1992,118:2442-2462.
    [59]Franke E, Lutz B, El-Mossallamy Y. Measurements and numerical modelling of high rise building foundations on Frankfurt Clay[J]. Geotechnical Special Publication.1994(40):1325-1336.
    [60]Cooke R W, Price G, Tarr K J. Jacked piles in London clay:Interaction and group behavior under working conditions[J]. Geotechnique.1980,30(2):97-136.
    [61]Kraft L M, Ray R P, Kagawa T. Theoretical tz curves[J]. Journal of the Geotechnical Engineering Division. 1981,107(11):1543-1561.
    [62]Chow Y K. Analysis of vertically loaded pile groups[J]. Mechanics of Cohesive-frictional Materials.2005, 10(1):59-72.
    [63]Chow Y K. Discrete element analysis of settlement of pile groups[J]. Computers & Structures.1986,24(1): 157-166.
    [64]Nogami T, Chen H L. Simplified approach for axial pile group response analysis[J]. Journal of Geotechnical Engineering.1984,110(9):1239-1255.
    [65]Rajapakse R, Shah A H. On the longitudinal harmonic motion of an elastic bar embedded in an elastic half-space[J]. International Journal of solids and structures.1987,23(2):267-285.
    [66]Lee C Y, Small J C. Finite-Layer Analysis of Axially Loaded Piles[J]. Journal of geotechnical engineering. 1991,117(11):1706-1722.
    [67]宰金珉,杨嵘昌.桩周土非线性变形分析的广义剪切位移法[J].南京建筑工程学院学报.1993(001):1-16.
    [68]Mylonakis G, Gazetas G. Settlement and additional internal forces of grouped piles in layered soil[J]. Geotechnique.1998,48(1):55-72.
    [69]Rajapakse R, Wang Y. Load-Transfer Problems for Transversely Isotropic Elastic Media[J]. Journal of engineering mechanics.1990,116(12):2643-2662.
    [70]杨嵘昌,宰金眠.广义剪切位移法分析桩—上—承台非线性共同作用原理[J].岩土工程学报.1994,16(006):103-116.
    [71]王伯惠,上官兴.中国钻孔灌注桩新发展[M].北京:人民交通出版社,1999.
    [72]Seed H B. Reese L C. The action of soft clay along friction piles[J]. ASCE.1957:731-764.
    [73]Coyle H M, Reese L C. Load transfer for axially loaded piles in clay[J]. Journal of the Soil Mechanics and Foundations Division, ASCE.1966,92(SM):2-26.
    [74]Vijayvergiya V N. Load-movement characteristics of piles[C].Proc.4, Symposium of waterway, Port, Coastal and Ocean.Div,ASCE 1977.269-284.
    [75]Kezdi A. Bearing capacity of piles and pile groups[C].Proceedings of 4 international conference on soil mechanics and foundation engineering London:1957.2.46-51.
    [76]悟佐腾.基础桩の支持の力学机构[J].土工技术.1965,20(1):1-5.
    [77]Motta E. Approximate elastic-plastic solution for axially loaded piles[J]. Journal of Geotechnical Engineering.1994,120(9):1616-1624.
    [78]Guo W D. Vertically loaded single piles in Gibson soil[J]. Journal of geotechnical and geoenvironmental engineering.2000,126(2):189-193.
    [79]Castelli F. Simplified nonlinear analysis for settlement prediction of pile groups[J]. Journal of Geotechnical and Geoenvironmental Engineering.2002,128(1):76-84.
    [80]Zhu H, Chang M F. Load transfer curves along bored piles considering modulus degradation[J]. Journal of Geotechnical and Geoenvironmental Engineering.2002,128(9):764-774.
    [81]罗惟德.单桩承载机理分析与载荷—沉降曲线的理论推导[J].岩土工程学报.1990,12(001):35-44.
    [82]曹汉志.桩的轴向荷载传递及荷载—沉降曲线的数值计算方法[J].岩土工程学报.1986,8(6):39-49.
    [83]潘时声.桩基础分层位移迭代法计算理论及其应用[D].上海:同济大学,1993.
    [84]阳吉宝.单桩沉降计算的荷载传递法讨论[J].岩土工程技术.1998(004):31-33.
    [85]王旭东,魏道垛.群桩—土—承台结构共同作用非线性数值分析[J].南京建筑工程学院学报.1994(004):1-9.
    [86]梁明德,刘岳.刚性群桩的非线性分析[J].岩土工程学报.1995,17(006):23-31.
    [87]李作勤.摩擦桩的荷载传递及承载力的一些问题[J].岩土力学.1990,11(004):1-12.
    [88]袁建新,钟晓维.桩荷载与变位的数值模拟分析[J].岩土力学.1991,12(001):1-8.
    [89]陈龙珠,梁国钱.桩轴向荷载—沉降曲线的一种解析算法[J].岩土工程学报.1994,16(006):30-38.
    [90]徐松林,吴玉山.桩土荷载传递的测试分析和模型研究[J].岩土力学.1996,17(002):42-52.
    [91]陈明中,龚晓南,严平.单桩沉降的一种解析解法[J].水利学报.2000(8):70-74.
    [92]许宏发,钱七虎,金丰年.描述抗拔桩荷载——位移曲线的幂函数模型[J].岩土工程学报.2000,22(005):622-624.
    [93]Clough G W, Duncan J M. Finite element analyses of retaining wall behavior[J]. Journal of the Soil Mechanics and Foundations Division.1971,97(12):1657-1673.
    [94]Cheung Y K. Lee W B. Elastoplastic analysis of soil-pile interaction[J]. Computers and Geotechnics.1991, 12(2):115-132.
    [95]Chow Y K E A. Pile-cap-pile-group interaction in Non-homogeneous soil[J]. Journal of Geotechnical Engineering.1991,117(11):1655-1668.
    [96]Poulos H G. Alternative design strategies for piled raft foundations[C]. Singapore:1994.39-244.
    [97]刘毓氚.桩筏基础数值分析与优化设计研究[D].武汉水利电力大学,1999.
    [98]沈伟跃,赵锡宏.有限元无限元耦合单桩弹性分析法[J].工程力学.1990,7(3):52-64.
    [99]倪新华,朱百里.无限元在桩土共同作用分析中的应用[C].首届全国岩土工程博士学术地讨论会论文集.1990174-184.
    [100]Prakoso W A, Kulhawy F H. Contribution to piled raft foundation design[J]. Journal of Geotechnical and Geoenvironmental Engineering.2001,127:17-24.
    [101]陈仁朋.软弱地基中桩筏基础工作性状及分析设计方法研究[D].浙江大学,2001.
    [102]关安峰,徐斌.桩(土)与承台组合结构罚有限元分析[J].岩土工程学报.2000,22(006):686-690.
    [103]吴鸣,赵明华.大变形条件下桩土共同工作及试验研究[J].岩土工程学报.2001,23(004):436-440.
    [104]Cheung Y K. Finite strip method analysis of elastic slabs[J]. ASCE J. of Mechanics Div.1968,94:1365-1378.
    [105]Cheung Y K, Tham L G, Guo D J. Analysis of pile group by infinite layer method. [J]. Geotechnique.1988, 38(3):415-431.
    [106]Butterfield R, Banerjee P K. The elastic analysis of compressible piles and pile groups[J]. Geotechnique. 1971,21(1):43-66.
    [107]Banerjee P K, Davies T G. The behaviour of axially and laterally loaded single piles embedded in nonhomogeneous soils[J]. Geotechnique.1978,28(3):309-326.
    [108]Kuwabara F. An elastic analysis for piled raft foundations in a homogeneous soil[J]. Soils and foundations. 1989,29(1):82-92.
    [109]Poulos H G. Piled rafts in swelling or consolidating soils[J]. Journal of Geotechnical Engineering.1993, 119(2):374-380.
    [110]杨敏,赵锡宏.分层土中的单桩分析法[J].同济大学学报:自然科学版.1992,20(004):421-428.
    [111]施景勋,叶国琛.匀质地基中桩土间力传递的边界元模拟[J].岩土工程学报.1994,16(006):64-72.
    [112]张同清,赵锡宏,宰多珉.任意力系作用下层状弹性半空间的有限层分析办法[J].岩土工程学报.1981,3(2):27-42.
    [113]张崇文,赵剑明.有限层有限元混合法研究桩土相互作用[J].天津大学学报.1995,28(006):765-772.
    [114]王玉杰,王跃华.有限棱柱法在群桩与土相互作用分析中的应用[J].天津大学学报.1997,30(002):170-174.
    [115]曹志远,张佑启.半解析数值方法[M].北京:国防工业出版社,1992.
    [116]O'Neill M, Ghazzaly O, Ha H. Analysis of three-dimensional pile groups with nonlinear soil response and pile-soil-pile interaction[C].Pro.9th, Annual offshore Technology Conference Houston, Texas:1977.
    [117]Chow Y K. Iterative analysis of pile-soil-pile interaction[J]. Geotechnique.1987,37(3):321-333.
    [118]Lee C Y. Settlement of Pile Groups Practical Approach[J]. Journal of Geotechnical Engineering.1993, 119(9):1449-1461.
    [119]Lee C Y. Discrete layer analysis of axially loaded piles and pile groups[J]. Computers and Geotechnics. 1991.11(4):295-313.
    [120]Franke E, Lutz B. El-Mossallamy Y. Measurements and numerical modelling of high rise building foundations on Frankfurt Clay[J]. Geotechnical Special Publication.1994:1325-1336.
    [121]黄熙龄.高层建筑厚筏反力及变形特征试验研究[J].岩土工程学报.2002,24(002):131-136.
    [122]张武.高层建筑桩筏基础模型试验研究[D].北京:中国建筑科学研究院.2002.
    [123]陈龙珠,梁发云,严平,等.带褥垫层刚-柔性桩复合地基工程性状的试验研究[J].建筑结构学报.2004,25(003):125-128.
    [124]周德泉,刘宏利,张可能.三元和四元复合地基工程特性的对比试验研究[J].建筑结构学报.2004,25(005):124-128.
    [125]辛公锋,彭桂超,张忠苗.不同褥垫层刚-柔性桩复合地基试验研究[J].施工技术(北京).2005,34(009):54-55.
    [126]郑俊杰,袁内镇.石灰桩一粉煤灰桩在深厚软土地基用的应用[J].建筑结构.1997,4:29-30.
    [127]Zeevaert L. Compensated friction-pile foundation to reduce the settlement of buildings on the highly compressible volcanic clay[C].Mexico City:1957.2.81-86.
    [128]Burland J B. Piles as settlement reducers[C].Pro.19 th Nat., Italian Geotech. Conf. proc.19th Nat. Italian, Geot. Conf., Pavia:1995.21-34.
    [129]宰金珉.塑性支承桩——卸荷减沉桩的概念及其工程应用[J].岩土工程学报.2001,23(003):273-278.
    [130]刘润,闫澍旺.带褥垫层减沉桩作用机理及现场实验研究[J].建筑结构学报.2000,21(004):76-80.
    [131]管自立.疏桩基础设计实例分析与探讨(续)[J].建筑结构.1993(011):42-46.
    [132]刘金砺,李大展.桩基按变形控制设计的几个问题[J].桩基设计施工与检测.2001:121-130.
    [133]刘金砺.高层建筑地基基础概念设计的思考[J].土木工程学报.2006(06):100-105.
    [134]蔡敏,付春友,张文斌.考虑桩土共同作用的桩基沉降分析[J].武汉大学学报(工学版).2008(S1):126-129.
    [135]张武.高层建筑桩筏基础模型试验研究[D].北京:中国建筑科学研究院,2002.
    [136]吴世明,杨挺,周健.岩土工程新技术[M].北京:中国建筑工业出版社,2001:209-218
    [137]Kim K N, Lee S, Kim K. Optimal pile arrangement for minimizing differential settlements in piled raft foundations[J]. Computers and Geotechnics.2001,28(4):235-253.
    [138]赵锡宏,董建国,袁聚云.桩基减少桩数与沉降问题的研究[J].土木工程学报.2000,33(003):71-74.
    [139]Padfield C J, Sharrock M J. Settlement of structures on clay soils[M]. Construction Industry Research and Information Association[for] Directorate of Civil Engineering Service, Property Services Agency, Department of the Environment,1983.
    [140]Fleming W. A new method for single pile settlement prediction and analysis[J]. Geotechnique.1993,43(4): 615-620.
    [141]Randolph M F. Design methods for pile groups and piled rafts[C].13th International Conference on Soil Mechanics and Foundation Engineering New Delhi:AA BALKEMA,1994.5.61-82.
    [142]Horikoshi K, Randolph M F. Centrifuge modelling of piled raft foundations on clay[J]. Geotechnique.1996, 46(4):741-752.
    [143]Hain S J. Lee I K. The analysis of flexible raft-pile systems[J]. Geotechnique.1978,28(1):65-83.
    [144]Chow Y K, Teh C I. Pile-Cap-Pile-Group Interaction in Non-homogeneous Soil[J]. Journal of geotechnical engineering.1991,117(11):1655-1668.
    [145]Clancy P, Randolph M F. Simple design tools for piled raft foundations[J]. Geotechnique.1996.46(2): 313-328.
    [146]Horikoshi K, Randolph M F. A contribution to optimum design of piled rafts[J]. Geotechnique.1998,48(3): 301-317.
    [147]Viggiani C. Some comments on the analysis of piled rafts[C].Proceedings of the Fourteenth International Conference on Soil Mechanics and Foundation Engineering AA BALKEMA,1997.4.2263-2266.
    [148]陈龙珠,梁发云,丁屹.变刚度复合地基处理的有限元分析[J].工业建筑.2003,33(011):1-4.
    [149]乔京生,陶龙光,刘大江,等.基于差异沉降的变刚度复合地基方案研究[J].湖南科技大学学报:自然科学版.2006,21(002):17-21.
    [150]杨永新.变刚度复合地基桩土荷载分担比研究[J].建筑结构.2007,37(011):33-35.
    [151]Zheng J, Abusharar S W, Wang X. Three-dimensional nonlinear finite element modeling of composite foundation formed by CFG-lime piles[J]. Computers and Geotechnics.2008,35(4):637-643.
    [152]王文,顾晓鲁.桩—土—筏片体系的数值与半数值三维非线性分析模型[J].土木工程学报.1998,31(003):30-40.
    [153]史佩栋.实用桩基工程手册[M].北京:中国建筑工业出版社,1999.
    [154]Polous J. E基础工程分析与设计[M].北京:中国建筑工业出版社,1987.
    [155]王卫东,申兆武,吴江斌.桩土-基础底板-上部结构协同的实用分析方法与应用[J].建筑结构.2007,37(005):111-113.
    [156]赵锡宏,龚剑.桩筏(箱)基础的荷载分担实测,计算值和机理分析[J].岩土力学.2005,26(003):337-341.
    [157]Pooya Nejad F, Jaksa M B, Kakhi M, et al. Prediction of pile settlement using artificial neural networks based on standard penetration test data[J]. Computers and Geotechnics.2009,36(7):1125-1133.
    [158]King G. An introduction to superstructure-raft-soil interaction[C].Int. Sym. On Soil-Structure Interaction India:University of Roorkee,1977.453-466.
    [159]王凯.N层弹性连续体系在圆形均布垂直荷载作用下的力学计算[J].土木工程学报.1982,15(2):65-76.
    [160]Hooper J A. Elastic analysis of a circular raft in adhesive contact with a transversely isotropic medium[J]. Geotechnique.1975,25(4):301-309.
    [161]Hooper J A. Analysis of a circular raft in adhesive contact with a thick elastic layer[J]. Geotechnique,1974, 24(4):561-580.
    [162]杨敏,王伯钧.使用Geddes应力系数公式求解单桩沉降[J].同济大学学报:自然科学版.1997,25(004):379-385.
    [163]楼晓明,刘建航.两个相邻高层建筑桩箱基础的共同作用分析[J].土木工程学报.2002,35(003):55-60.
    [164]洪毓康,楼晓明.群桩基础共同作用分析[C].第六届土力学及基础工程学术会议论文选集.上海:同济大学出版社.1991.427-430.
    [165]楼晓明,洪毓康.群桩基础地基中的竖向附加应力性状研究[J].岩土工程学报.1996,18(004):20-26.
    [166]楼晓明,刘建航,胡中雄.高层建筑箱形基础倾斜的综合分析[J].同济大学学报:自然科学版.2000(006):646-650.
    [167]龚晓南.21世纪岩土工程发展展望[J].岩土工程学报.2000,22(002):238-242.
    [168]Itasca Consuiting Group I. FLAC3D(Fast Lagrangian Analysis of Continua in 3 Dimensions) User's Manual[S]. Version 2.0 ed. USA, Hasca Consulting Group,Inc. 1997.
    [169]刘波,韩彦辉FLAC原理,实例与应用指南[M].北京:人民交通出版社,2005:2-10.
    [17()]寇晓东,周维垣,杨若琼FLAC-3D进行三峡船闸高边坡稳定分析[J].岩石力学与工程学报.2001,20(1):6-10.
    [171]张武,高文生.变刚度布桩复合地基模型试验研究[J].岩土工程学报.2009(06):905-910.
    [172]奎朱,纲魏,徐日庆.刚-柔性桩复合地基复合模量的一种解析解[J].岩石力学与工程学报.2008,27(Supp.1):3104-3109.
    [173]Xiaonan G. Theories and engineering applications of composite foundation[M]. Beijing:China Architecture and Building Press,2002:76-87.
    [174]闫明礼,王明山,闫雪峰.多桩型复合地基设计计算方法探讨[J].岩土工程学报.2003(03):352-355.
    [175]郑俊杰,区剑华,袁内镇,等.多元复合地基压缩模量参变量变分原理解析解[J].岩土工程学报.2003,25(003):317-321.
    [176]钱玉林.水泥加固土复合模量的研究[J].工业建筑.2001,31(002):31-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700