均匀驱动的复杂颗粒气体系统的动力学特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了均匀驱动的一维和二维复杂颗粒气体系统的动力学特性,主要讨论了系统从初态到稳态的演变过程中平均能量随时间的演化以及稳态的动力学特征(包括系统的整体颗粒温度、整体压力、非高斯的速度分布、空间密度分布、空间密度和速度的相关性、碰撞之间颗粒自由程和时间的分布、碰撞频率及其演化)。旨在扩大和深化对复杂颗粒系统的认识,使得对颗粒系统的理论研究不仅仅局限于单一颗粒系统和少组分的混合颗粒系统。
     首先,本文只研究了两种复杂颗粒系统的粒径分布特征。其一是粒径为分形分布的颗粒系统,用颗粒的粒径分形维数D来描述系统中颗粒粒径分布的不均匀程度。分形维数D越大,粒径分布越不均匀。其二是粒径为准高斯分布的颗粒系统,当颗粒的平均粒径(或均值)μ不变时,用标准偏差σ来描述系统中颗粒粒径分布的不均匀程度。σ越大,粒径越不均匀;反之,亦然。本文研究的重点在于建立均匀驱动的复杂颗粒系统的动力学模型,研究颗粒粒径分布的不均匀性对系统的动力学特征的影响。
     随后,建立了粒径为分形分布的准一维颗粒气体的动力学模型,其中每个颗粒受高斯白噪声驱动,研究了系统稳态的动力学特性。首先,定义了多组分的复杂混合颗粒系统的组分颗粒温度、整体颗粒温度和整体压力,并给出了明确的数学表达式。然后,通过Monte Carlo模拟发现分别随着颗粒碰撞的弹性恢复系数e的减小或颗粒粒径分布的分形维数D的增大,系统的整体颗粒温度和整体压力不断减小;颗粒的速度分布更加偏离高斯分布,例如更高的峰态、更大的第四累积量a_2、和更肥胖的尾部;相邻颗粒的间距分布更加偏离弹性情况的理论预测,表现为较小间距和较大空隙的更多的分布,即颗粒空间密度更加成团化。
     接着,建立了粒径为准高斯分布的一维颗粒气体的动力学模型,其中每个颗粒受高斯白噪声驱动。在相同的非弹性条件下,运用Monte Carlo模拟,首次研究了颗粒粒径分布的标准偏差σ对系统动力学特征的影响。当驱使颗粒布朗运动的驰豫时间τ远大于颗粒碰撞的平均间隔时间cτ时,系统的平均能量随时间以指数的形式衰减并趋向稳定的渐进值,系统最终到达稳态;并且,标准偏差σ越大,趋向稳态的能量驰豫时间τ_B越短。当系统处于稳态时,随着标准偏差σ的增大,系统的速度分布更加偏离高斯分布,例如更高的峰态和更肥胖的高速尾部;空间密度更加成团,系统的有效熵H_M/H_M~+减小;空间密度和速度的相关性更强,如空间密度相关函数在原点附近显示出更高的峰值、速度的空间相关函数在颗粒分隔间距小时更小。
     最后,本文将一维复杂颗粒气体的研究扩展到二维系统。建立了粒径为分形分布的二维颗粒气体的动力学模型,每个颗粒受高斯白噪声的驱动,并限制在一个二维周期性边界的水平方格子中运动。在相同的非弹性条件下,运用Monte Carlo模拟方法研究了颗粒粒径分布的分形维数D对系统稳态动力学特征的影响。随着分形维数D的增大,碰撞之间颗粒的自由程和时间的分布显著地偏离弹性情况的理论预测,具有短的自由程和时间分布的过密集的峰;碰撞频率增大,但不依赖于时间;速度分布显著地偏离高斯分布,例如更高的峰态、更加翘起的高速尾部,但是非高斯的速度分布一般不具有普适性的解析表达式;速度的空间相关性明显增强,在颗粒分隔小间距时垂直的速度相关性大约只有平行的速度相关性的一半,两者都是颗粒间距r L的幂律衰减函数、并且都具有长程性;颗粒碰撞接触时,碰撞后的平行的速度相关性是碰撞前的平行的速度相关性的两倍多,两者近似为分形维数D的线性函数。
     本文的研究表明,无论是粒径为分形分布还是粒径为准高斯分布的系统,在非弹性碰撞过程中由于颗粒粒径分布越不均匀或弹性恢复系数e的减小导致系统的能量耗散越多,是产生上述奇特现象的原因。
In this paper, we studied dynamic properties of polydisperse granular gases driven by Gaussian white noise in one and two dimensions, focuing on the evolution of average energy and the steady-state dynamic behaviors (include the global granular temperature, global pressure, non-Gaussian velocity distribution, spatial density distribution, spatial correlations of density and velocities, distributions of path lengths and free times between collisions, collision rate). The particles employed in our study are assigned granularity with fractal size distribution and quasi Gaussian size distribution. For the polydisperse granular systen with fractal size distribution, the inhomogeneity of the particle size distribution is characterized by a fractal dimension D . The higher D implies more inhomogeneity in the particle size distribution. However, for the polydisperse granular systen with quasi Gaussian size distribution, the inhomogeneity of the particle size distribution can be measured by the standard deviationσat the same mean valueμ. The larger value ofσindicates greater inhomogeneity in the particle size distribution.
     First, we presented a dynamic model of a quasi one-dimensional polydisperse granular mixture with fractal size distribution, in which the particles are driven by Gaussian white noise, and studied the steady-state dynamic properties of the sysytem. Firstly, we define the partial and global granular temperature and global pressure of the mixture. By Monte Carlo simulations, we found that, with the increase of D , the global granular temperature and the kinetic pressure decrease, the velocity distribution deviates more obviously from the Gaussian one ( such as the higher kurtosis, the larger fourth cumulant a2 and the fatter tails), and distribution of interparticle spacing deviates more obviously from the elastic form, i.e., the particles cluster more pronouncedly at the same value of the restitution coefficient e (0 < e< 1). On the other hand, as the restitution coefficiente decreases, the dynamic behavior has the similar evolution as above at the fixed D .
     Second, we presented a dynamic model of a one-dimensional granular gas with quasi Gaussian size distribution, in which the rods are thermalized by a viscosity heat bath. By Monte Carlo simulations, the effect of the dispersion of the quasi Gaussian size distribution on dynamic behavior of the system is investigated in the same inelasticity case. When the typical relaxation timeτof the driving Brownian process is longer than the mean collision timeτ_c, the average energy of the system decays exponentially with time towards a stable asymptotic value, and the energy relaxation timeτBto a nonequilibrium steady state becomes shorter with increasing values ofσ. In the steady state, asσincreases, the velocity distribution deviates more obviously from the Gaussian one, such as the higher kurtosis and the fatter tails, the spatial density distribution becomes more clusterized, the statistical entropy H_M/H_M~+ of the system decreases, the spatial correlations of density and velocities become stronger (such as the two-particle correlation function C ( x )shows higher peak and is a power-law form decay near the origin, the average velocity Cv ( x )is smaller and a power-law form increase for small x ).
     Finally, we present a dynamical model of two-dimensional polydisperse granular gases with fractal size distribution, in which the smooth hard disks are engaged in a two-dimensional horizontal rectangular box and driven by standard white noise. By Monte Carlo simulations, we find the inhomogeneity of the disk size distribution has great influence on the steady-state dynamic properties. With the increase of the fractal dimension D , the distributions of path lengths and free times between collisions deviate more obviously from expected theoretical forms for elastic spheres and have an overpopulation of short distances and time bins. The collision rate increases with D , but it is independent of time. Meanwhile, the tails of the velocity distribution functions rise more significantly above a Gaussian as D increases, but the non-Gaussian velocity distribution functions do not demonstrate any apparent universal form for any value of D. The spatial velocity correlations are apparently stronger with the increase of D. The perpendicular correlations are about one-half of the parallel correlations, and the two correlations are a power-law decay function of dimensionless distance and are long range. Moreover, the parallel velocity correlations of postcollisional state at contact are more than twice as large as the precollisional correlations, and both of them show almost linear behavior of the fractal dimension D.
     In this paper, the study indicates that the energy dissipation due to the more inhomogeneity of the particle size distribution or the smaller restitution coefficient e in the inelastic collisions causes a variety of very peculiar phenomena as above.
引文
[1] H. M. Jaeger, S.R. Nagel, and R.P. Behringer, Granular solids, liquids, and gases, Rev. Mod. Phys., 1996, 68: 1259-1273
    [2] L. P. Kadanoff, Built upon sand: Theoretical ideas inspired by granular flows, Rev. Mod. Phys., 1999, 71: 435-444
    [3] P.G. de Gennes, Granular matter: a tentative view, Rev. Mod. Phys., 1999, 71: S374-S382
    [4] T. P?schel, S. Luding (Eds.), Granular Gases, Lectures Notes in physics, Springer-Verlag, Berlin, 2001,Vol.564
    [5] J. Duran. Sands, powders, grains: an introduce to the physics of granular materials, A. Reisinger, Springer, 1998,1-75
    [6]陆坤权,刘寄星,颗粒物质,浙江大学出版社,2004,174-191
    [7] P. Bak, C. Tang and K. Wisesenfeld, Formation of saturated solitons in a nonlinear dispersive system with in stability and dissipation, Phys. Rev. Lett., 1983, 51(5): 381-383
    [8] R. A. Bagnold, Experiments on a gravity-free dispersion of large solid particles in a Newtonian fluid under shear, Proc. Roy. Soc. London. Ser. A, 1954, 225: 49-63
    [9] S. B. Savage, Experiments on shear flows of cohesionless granular materials, In Proc. U.S.-Japan Seminar on Continuum Mechanical and Statistical Approaches in the Mechanics of Granular Materials (ed. S. C. Cowin & M. Satake), Gakujusu Bunken Fukyu-Kai, 1978: 241-254
    [10] S. B. Savage and S. Mckeown, Shear stresses developed during rapid shear of concentrated suspensions of large spherical particles between concentric cylinders, J. Fluid Mech., 1983, 127: 453-472
    [11] S. B. Savage and M. Sayed, Stresses Developed by dry cohesionless granular materials sheared in an annular shear cell, J. Fluid Mech., 1984, 142: 391-430
    [12] D. M. Hanes and D. L. Inman, Observations of Rapidly Flowing Granular-Fluid Mixtures, J. Fluid Mech. 1985, 150: 357-380
    [13] S. Chapman and T.G. Cowling, The mathematical theory of non-uniform gases, 3rd., Cambridge University Press, Cambridge, UK,1970
    [14] S. Ogawa, Multitemperature theory of granular materials, Gukujutsu, Bunken, Fukyukai eds., Proc. US-Jpn. Semin. Contin. Mech. and Stat. Approaches Mech. Granular Matter, Tokyo, Japan, 1978, 208-217
    [15] P. A. Cundall and O. D. L. Strack, A discrete numerical model for granular assemblies, Geotechnique, 1979 29: 47-53
    [16] S. B. Savage and D. J. Jeffrey, The stress tensor in a granular flow at high shear rates, J. Fluid Mech., 1981, 110: 255-272
    [17] S. B. Savage, Granular flows at high shear rates, in theory of dispersed multiphase flow, by R. R. Meyer, Academic Press, 1983: 339-358
    [18] S. B. Savage, Granular flows down rough inclines-review and extension, in mechanics of granular materials: new models and constitutive relations, eds. by J. T. Jenkins and M. Satake, Elsevier Science Publishers, 1983: 261-282
    [19] J. T. Jenkins, and S. B. Savage, A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles, J. Fluid Mech., 1983, 130: 187-202
    [20] C.K.K. Lun and S. B. Savage, A simple kinetic theory for granular flow of rough, inelastic, spherical particles, Journal of Applied Mechanics, 1987, 54: 47-53
    [21] J. T. Jenkins and M.W. Richman, Grad’s 13-moment system for a dense gas of inelastic spheres, Arch. Rit’l Mech. Anal., 1985, 87: 355-377
    [22] J. T. Jenkins and M.W. Richman, Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks, Physics of Fluids, 1985, 28: 3485-3494
    [23] J. T. Jenkins and M.W. Richman, Boundary conditions for plane flows of smooth, nearly elastic, circular disks, J. Fluid Mech., 1985, 171: 53-69
    [24] J.T. Jenkins, Theories for Rapid Deformations of Granular Materials, InAdvancements in Aerodynamics, Fluid Mechanics, and Hydrodynamic, Edited by Arandt, R. E. A, Stefan, H.G., Farell, C. & Peterson, S.M., Published by ASCE, 1986: 257-263
    [25] G. Ahmadi, and Danning Ma, A Simple Kinetic Model for Granular Flows, In Advancements in Aerodynamics, Fluid Mechanics, and Hydraulics, Edited by Arandt, R.E.A., Stefan, H.G., Farell, C., Peterson, S.M., Published by ASCE, 1986: 329-336
    [26] M. Farrell, G.K.K. Lun and S. B. Savage, A Simple Kinetic Theory for Granular Flow of Binary Mixtures of Smooth, Inelastic, Spherical Particles, Acta Mech., 1986, 63: 45-60
    [27] J.T. Jenkins, and F. Mancini, Balance Laws and Constitutive Relations for Plane Flow of a Dense, Binary Mixture of Smooth Nearly Elastic, Circular Disks, Journal of Applied Mechanics, 1987, 54: 27-34
    [28] C. K. K. Lun, S. B. Savage, D. J. Jeffery and N. Chepueniy, Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flowfield, J. Fluid Mech., 1984, 140: 233-256
    [29] GuangQian Wang and XiangJun Fei, The kinetic theory for granular flow. In Proceedings of the Fourth International Symposium on River Sedimentations, Beijing, 1989: 1459-1467
    [30] J. B. Knight, H. M. Jaeger and S. R. Nagel, Vibration-induced size separation in granular media: the convection connection, Phys. Rev. Lett., 1993, 70: 3728-3731
    [31] J. B. Knight, E. E. Ehrichs, V. Y. Kuperman, J. K. Flint, H. M. Jaeger, and S. R. Nagel, Experimental study of granular convection, Phys. Rev. E, 1996, 54: 5726-5738
    [32] W. Cooke, S. Warr, J. M. Huntley and R. C. Ball, Particle size segregation in a two dimensional bed undergoing vertical vibration, Phys. Rev. E, 1996, 53: 2812-2822
    [33] E. E. Ehrich, H. M. Jaeger, G. S. Karczmar, J. B. Knight, V. Y. Kuperman and S. R.Nagel, Granular Convection observed by Magnitic Resonance, Science, 1995, 267: 1632-1634
    [34] V. Frette, K. Christensen and P. Meakin, Avalanche dynamics in a pile of rice, Nature (London) 1996, 379: 49-54
    [35] M. A. Scherer, V. Buchholtz, T. Poschel and I. Rehberg, Swirling granular matter: From rotating to reptation, Phys. Rev. E, 1996, 54: R4560-R4563
    [36] E. Clément, L. Vanel, J. Rajchenbach and J. Duran, Particle size segregation in a two-dimensional bed undergoing vertical vibration, Phys. Rev. E, 1996, 53: 2812-2822
    [37] F. Melo, P. Umbanhowar and H. L. Swinney, Hexagons kinks and disorder in oscillated granular layers, Phys. Rev. Lett. 1995, 75: 3838-3843
    [38] C. E. Brennen, S. Ghosh and C. R. Wassgren, Vertical oscillated of a bed of granular material, Trans. ASME, J. Appl. Mech, 1996, 63: 156-162
    [39] S. Luding, E. Clément, et al., Studies of columns of beads under external vibrations, Phys. Rev. E, 1994, 49: 1634-1652
    [40] T. Zhou and L. P. Kadanoff, Inelastic collapse of three particles, Phys. Rev. E, 1996, 54: 623-628
    [41] J. J. Brey, F. Moren. and J. W. Dufty, Model equation for low-density granular flow, Phys. Rev. E, 1996, 54: 445-456
    [42] Tong Zhou, Effects of attractors on the dynamics of granular system, Phys. Rev. Lett., 1998, 80: 3755-3758
    [43] S. McNamara and W.R. Young, Inelastic collapse and clumping in a one-dimensional granular medium, Phys. Fluids A, 1992, 4: 496-505
    [44] S. McNamara and W.R. Young, Inelastic collapse in two dimensions, Phys. Rev. E, 1994, 50: R28-R31
    [45] I. Goldhirsch and G. Zanetti, Clustering instability in dissipative gases, Phys. Rev. Lett., 1993, 70: 1619-1622
    [46] S. McNamara and W.R. Young, Kinetics of a one-dimensional granular medium in the quasielastic limit, Phys. Fluids A, 1993, 5: 34-45
    [47] S. McNamara and W.R. Young, Dynamics of a freely evolving, two-dimensional granular medium, Phys. Rev. E, 1996, 53: 5089-5100
    [48] S. Luding, M. Huthmann, S. McNamara, and A. Zippelius, Homogeneous cooling of rough, dissipative particles: Theory and simulations, Phys. Rev. E, 1998, 58: 3416-3425
    [49] Y. Du, H. Li and L.P. Kadanoff, Breakdown of hydrodynamics in a one-dimensional system of inelastic particles, Phys. Rev. Lett., 1995, 74: 1268-1271
    [50] E.L. Grossman and E. Roman, Density variations in a one-dimensional granular system, Phys. Fluids, 1996, 8: 3218-3228
    [51] D.R.M. Williams and F.C. MacKintosh, Driven granular media in one dimension: Correlations and equation of state, Phys. Rev. E, 1996, 54: R9-R12
    [52] M.R. Swift, M. Boamf?, S.J. Cornell and A. Maritan, Scale invariant correlations in a driven dissipative gas, Phys. Rev. Lett., 1998, 80: 4410-4413
    [53] A. Puglisi and V. Loreto, Clustering and non-Gaussian behavior in granular matter, Phys. Rev. Lett., 1998, 81: 3848-3851
    [54] A. Puglisi and V. Loreto, Kinetic approach to granular gases, Phys. Rev. E, 1999, 59: 5582-5595
    [55] E.L. Grossman, T. Zhou, and E. Ben-Naim, Towards granular hydrodynamics in two dimensions, Phys. Rev. E, 1997, 55: 4200-4206
    [56] J.J. Brey and M.J. Ruiz-Montero, Velocity distribution of fluidized granular gases in the presence of gravity, Phys. Rev. E, 2003, 67: 021307(1-7)
    [57] F. Rouyer and N. Menon, Velocity fluctuations in a homogeneous 2D granular gas in steady state, Phys. Rev. Lett., 2000, 85: 3676-3680
    [58] J.S. Olafsen and J.S. Urbach, Clustering, order, and collapse in a driven granular monolayer, Phys. Rev. Lett., 1998, 81: 4369-4372
    [59] J.S. Olafsen and J.S. Urbach, Velocity distributions and density fluctuations in a granular gas, Phys. Rev. E, 1999, 60: R2468-R2471
    [60] A. Kudrolli, N. Wolpert, and J.P. Gollub, Cluster formation due to collisions in granular material, Phys. Rev. Lett., 1997, 78: 1383-1386
    [61] M. A. Hopkins and M. Y. Louge, Inelastic microstructure in rapid granular flows of smooth disks, Phys. Fluids A, 1991, 3: 47-57
    [62] A. Kudrolli, J. Henry, Non-Gaussian velocity distributions in excited granular matter in the absence of clustering, Phys. Rev. E, 2000, 62: R1489-R1493
    [63] W. Losert, D.G.W. Cooper, and J.P. Gollub, Propagating front in an excited granular layer, Phys. Rev. E, 1999, 59: 5855-5861
    [64] W. Losert, D.G.W. Cooper, J. Delour, A. Kudrolli and J.P. Gollub, Cluster-growth in freely cooling granular media, Chaos, 1999, 9: 682-671
    [65] D.L. Blair and A. Kudrolli, Velocity correlations in dense granular gases, Phys. Rev. E, 2001, 64: 050301(1-8)
    [66] D.L.Blair and A.Kudrolli, Collision statistics of driven granular materials, Phys.Rev. E, 2003, 67: 041301(1-12)
    [67] T.P.C. van Noije and M.H. Ernst, Velocity distributions in homogeneous granular fluids: the free and the heated case, Granular Matter, 1998, 1: 57-64
    [68] J.A. Carrillo, C. Cercignani, and I.M. Gamba, Steady states of a Boltzmann equation for driven granular media, Phys. Rev. E, 2000, 62: 7700-7707
    [69] S. J. Moon, M.D. Shattuck, and J.B. Swift, Velocity distributions and correlations in homogeneously heated granular media, Phys. Rev. E, 2001, 64: 031303(1-10)
    [70] R. Cafiero, S. Luding, and H.J. Herrmann, Two-dimensional granular gas of inelastic spheres with multiplicative driving, Phys. Rev. Lett., 2000, 84: 6014-6017
    [71] A.Puglisi, A.Baldassarri, and V.Loreto, Fluctuation-dissipation relations in driven granular gases, Phys. Rev. E, 2002, 66: 061305(1-8)
    [72] R. Soto and M. Mareschal, Statistical mechanics of fluidized granular media:Short-range velocity correlations, Phys. Rev. E, 2001, 63: 041303(1-9)
    [73] R. Soto, J. Piasecki, and M. Mareschal, Precollisional velocity correlations in a hard-disk fluid with dissipative collisions, Phys. Rev. E, 2001, 64: 031306(1-10)
    [74] I. Pagonabarraga, E.Trizac, T. P. C. Van Noije, M. H. Ernst, Randomly driven granular fluids: Collisional statistics and short scale structure, Phys. Rev. E, 2002, 65 : (011303)1-(011303)19
    [75] G. W. Peng and T. Ohta , Steady state properties of a driven granular medium, Phys. Rev. E, 1998, 58: 4737-4746
    [76] J. A. G. Orza, R. Brito, T. P. C. Van Noije, and M. H. Ernst, Patterns and Long Range Correlations in Idealized Granular Flows, Int. J. Mod. Phys. C, 1997, 88: 953-966
    [77] A. Prevost, D. A. Egolf and J. S. Urbach, Forcing and Velocity Correlations in a Vibrated Granular Monolayer, Phys. Rev. Lett., 2002, 89: 084301(1-4)
    [78] T. P. C. van Noije, M. H. Ernst, E. Trizac and I. Pagonabarraga, Randomly driven granular fluids: Large-scale structure, Phys. Rev. E, 1999, 59: 4326-4341
    [79] C. Bizon, M. D. Shattuck, J. B. Swift and H. L. Swinney, Transport coefficients for granular media from molecular dynamics simulations, Phys. Rev. E, 1999,60: 4340-4351
    [80] K. Feitosa and N. Menon, Breakdown of energy equipartition in a 2D binary vibrated granular gas, Phys. Rev. Lett., 2002, 88: 198301(1-4)
    [81] R.D. Wildman and D.J. Parker, Coexistence of two granular temperatures in binary vibrofluidized beds, Phys. Rev. Lett., 2002, 88: 064301(1-4)
    [82] V. Garzó, J. W. Dufty, Homogeneous cooling state for a granular mixture, Phys. Rev. E, 1999, 60: 5706-5713
    [83] A. Barrat and E. Trizac, Lack of energy equipartition in homogeneous heated binary granular mixtures, Granular Matter, 2002, 4: 57-63
    [84] A. Barrat and E. Trizac, Molecular dynamics simulations of vibrated granular gases, Phys. Rev. E, 2002, 66: 051303(1-9)
    [85] A. Barrat, E. Trizac, A molecular dynamics 'Maxwell Demon' experiment for granular mixtures, Mol. Phys., 2003, 101: 1713-1719
    [86] J.M. Montanero and V. Garzó, Monte Carlo simulation of the homogeneous cooling state for a granular mixture, Granular Matter, 2002, 4: 17-24
    [87] R. Clelland and C. M. Hrenya, Simulations of a binary-sized mixture of inelastic grains in rapid shear flow, Phys. Rev. E, 2002, 65: 031301(1-8)
    [88] D. Paolotii, C. Cattuto, U.Marini Bettolo Marconi, A. Pugligi, Dynamical properties of vibrofluidized granular mixtures, Granular Matter, 2003, 5: 75-83
    [89] U.M.B. Marconi and A. Puglisi, Steay-state properties of a mean-field model of driven inelastic mixtures, Phys. Rev. E, 2002, 66: 011301(1-10)
    [90] R. Pagnani, U.M.B. Marconi and A. Puglisi, Driven low density granular mixtures, Phys. Rev. E, 2002, 66: 051304(1-8)
    [91] Welles A. M. Morgado, A qualitative Langevin-like model for the coexistence of two distinct granular temperatures, Physica A, 2003, 320: 60-66
    [92] A. Barrat, V. Loreto, A. Puglisi, Temperature probes in binary granular gases, Physica A, 2004, 334: 513-523
    [93] N. Sela, I. Goldhirsch, Hydrodynamics of a one-dimensional granular medium, Phys. Fluids A, 1995, 7: 507-525
    [94] A. Barrat, T. Biben, Z. Rácz, E. Trizac, F Van Wijland, On the velocity distributions of the one-dimensional inelastic gas, J. Phys. A: Math. Gen., 2002, 35: 463-480
    [95] F. Cecconi, F. Diotallevi, U. M. B. Marconi, A. Puglisi, Fluid-like behavior of a one-dimensional granular gas, J. Chem. Phys., 2004, 120: 35-42
    [96] F. Cecconi, U. M. B. Marconi, F. Diotallevi, A. Puglisi, Inelastic hard rods in a periodic potential, J. Chem. Phys., 2004, 121: 5125-5132
    [97] V. Mathiesen, T. Solberg, H. Arastoopour and B.H. Hjertager, Experimental and computational study of multiphase gas/particle flow in a CFB riser, AIChE J., 1999, 45: 2503-2510
    [98] P. Zamankhan, Kinetic theory of multicomponent dense mixtures of slightly inelastic spherical particles, Phys. Rev. E, 1995, 52: 4877-4891
    [99] R. Lambiotte, L. Brenig, Energy nonequipartition in multicomponent granular mixtures, Phys.Rev. E, 2005, 72: (042301)1-(042301)4
    [100] S. R. Dahl, R. Clelland, C. M. Hrenya, The effects of continuous size distributions on the rapid flow of inelastic particles, Physics of Fluids, 2002, 14: 1972-1984
    [101] S. R. Dahl, R. Clelland, C. M. Hrenya, Three-dimensional, rapid shear flow of particles with continuous size distributions, Powder Technol., 2003, 138: 7-12
    [102] B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, New York , 1982
    [103]张济中编著,分形,清华大学出版社, 1995
    [104]谢和平,分形—岩石力学导论,科学出版社,1996
    [105] H. Xie, R. Bhasker and J. Li, Generation of fractal models for fine particle characterization, Minerals and Metallurgical Processing, 1993, 2: 36-42
    [106] M.D. Normand and M. Peleg, Determination of the fractal dimension of a particle silhouette using image-processing techniques, Powder Technol.,1986, 45(3): 271-275
    [107] J.P. Hyslip and L.E. Vallejo, Fractal analysis of the roughness and size distribution of granular materials, Eng. Geol., 1997, 48: 231-244
    [108] L.M. Zhang, Fractal characteristics of granularity distributions of aqueous bentonite and betonite-polymer muds, Coll. Surf. A: Physicochem. Eng. Aspects, 2002, 202: 1-7
    [109] Zhang Duan-ming, Zhang Zhi and Yu Bo-Ming, The fractal characteristic of particles in granular material flow and its effect on effective thermal conductivity, Commun. Theor. Phys., 1999, 31: 373-378
    [110] Zhang Duan-ming, Lei Ya-Jie and Zhang Mei-Jun, A fractal model for the effective thermal conductivity of granular flow with non-uniform particles, Commun. Theor.Phys., 2002, 37: 231-236
    [111]张端明,雷雅洁等,混合颗粒流的分形模型和分形对有效热传导的影响,华中科技大学学报, 2001, 12: 58-63
    [112] Zhang Duan-Ming, Lei Ya-Jie, Yu Bo-Ming, The thermal conductivity theory of non-uniform granular flow and the mechanism analysis, Commun. Theor. Phys., 2003, 40: 491-498
    [113] Zhang Duan-Ming, Lei Ya-Jie, et al., Langevin simulation of non-uniform granular gases, Chin. Phys. Lett., 2003, 20: 2218-2221
    [114] Zhang Duan-Ming, Su Xiang-Ying, Yu Bo-Ming, Li Rui et al, Investigation of dynamic behavior in 1D non-uniform granular system, Commun. Theor. Phys., 2005, 44: 551-554
    [115] Zhang Duan-Ming, Li Rui, et al., Kinetic approach to one-dimensional non-uniform granular gases, Journal of Physics A: Math. Gen., 2005, 38: 8861-8872
    [116] Li Rui, Zhang Duan-Ming, Chen Zhi-Yuan, et al., Dynamic properties of two-dimensional polydisperse granular gases, Commun. Theor. Phys., 2007, 48: 343-347
    [117] Zhang Duan-Ming, Zhu Hong-Ying, Li Rui, Chen Zhi-Yuan, Zhang Ling. Steady state properties of one-dimensional non-uniform granular gases subjected to Gaussian white noise driving, Commun. Theor. phys., 2007, 48: 737-747
    [118] Li Rui, Zhang Duan-Ming, Chen Zhi-Yuan, et al, The effects of continuous size distributions on the pressures of granular gases, Chin. Phys. Lett., 2007, 24: 1482-1485
    [119] T. Allen, Particle Size Measurement, 3rd ed., Chapman and Hall, New York, USA, 1981
    [120] Chen Zhi-Yuan, Zhang Duan-Ming, Li Zhong-Ming, The effects of quasi Gaussian size distributions on dynamic behavior of a one-dimensional granular gas, Powder Technol.,2008, (in press)
    [121] Zhang Duan-Ming, Chen Zhi-Yuan, Yin Yan-Ping, Li Rui, et al., Dynamic behavior of non-uniform granular gases system with the fractal characteristic in one dimension, Physica A, 2007, 374: 187-202
    [122] Chen Zhi-Yuan, Zhang Duan-Ming, Li Rui, et al., Non-Gaussion and clustering behavior in one-dimensional polydisperse Granular gases system, Commun. Theor. phys., 2007, 47: 1135-1142
    [123] Chen Zhi-Yuan, Zhang Duan-Ming, Li Rui, Zhu Hong-Ying, et al., Global pressure of one-dimensional polydisperse granular gases driven by Gaussian white noise, Commun. Theor. phys., 2007, 48: 481-486
    [124] A. Barrat, E. Trizac, M. H. Ernst, Granular gases: dynamics and collective effects, J. Phys.: Condens. Matter, 2005, 17: S2429- S2437
    [125] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987
    [126] J. J. Erpenbeck, W. W. Wood, in: J. Berne (Ed.), Statistical Mechanics B. Modern Theoretical Chemistry, Plenum, New York, 1977, Vol. 6
    [127] Chen Zhi-Yuan, Zhang Duan-Ming, et al., Collision statistics of driven polydisperse granular gases, Commun. Theor. phys., 2008, 49: 1333-1338
    [128] Chen Zhi-Yuan, Zhang Duan-Ming, et al., Effects of fractal size distributions on velocity distributions and correlations of a polydisperse granular gas, Chin. Phys. Lett., 2008, 25: 1583-1586
    [129] C.E. Hecht, Statistical Thermodynamics and Kinetic Theory, Dover Publications, New York,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700