无线通信系统中的信号识别技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信技术以及互联网技术的迅猛发展,无线频谱资源日趋饱和,为了提高频谱的利用率和保证不同体制无线网络的协同工作,满足多种通信业务需求,认知无线电技术孕育而生,其中的频谱感知技术就是解决这一问题的关键技术之一,其目的就是要对各频段所存在的授权及非授权信号类型进行检测和识别,仍然属于通信信号调制识别的范畴。本文针对适用于非协作频谱感知的信号特征提取及识别算法进行了深入的研究,主要内容包括基于统计模式识别的单载波调制信号特征提取技术,单载波与多载波调制信号的类间识别技术,以及多载波调制(MCM)信号的参数估计和类内盲识别技术。
     首先,在分析单载波调制信号传统统计模式识别算法的基础上,提出了一种基于方向数据统计理论的信号特征提取新算法,利用信号相位服从圆周分布这一特点,在载波频率、带宽和调制指数均未知的情况下,通过一定的角度变换将单载波信号瞬时频率值处理后,作为数据样本,提取分类特征。该算法提取的特征稳定性明显优于传统算法,不因时间的推移或环境的变化而发生显著改变,对样本长度依赖程度较小,类间可分离度好。当信噪比大于01Bd的情况下,特征趋于平稳,具有较高的置信度。为非协作频谱感知中单载波通信信号调制类型的盲识别提供了新的途径。同时指出了算法需要进一步完善和改进的地方。
     其次,针对瑞利衰落信道条件下的单载波信号和多载波信号的类间盲识别问题,提出了一种改进的高阶累积量组合特征参数提取算法。理论分析证明算法能有效抑制瑞利多径衰落及高斯噪声对接收端识别性能的影响。算法不需任何先验知识,避免了载波同步处理的繁琐过程,可直接对中频采样信号进行处理。仿真验证了改进的识别特征与传统的特征相比具有更好的稳健性,并且对子载波数目不敏感。解决了特征参数动态变化所导致的识别门限确定的困难,降低了误判的概率,提高了识别精度,通过门限判别法或者结合简单的分类器即可取得良好的识别效果。为下一步实现多载波调制信号的类内识别奠定了基础。
     再次,对基于高阶循环累积量估计多载波CDMA信号子载波频率以及利用多尺度Haar小波变换估计多载波CDMA信号码速率的可行性进行了初步的研究,证明了通过检测特定循环频率处高阶循环累积量较大峰值的位置,来对多载波CDMA信号的子载波频率进行盲估计的切实可行的。随后在信号子载波估计结果的基础上,对基于多尺度Haar小波变换的码片速率估计算法进行了仿真,分析了载波估计频偏对不同多载波信号码速率估计性能的影响。为四类多载波调制信号的类内盲识别,提供了必要的理论基础和参数支持。
     最后,在多载波调制信号参数盲估计的基础上,提出了基于对构造数据矩阵进行奇异值分解的多载波调制信号盲识别新算法,给出了算法模型及实现框图。以典型的基于IFFT实现的OFDM, MC-CDMA, MC-DS-CDMA和MT-CDMA四种常见但难以区分的多载波调制信号为例,分别在理想高斯白噪声信道以及瑞利多径信道下做了详细的算法理论分析和仿真验证,并针对存在多址干扰时,MC-CDMA信号构造矩阵的较大非零奇异值个数n随用户数量线性增长而造成的单次判定结果失效问题,给出了修正的判定准则,更加适用于实际信道情况。算法无需知道任何多载波调制信号数据信息以及扩频码类型和长度,仅通过构造数据矩阵奇异值梯度序列中较大非零奇异值的个数,即可准确判断多载波调制信号的类型,避免了传统识别算法中特征提取之后的分类器设计的繁琐过程,大大简化了识别流程,而且算法中构造数据矩阵的阶数N值选取不必严格遵守与子载波个数的整数倍关系,可以选取相对较小的N值,以减少算法的运算量,仿真分析证明算法在较低信噪比条件下取得了良好的效果。为多载波调制信号的类内识别,提供了一条新思路,具有较高的实际参考价值。
Along with the rapid development of wireless communications technologies and Internet technologies, wireless spectrum resources become increasingly saturated, in order to improve the utility ratio of spectrum, ensure the different heterogeneous wireless networks to work together and meet the needs of a variety of communication services, in this case, cognitive radio technology is born pregnant, of which the spectrum sensing is one of the key technologies to solve this problem, its objective is to detect and recognize the type of authorized or unauthorized signal exist in various frequency bands, it still belongs to communication signal modulation recognition category. In this dissertation, the signal feature extraction and recognition algorithm suitable for non-cooperative spectrum sensing have been deeply researched, mainly include single-carrier modulation signal feature extraction techniques based on statistical pattern recognition, inter-class recognition technology of single-carrier and multi-carrier modulation signals, as well as the multi-carrier modulation (MCM) signal parameter estimation and intra-class blind recognition technologies.
     First of all, after the analysis of the traditional statistical pattern recognition algorithm of single-carrier modulation signals, a new signal feature extraction algorithm based on the direction data statistical theory is proposed. This algorithm utilizes the characteristic that signal phase obeys the distribution of circular, take the instantaneous frequency values of single-carrier signal processed by a certain angle transform as data samples to extract the classification features, without any prior knowledge of carrier frequency, bandwidth and modulation index. The features extracted by this algorithm is more stable than conventional algorithms, has little changes with the time or the environment, smaller dependence of the sample length and better degree of inter-class separability. When the signal to noise ratio is greater than lOdB, the feature tends to stabilize and has a high degree of confidence. All of this provides a new way for blind recognition of single-carrier communication signal modulation type in non-cooperative spectrum sensing. Then, the further refinement and improvement are also indicated.
     Secondly, in order to solve the blind recognition problem of single-carrier signals and multi-carrier signals in Rayleigh fading channel, put forward an improved higher-order cumulants combination feature extraction algorithm and prove that algorithm can effectively suppress the effect on recognition performance caused by multi-path Rayleigh fading and Gaussian noise on the receiving end. Without any a priori knowledge, algorithm avoids tedious process of carrier synchronization and processes the sampling IF signals directly. Simulation shows that the improved features is not sensitive to the number of sub-carrier and have better robustness, compared with traditional algorithm. It also solves the difficulties of determining the recognition threshold caused by the dynamic changes of characteristic parameters. In addition, algorithm not only reduces the probability of misjudgment but also improves the identification accuracy, through the threshold discriminance or combining with simple classifiers it can achieve good recognition effect and lay a good foundation for the recognition of multi-carrier modulation signal next.
     Thirdly, the estimation of sub-carrier frequencies based high-order cyclic cumulants and bit rate based on multi-scale Haar wavelet transform are discussed about multi-carrier CDMA signal. The research shows that it is feasible to estimate sub-carrier frequencies by detecting the peak position of specific cycle-frequency. After this, bite rate estimation algorithm based on multi-scale Haar wavelet transform and the analysis of its performance under the conditions of existence of carrier frequency offset are simulated. All the experimental results provide the necessary theoretical basis and parameters support for the blind recognition of four kinds multi-carrier modulation signals.
     Finally, on the basis of the blind parameters estimation of the multi-carrier modulation signal, a new blind identification of. multi-carrier modulation signal algorithm based on the structural data matrix singular value decomposition is proposed, including algorithm model and implementation diagram. Take OFDM, MC-CDMA, MC-DS-CDMA and MT-CDMA four typical kinds of multi-carrier modulation signals based on IFFT implementation for example, which are common but difficult to distinguish. Detailed theoretical analysis and algorithm simulation are made respectively in the ideal Gaussian white noise channel and Rayleigh multi-path channel. Since the number of larger non-zero singular value of the MC-CDMA signal's structure matrix increases linearly with the number of users which leads to the misjudgment caused by the existence of multiple access interference, in one time, so a modified criteria more applicable to the actual channel conditions is presented. Algorithm doesn't need to know any multi-carrier modulation signal data information as well as the type and length of the spreading code. Only by counting the number of large non-zero singular value in gradient sequence of structural matrix singular values, it can accurately determine the type of multi-carrier modulation signal, not only avoids the tedious process of classifier design in traditional recognition algorithms after feature extraction, but also greatly simplifies the identification process. Furthermore, the order of structural data matrix do not have to strictly abide by the relationships that its value is an integer multiple of the number of sub-carriers, so a relative smaller value can be selected to reduce the computational complexity of algorithm. The simulation and analysis verifies that this algorithm can achieve good results in low SNR conditions. All of above providing a new idea for the intra-class recognition of multi-carrier modulation signals, with a high practical value.
引文
[1]Jamil, M. Shaikh, S. P. Shahzad, M. Awais, Q.4G:The future mobile technology TENCON 2008. IEEE Region 10 Conference 19-21 Nov.2008 Page(s):1-6
    [2]王文博,郑侃.宽带无线通信OFDM技术(第二版).北京:人民邮电出版社,2007.08.
    [3]N.Yee, J.P.Linnarz, and G. Fettweis. Multi-carrier CDMA in indoor wireless radio networks, in Proceedings IEEE International Symposium on Personal, Indoor and Mobile Radio Commun.Yokohama, Japan, Sept.1993, pp. 109-113.
    [4]R. Prasad and S. Hara, An Overview of Multi-carrier CDMA, IEEE Commun. Mag, Vol.35, No.12, pp.126-133,1997.
    [5]N. K. Hoven, "On the feasibility of cognitive radio, Master of Science, University of California, Berkeley, Spring 2005.
    [6]J. Mitola Ⅲ, Cognitive radio for flexible mobile multimedia Communications, Sixth International Workshop on Mobile Multimedia Communications (MoMuC'99), San Diego, CA,1999:3-10.
    [7]Joseph Mitola Ⅲ:Maguire, GQ., Jr., Cognitive radio:making softwvare radios more personal, IEEE Personal Communications, Aug.1999, Vol.6, Issue 4, Page(s):13-18
    [8]J. Mitola Ⅲ, Cognitive radio:An integrated agent architecture for software defined radios[D], Doctor of Technology, Royal Institute Technology (KTH), Stockholm, Sweden,2000.
    [9]Mitola J. Cognitive Radio:An Integrated Agent Architecture for Software Defined Radio[R]. Stockholm, Sweden:Royal Institute of Technology (KTH),2000.
    [10]Haykin S. Cognitive Radio:Brain-Empowered Wireless Communications [J]. IEEE Journal on Selected Areas in Communications,2005,23(2):201-220.
    [11]张炜.数字通信信号调制方式自动识别研究[D].国防科学技术大学博士学位论文,2006:1-3页
    [12]陈洄.基于循环谱相关的调制识别识别的研究[D].北京交通大学硕士学位论文,2006:1-2页
    [13]佟学俭,罗涛.OFDM移动通信技术原理与应用[M].北京:人民邮电出版社,2003:23-46页
    [14]尹长川,罗涛,乐光新编.多载波宽带无线通信技术[M].北京:北京邮电大学出版社,2004:25-48页
    [15]A. Polydoros, K. Kim. On the detection and classification of quadrature digital modulations in broad-band noise. IEEE Trans. Commun.,1990, 38:1199-1211
    [16]Y. Yang, S. S. Soliman. Optimum classifier for M-ary PSK signals. Proc. ICC,1991,1693-1697
    [17]Y. Yang, S. S. Soliman. Statistical moments based classifier for MPSK signals. Proc.GLOBECOM,1991,1:72-76
    [18]C. Y. Huang, A. Polydoros. Likelihood methods for MPSK modulation classification. IEEE Trans. Commun.,1995,43:1493-1504.
    [19]P. C. Sapiano, J. Martin, R. Holbeche. Classification of PSK signals using the DFT of phase histogram. Proc. ICASSP,1995,3:1868-1871.
    [20]K. T. Assaleh, S. Soliman, Spectral-temporal decomposition of multi-component signals, Sixth IEEE SP workshop on statistical signal and array processing,1992,(22):239-250.
    [21]N. Lay, A. Polydoros. Modulation classification of signals in unknown ISI environments. Proc.IEEE MILCOM,1995,1:170-174.
    [22]N. Lay, A. Polydoros. Per-survivor processing for channel acquisition, data detection and modulation classification. Proc. ASILOMAR,1995, 2:170-174.
    [23]C. Long, K. Chugg, A. Polydoros. Further results in likelihood classification of QAM signals.Proc. IEEE MILCOM,1994,1:57-61
    [24]D. Boiteau, C. Le Martret. A generalized maximum likelihood framework for modulation classification. Proc. ICASSP,1998,4:2165-2168
    [25]C. Schreyogg, J. Reichert. Modulation classification of QAM schemes using the DFT of phase histogram combined with modulus information. Proc. IEEE MILCOM,1997,3:1372-1376
    [26]P. Marchand, J. L. Lacoume, C. Le Martret. Classification of linear modulations by a combination of different orders cyclic cumulants. Proc. Workshop on HOS,1997,47-51
    [27]P. Marchand, J. L. Lacoume, C. Le Martret. Multiple hypothesis classification based on cyclic cumulants of different orders. Proc. ICASSP, 1998,2157-2160
    [28]J. A. Sills. Maximum-likelihood modulation classification for PSK/QAM. Proc. IEEE MILCOM,1999,1(1):57-61
    [29]P. Panagiotou, A. Anastasoupoulos, A. Polydoros. Likelihood ratio tests for modulation classification. Proc. IEEE MILCOM,2000,2:670-674'
    [30]Zhijin Zhao, Tao Lang. A MPSK modulation classification method based on the maximum likelihood criterion. Proc. ICSP,2004,2:1805-1808
    [31]Yucek. T, Arslan. H. A novel sub-optimum maximum-likelihood modulation classification algorithm for adaptive OFDM systems. Proc. WCNC,2004, 2:739-744
    [32]Azzouz. E. E. Nandi. A.K. "Automatic identification of digital modulation types".Signal Processing, Now.1995.Vol.47, No.1, pp.55-59.
    [33]Azzouz.E. E.Nandi.A.K. Automatic Modulation Recognition of Communication Signals Kluwer Academic Publishes. Netherlands.1996.
    [34]A K Nandi, E.E.Azzouz. Algorithms for automatic modulation recognition of communication signals [J]. IEEE Trans. on Communications,1998,46 (4):431-436.
    [35]Daniel Boudreau, Chrisitian Dubuc, Francois Patenaude, Martial Dufour, John Lodge, Rbbert Inkol. A fast automatic modulation recognition algorithm and its implementation in aspectrum monitoring application. IEEE MILCOM Conf.2000(2):732-736
    [36]J. Lopatka, M. Pedzisz. Automatic modulation classification using statistical moments and fuzzy classifier. Proc. IEEE ICSP,2000,3:1500-1506
    [37]T. G. Callaghan, J. L. Pery, J. K. Tjho. Sampling and algorithms aid modulation recognition,Microwaves&RF,1985,24(9):117-119,121
    [38]S. Z. Hsue, S. S. Soliman. Automatic modulation classification using zero crossing. IEE Radar and Signal Processing,1990,137:459-464
    [39]H. H. Mahram, A. O. Hero. Robust QAM modulation classification via moment matrices. Proc.PIMRC,2000,1:133-137
    [40]C. Martret, D. M. Boiteau. Modulation classification by means of different order statistical moments. Proc. IEEE MILCOM,1997,3:1387-1391
    [41]A. Swami, B. M. Sadler. Hierarchical digital modulation classification using cumulants. IEEE Trans. Commun.,2000,48(3):416-429
    [42]A. Swami, S. Barbarossa, B. Sadler. Blind source separation and signal classification. Proc.ASILOMAR,2000,2:1187-1191
    [43]George Hatzichristos, Monique P. Fargues.A hierarchical approach to the classification of digital modulation types in multipath environments. Conference record of the thirty-fifth asilomar conference on Signals, systems and computers.2001 (2):1494-1498
    [44]Gardner W. A. Spectral correlation of modulated signals:part Ⅰ-analog modulation. IEEE Trans. Commun.1987(6):584-594
    [45]Gardiner W. A., Brown W. A.Spectral correlation of modulated signals:part Ⅱ-digital modulation. IEEE Trans. Commun.1987(6):595-600
    [46]吕杰,张胜付.数字通信信号自动调制识别的谱相关方法[J].南京理工大学学报(自然科学版),1999,23(4):297-299
    [47]韩国栋,蔡斌,邹江兴.调制分析与识别的谱相关方法.系统工程与电子技术,2001,23(3):34-36
    [48]K.C.Ho, W.Prokipiw, YT.Chan. Modulation identification of digital signals by the wavelet transform. IEE Proc-Radar.Sonar Navig.2000(4):169-176
    [49]蒋盘林.小波变换技术及其在信号调制方式识别中的应用.电子对抗.2000(1):19-25
    [50]任春辉,魏平,肖先赐.改进的Morlat小波在信号特征提取中的应用[J].电波科学学报2003,18(6):633-637.
    [51]吕铁军,郭双冰,肖先赐.调制信号的分析特征研究.中国科学.2001(6):508-513
    [52]M.L.D Wong, A.K. Nandi. Automatic digital modulation recognition using artificial neural network and genetic algorithm.Signal processing,2004,84: 351-365.
    [53]Walter A. Detection of multi-carrier modulations using 4th-order cumulants [C].Military Communications Conference Proceedings,1999, pp:432-436.
    [54]Grimaldi D, Rapuano S, Truglia G. An automatic digital modulation classifier for measurement on telecommunication networks [C]. Proc of MTC 2002. Anchrage, A K, USA:IEEE,2002:957-962.
    [55]李煜国.多径瑞利信道下OFDM信号的识别方法研究[D].硕士学位论文.西安:西安电子科技大学2009.
    [56]王永娟.基于高阶累积量的OFDM信号调制识别技术研究[D].硕士学位论文.西安:西安电子科技大学2009.
    [57]Ganesan G, Li.Y.G Cooperative spectrum sensing in cognitive radionetworks. New Frontiers in Dynamic Spectrum Access Networks, Baltimore, MA,USA,Nov 2005, page(s):137-143
    [58]I.F.Akyildiz,W.Y.Lee,M.C.Vuran, and S.Mohanty, Next generation/dynamic spectrum access/cognitive radio wireless networks:a survey,Computer Networks, vol.50, pp.2127-2159,2006
    [59]Cabric, D.; Mishra, S.M.; Brodersen, R.W., Implementation issues in spectrum sensing for cognitive radios, Signals, Systems and Computers 2004, Conference Record of the 38th Asilomar Conference,7-10 Nov.2004, Vol.1,Page(s):772-776
    [60]谢显中.感知无线电技术及其应用[M].北京:电子工业出版社,2008,4.
    [61]Ning Han, SungHwan Shon, Jae Hak Chung, etal. Spectral Correlation Based Signal Detection Method for Spectrum Sensing, The 6th ICACT on IEEE 802.22 WRAN Systems, Seoul, Korea, Feb,2006
    [62]B.Wild, K.Ramchandran, Detecting primary receivers for congnitive radio applicatons, Proc.IEEE DySPAN 2005, Nov 2005, pp:124-130
    [63]Federal Communications Commission, " Spectrum Policy Task Force," Rep. ET Docket no.02-135, Nov.2002.
    [64]Ghsemi, E.S.Sousa. Collaborative spectrum sensing for opportunistic access in a fading environment Proc.IEEE DySPAN 2005,Nov 2005, pp:131-136
    [65]张葛祥.雷达辐射源信号智能识别方法研究[D].西南交通大学,2005.
    [66]吕铁军.通信信号调制识别研究[D].成都:电子科技大学,2000.
    [67]陈国,胡修林,张蕴玉,朱耀庭.基于短时分形维数的汉语语音自动分段技术研究[J].通信学报.2000,21(10):6-13.
    [68]谢和平,薛秀谦.分形应用中的数学基础与方法.科学出版社,1998,pp:65-77.
    [69]Lempel.A, Ziv.J.On the Complexity of Finite Sequences.IEEE Transactions on Information Theory.1976,22(1):75-81
    [70]解幸幸,李舒,张春利等.Lempel-Ziv复杂度在非线性检测中的应用研究。复杂系统与复杂性科学[J].2005,2(03):61-66.
    [71]吕铁军,郭双冰,肖先赐.基于复杂度特征的调制信号识别.通信学报.2002,23(1):111-115.
    [72]Borowska M, Oczeretko E, Mazurek A et al. Application of the Lempel-Ziv complexity measure to the analysis of biosignals and medical images [C]. Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization. Lisbon, Portugal,2005,50(2):391-398.
    [73]张葛祥,金炜东,胡来招.基于粗集理论的雷达辐射源信号识别[J].西南交通大学学报.2005,39(8):871-875.
    [74]Zhang G X, Jin W D and Hu L Z. Resemblance Coefficient Based Feature Extraction Approach for Radar Emitter Signals. Chinese Journal of Electronics.2005,14(2):337-341.
    [75]Pincus SM. Approximate entropy as a measure of system complexity. Proc Nati Acad. Sci. USA.1991,88(3):2297-2301.
    [76]白冬梅.脑电信号的特性分析与特征提取[D]..大连理工大学硕士学位论 文,2006.
    [77]Richman J. S, Moorman J. R. Physiological time series analysis using approximate entropy and sample entropy. Am J Physiol.2000,278(6): 2039-2049.
    [78]Lake D E, Richman J S,Griffin M P, et al. Sample entropy analysis of neonatal heart rate variability. Am J Physiol.2002,283(3):789-797.
    [79]蔡立羽,王志中,张海虹,基于复杂性度量的表面肌电信号分类方法,生物物理学报,Vol.16,No.1,119-124,2000
    [80]蔡忠伟,李建东.基于双谱的通信辐射源个体识别[J].通信学报.2007,28(2):75-79.
    [81]Xian-Da Zhang, Yu Shi, Zheng Bao. A new feature vector using selected bispectra for signal classification with application in radar target recognition[C]. IEEE transactions on signal processing.2001,49(9): 1875-1884.
    [82]李元生.方向数据统计[M].北京:中国科学技术出版社,1998.
    [83]Fisher, N.I., Lewis, T., Embleton, BJJ. Statistical Analysis of Spherical Data, Cambridge University Press,1993.
    [84]Fisher, N.I., Statistical Analysis of Circular Data, Cambridge University Press,1993..
    [85]Mardia, K.V. and Jupp. P., Directional Statistics (2nd edition), John Wiley and Sons Ltd.,2000
    [86]梯其玛希.E.C著.函数论[M].北京:科学出版社,1962:473.
    [87]陈平,李庆民,赵彤,瞬时频率估计算法研究进展综述[J].电测与仪表2006:43(7):1-6.
    [88]YAN Xiao, QIN Kai yu, GAO Yuan kai,WU Shao wei.Study of spectrum analysis based on cordic algorithm [J].Journal of university of electronic science and technology of china. Jun.2006,35(3):335-337.
    [89]Doufexi.A. Armour.S. Nix.A. Beach.M. Design considerations and initial physical layer performance results for a space time coded OFDM 4G cellular network. Personal, Indoor and Mobile Radio Communications,2002 Page(s):192-196 vol.1.
    [90]谢玉堂.宽带无线通信系统中的载波同步及天线校准研究[D].中国科学技术大学,2006.
    [91]Lopatka, J., Pedzisz, M., Automatic modulation classification using statistical moments and a fuzzy classifier[C],5th International Conference on Signal Processing Proceedings, WCCC-ICSP 2000. vol.3:1500-1506.
    [92]Swami, A. Sadler, B.M. Hierarchical digital modulation classification using cumulants[J].IEEE Trans. on Communications,2000, vol.48,no.3:416-429.
    [93]O. A. Dobre et al., On the classification of linearly modulated signals in fading channels[C], in Proc. Conference on Information Sciences and Systems,2004, Princeton University.
    [94]Swami A, Sadler B M. Hierarchical digital modulation classification using cumulants, IEEE Trans.on Communications,2000, vol.48,no.3:416-429.
    [95]Wen Wei, Jerry M.Mendel, Maximum-likelihood classification for digital amplitude-phase modulations, IEEE Trans. on Communications,2000, vol.48, no.2:189-193.
    [96]Wong, M.L.D. Nandi, A.K.,Automatic digital modulation recognition using spectral and statistical features with multi-layer perceptions[C], Signal Processing and its Appications, Sixth International, Symposium on.2001, vol2:390-393.
    [97]刘献玲.基于累量的OFDM信号调制识别[D].硕士学位论文.西安:西安电子科技大学2007.
    [98]张晶晶.基于小波变换的OFDM信号识别技术研究[D].硕士学位论文.西安:西安电子科技大学2009.
    [99]王永娟.基于高阶累积量的OFDM信号调制识别技术研究[D].硕士学位论文.西安:西安电子科技大学2009.
    [100]D.Grimaldi, S.Rapuano, CzTruglia, An automatic digital modulation classifier for measurement on telecommunication networks[C], IEEE instrumentation and measurement technology conference, USA,2002, May, vol.2:957-962.
    [101]Walter Akmouche, Detection of multicarrier modulations using 4th-order cumulants.MILCOM[C] 1999, Vol.1:432-436.
    [102]WANG Bing, GE Lin dong. A novel algorithm for identification of OFDM Signal[A]. Proceedings of 2005 International Conference on Wireless Communications, Networking and Mobile Computing. Piscataway, NJ, USA:IEEE,2005:261-264.
    [103]Alam, Z., C. Sobhan, and M. Abdus. A novel idea to combat 4G challenges to establish all wireless internet services[C].2008, pp:1-6.
    [104]Al-kebsi, I.I.M. and M. Ismail. The Impact of Modulation Adaptation and Power Control on PAPR Clipping Technique in OFDM of 4G Systems. in Telecommunication Technologies 2008 and 2008 2nd Malaysia Conference on Photonics. NCTT-MCP 2008.6th National Conference on.2008. pp: 295-299.
    [105]Ali, S., et al. Simulation and bit error rate performance analysis of 4G OFDM systems. in Computer and Information Technology,2008. ICCIT 2008.11th International Conference on.2008. pp:138-143.
    [106]吴伟陵,牛凯编著.移动通信原理[M].北京:电子工业出版社,2005:257-259.
    [107]张贤达.现代信号处理(第二版)[M].北京:清华大学出版社,2002,263-274.
    [108]王彬.无线衰落信道调制识别、信道盲辨识和盲均衡技术研究[D].解放军信息工程大学.博士学位论文[D].2007:21-34.
    [109]颜彪.多载波及其多载波CDMA系统中的关键技术研究[D].南京航空航天大学博士学位论文.2005:15-16.
    [110]许小东.非协作数字通信系统盲解调关键技术研究[D].中国科学技术大学,2007:11-23.
    [111]Q. M. Rahman and A. B. Sesay, Blind Joint Equalization and Multiuser Detection in Dispersive MC-CDMA/MC-DS-CDMA/MT-CDMA Channels, in MILCOM'2002, pp:814-819.
    [112]张贤达,保铮.通信信号处理[M].北京:国防工业出版社,2000:11-37.
    [113]Swami A and Sadler B M. Hierarchical digital modulation classification using cumulants. IEEE Trans. on Commun.2000,48(3):416-429.
    [114]S. Hara and R. Prasad. Multicarrier Techniques for 4G Mobile Communications [M]. Artech House Publishers June 2003.
    [115]K.Fazel, S.Kaiser. Multi-Carrier and Spread Spectrum Systems[M].Wiley Press.2003.
    [116]S. Hara and R.Prasad. DS-CDMA, MC-CDMA and MT-CDMA for Mobile Multi-Media Communications, Proc. of IEEE VTC'96,1996, pp.1106-1110.
    [117]Gemeay, E. Khedr, M. El-noubi, S. Nasr, M. Multicarrier CDMA with hybrid spreading in frequency impairment channels [C].Computer Engineering & Systems,2008.International Conference on 25-27 Nov.2008 Page(s):231-236.
    [118]Wenhui Xiong. Matolak, D. W. Spectrally shaped generalized MC-DS-CDMA with dual band combining for increased diversity[C].Wireless Communications, IEEE Transactions on Vol.7, Issue5, Part 1, May 2008, pp:1676-1686.
    [119]郑文秀,赵国庆,罗明.基于高阶循环累积量的OFDM子载波盲估计[J].电子与信息学报.2008,30(2):346-349.
    [120]郑文秀,赵国庆,罗明.基于循环累积量的星形QAM载波盲估计[J].系统工程与电子技术.2008.2,30(2):232-235.
    [121]范海波,陈军,曹志刚.AWGN信道中非恒包络信号SNR估计算法[J].电子学报.2002.9,30(9):1369-1371.
    [122]詹亚峰,曹志刚,,马正新.无线数字通信的盲信噪比估计[J].清华大学学报,2003,43(7):957-960.
    [123]张波,李健君.基于Hankel矩阵与奇异值分解(SVD)的滤波方法以及在飞机颤振试验数据预处理中的应用[J].振动与冲击.2009,28(2):162-164.
    [124]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,2001,pp:346-349.
    [125]张贤达.矩阵分析与应用[M].北京:清华大学出版社.2004,pp:341-387.
    [126]郑文秀,赵国庆,罗明.正交频分复用信号的码速率估计[J].西安电子 科技大学学报,2007,34(6):859-863.
    [127]张昆帆,王兰云,赵拥军.基于窗函数的离散谱校正方法[J].现代雷达.2007,29(9):59-62.
    [128]毛青春,徐分亮.窗函数及其应用[J]中国水运.2007.7(2):231-232.
    [129]B.S.Koh and H.S.Lee. Detection of symbol rate of unknown digital communication signals, Electronics Letter,1993,vol.29,pp:278-279.
    [130]Xu Jun, Wang Fu-ping and Wang Zan-ji. The improvement of symbol rate estimation by the wavelet transform in Communications [C]. Circuits and Systems,2005. Vol.1. pp:100-103.
    [131]J.A. Sills and J.F.Wood. Application of the Euclidean algorithm to optimal baud-rate estimation[C]. presented at Military Communication Conference, McLean,VA,1996.
    [132]B.Sklar,Digtal Communication Fundamentals and Applications[M]. Upper Saddle River, NJ:Prentice Hall,2001.
    [133]Mazet L, Loubaton Ph. Cyclic Correlation Based Symbol Rate Estimation [C]. Proceedings of Asilomar-33,1999:1008-1012.
    [134]郭黎利,李旷代,石荣,吴丹.单信道时频重叠双信号的码速率估计方法.电子信息对抗技术,2009,24(1):1-4.
    [135]佟学俭.正交频分复用(OFDM)通信系统内若干关键技术的研究[D].北京:北京邮电大学,2001.
    [136]William C. Y. Lee, Mobile Communications Engineering:Theory and Applications (Second Edition), New York:McGraw-Hill,1998.
    [137]T.S. Rappaport, Wireless Communications,2nd ed., New York:Prentice Hal 1,2002.
    [138]杨大成等著,移动传播环境:理论基础,分析方法和建模技术[M],北京:机械工业出版社,2003.
    [139]William. H. Tranter, K. Sam. Shanmugan, Principles of Communication Systems Simulation with Wireless Applications, Prentice Hall PTR,2004.
    [140]周恩,陈茅茅,王文博.多径衰落信道下OFDM定时同步算法的研究[J].北京邮电大学学报,2005,28(3),pp:62-64.
    [141]李伟华,章蓓蕾,吴伟陵.OFDM系统定时与频率偏移估计[J],北京邮电大学学报.2004,27(1),pp:36-39.
    [142]V. Krishnamurthy, C.R.N. Athaudage, and Dawei Huang. Adaptive OFDM synchronization algorithms based on discrete stochastic approximation[C]. IEEE Trans.on Signal Processing,2005,53(4), pp.1561-1574.
    [143]Cardoso L S, Merouane Debbah, Pascal Bianchi. Cooperative spectrum sensing using random matrix theory[C]. ISWPC 2008.
    [144]王磊,郑宝玉,李雷.基于随机矩阵理论的协作频谱感知[J]电子与信息学报.2009,8.31(8),pp:1925-1929.
    [145]张书民.认知无线电中的协作频谱感知技术[D].大连理工大学.大连:硕士学位论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700