基于光纤传感技术的钢球表面缺陷检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轴承是机械工业中重要的基础零部件,而钢球作为球轴承的滚动体,它的质量优劣对轴承的运动精度、寿命、性能等起决定性作用,其中钢球表面缺陷对钢球质量的影响尤为明显,加工后的部分钢球表面会存在麻点,斑点,烧伤,擦痕,划条,凹坑等缺陷,这些表面缺陷使球轴承在旋转运动时产生大的噪声和振动,是制约球轴承质量提高的关键因素。国产钢球的表面质量与国外同级别的相比仍然存在较大的差距,造成这种差距的原因之一就是钢球检测技术的落后。开发一种价格适中,高速高效的钢球表面质量检测设备迫在眉睫。
     本文提出的基于光纤传感技术的钢球表面缺陷检测研究是以山东省优秀中青年科学家科研奖励基金项目(钢球表面缺陷的多光纤检测机理研究)、山东省高等学校科技计划项目(基于光纤传感器的钢球表面质量检测机理研究)、济南大学校博士基金项目(轴承钢球质量检测与分选控制系统研究)、企业委托项目(轴承钢球质量的检测与分选控制系统开发)为依托,以钢球表面缺陷为研究对象,以反射式强度型光纤传感器工作特性为基础,着重研究钢球表面缺陷的自动检测技术,目的就是为了解决我国在钢球表面质量检测方面自动化程度低,效率低的“瓶颈”,开发出具有自己独立知识产权的钢球外观检测仪。
     分析了钢球表面缺陷参数和特征,用表面缺陷参数将表面缺陷量化,从表面缺陷深度、表面缺陷高度和表面缺陷反射率三个参数对钢球表面缺陷进行新的分类,将钢球表面缺陷的检测转换为位移量和反射率的检测。
     基于均匀分布模型和准高斯分布模型分别建立了单发单收和单发多收光纤传感器数学模型,通过仿真分析光纤参数对光纤传感器的影响,确立了钢球表面缺陷检测光纤传感器参数(纤芯/包层直径,数值孔径等)。探索出粗糙表面散射理论和双光束补偿测量法在钢球表面缺陷参数分离提取中的可行性,通过同轴型光纤传感器实现了位移量和反射率两类参数的分离提取。
     建立了钢球经纬(子午线)展开机构工作轨迹的数学模型并用Simulink进行了仿真,分析了光纤探头在钢球上的扫描轨迹以及展开轮在实现经纬展开方式的工作原理,为钢球展开机构的制作奠定了理论基础。
     基于调制技术和锁相放大技术,分析并设计了钢球表面缺陷信号处理系统,包括激光激励驱动电路、窄带滤波电路、相敏检波电路、移相电路、除法运算电路、信号采集等,通过锁相放大技术可以大大提高信噪比,消除掉由于展开机构的振动等因素带来的噪声,实现了信号的采集,处理与显示。
     构建了钢球表面缺陷光纤检测总体系统,通过实验可以看出:用反射率参数来检测钢球表面缺陷,展开机构振动对其影响很小,不会出现将好球检测为坏球的情况,但会出现漏检的情况;用位移参数来检测钢球表面缺陷,展开机构振动对其影响非常大,甚至可能将信号淹没,如果展开机构做得足够精密,可以很好检测钢球表面缺陷,用两种参数同时进行检测可以减小漏检率。
     通过分析与设计,初步建立起一套基于光纤传感技术的钢球表面缺陷检测体系,为以后钢球表面缺陷检测机的研制奠定基础。
Surface quality of bearing ball is one of important factors to improve service performance,which plays a decisive role in the accuracy, campaign performance and the service life of the bearings. Defects of steel balls after processing can be classified as craze, spot, pitting, scratch, scoring and dent, which are a general taxonomy. It is difficult to detect bearing ball surface defects with high precision and low cost by conventional methods. In domestic factories for bearing or steel ball, the manual visual method is mostly adopted to inspect surface quality of steel ball, false inspecting rate of which is usually high because of many labile factors such as worker's technical ability, emotion, tiredness, etc. That is to say, one important reason of backward development of bearing industry lies in the lagging inspection technique. The automatic and low cost inspection instrument is urgently required.
     In this paper one new classification method based on optical fiber sensing technology was put forward from the longitudinal section angle to inspection of steel ball surface defects. The work is supported by Shandong Scientific Research Foundation for Excellent Young Scientists (BS2010ZZ001), Shandong Department of Education Foundation (J10LD22), Doctor Foundation of University of Jinan (XBS0854) and a project of enterprise entrustment.
     In order to quantify and identify defects automatically, we divide the defects into three categories in accordance with surface imperfection parameters such as surface imperfection depth, surface imperfection height, and surface imperfection reflectivity,so that: the problem for detecting defects is changed into detecting the displacement information and the change of reflected or scattered light, which reflects the change of reflectivityof defects.
     Inspection mechanism of fiber sensors with single transmitter and single receiver as well as single transmitter and multiple receivers were analyzed based on uniform distribution model and semi-Gaussian distribution model, the mathematical models of the two fiber sensors were established and numerical simulations were realized with Matlab software. Influence of optical fiber parameters on light intensity modulation characteristic regulation was studied,through which the optical fiber sensor parameters(core / cladding diameter, numerical aperture, etc.) for steel ball surface defect detection were established. Beckmann scattering theory and the assumption of Suganuma Shimamoto double-beam compensation were analysised to extract defect parameters .Light intensity modulation characteristic experiments were done with specimens of different reflectivity and processing methods. The results show optical fiber sensing technique is an effective method to separate different surface of steel ball with extracting of two parameters displacement and surface reflectivity.
     Trajectory path mechanism of steel ball in deployment system was established, the simulations of which were realized with Simulink.the principle and form of unfolded-wheel were analyzed,with which the steel ball was unfold completely,and also a simple deployment system was designed for experiment.
     Based on modulation and lock-based amplification technology, the signal processing systems was analyzed and designed, including laser excitation driver circuit, narrow-band filter circuit, phase sensitive detection circuit, division operation circuit,A/D conversion and the signal acquisition and processing, through the lock phase amplification technique, the signal to noise ratio was greatly improved, and also signal acquisition and data analysis and display was realized.
     The system for steel ball defects inspection based on optical fiber sensing technique were constructed, the experimental results shows that: when the steel ball was inspected using imperfection reflectivity, light intensity is not sensitive to the vibration of deployment system, the case that the good steel ball was identified as steel ball with defects did not happen. However, the miss-detect situation appeared. when the steel ball was inspected using surface imperfection depth and surface imperfection height, light intensity is sensitive to the vibration of deployment system, some surface defects signal are too weak to be distinguished from the background noise. If the deployment system is precise enough, the steel ball can be identified very well.
     Through analysis and design, the surface defect detection system based on optical fiber sensing technology was set up ,which lay the theoretical basis for automatic checking and sorting machine of steel ball.
引文
[1] JB/T 10861-2008,滚动轴承钢球表面缺陷图册及评定方法[S].
    [2]平静艳.球轴承振动产生的原因及改进措施[J].哈尔滨轴承,2008,29(1):47-49.
    [3]刘桥方,严枫.我国轴承制造技术的现状及其发展趋势[J].轴承,2005(6):42-45.
    [4]中国钢球网信息中心.我国钢球制造技术现状与展望[EB/OL].http://china. toocle.com /cbna/item/2008-10-17/3945818.html, 2008-10-17.
    [5] Stim Tools. Automatic Checking and Sorting Machine[EB/OL].http://www.stim tools .cz/ kat_ pdf/prospekt_aviko_GB.pdf,2011-03-08.
    [6] Krob Scanners s.r.o. . Ball Scanner Type BASC[EB/OL] . http://www.krob.eu/ products .aspx? p=1,2011-03-08.
    [7] Daio Steel Ball Mfg. Co., Ltd . Surface Inspection Apparatus of Spherical Matter[P].USA:US5457326A,1995-10-10.
    [8]潘洪平.钢球表面质量自动评价体系建立及其应用的研究[D].哈尔滨:哈尔滨工业大学机械制造及其自动化,2000.
    [9]株式会社天辻鋼球製作所.レーザー式鋼球外観検査装置[P] .日本:JPA_200816442,2008-7-17.
    [10]株式会社天辻鋼球製作所.超音波探傷方式球自動検査方法及び装置[P].日本:JPA_201012762,2010-6-10.
    [11]株式会社東北テクノアーチ.球の非破壊検査装置[P].日本:JPA_2000398156,2003-4-3.
    [12]徐淑琼,蒋沂萍.轴承球缺陷的超声波检测方法[J].机械制造与研究,2005,34(5):44-49.
    [13]谢婧.激光声表面波用于金属柱状材料表面缺陷检测的研究[D].南京:南京理工大学,2008.
    [14]严刚,徐晓东,沈中华.激光超声表面缺陷检测的实验方法[J].光电子·激光,2006,17(1):107-110.
    [15] Yong Zhi Lin,Xian Li Liu,Hai Ying Han,etal.Detection and Recognition of Steel Ball Surface Defect Based on MATLAB[J].Key Engineering Materials,2009,416:603-608.
    [16] Yi Wen Wang,Dong Kai Jia,Xian Li Liu.Kinematic Analysis of Detection of Steel Ball Surface Defect Based on ADAMS[J].Advanced Materials Research,2010,102-104:83-87.
    [17] Sun Chao,Liu Jianjing,Luo Delin.Design of Steel Ball Surface Quality Detection System Based on Machine Vision[J].Journal of Management Science & StatisticalDecision,2010,3:59-62.
    [18]李自根,吴楠松,顾宝康.陶瓷轴承球渗透检验自动分选系统[J].无损检测,2003,25(6):296-301.
    [19]彭章明.轴承钢球表面裂纹无损检测方法的研究[D].武汉:湖北工业大学机械设计及理论,2006.
    [20]龚凌云.基于虚拟样机的钢球检测设备研究及运动仿真[D].武汉:湖北工业大学机械制造及其自动化,2007.
    [21]丁建军.基于VI的钢球表面裂纹电涡流检测方法研究[D].武汉:武汉理工大学,2007.
    [22]艾长胜,于润祥,孙选,等.轴承钢球质量在线检测与分选系统的研究[J].测控技术, 2009,28(10):4-7.
    [23]常州华盛天龙机械有限公司.钢球无损检测装置[P].中国:03109943.2,2003-10-22.
    [24] A. Abuazza,D. Brabazon,M.A. El-Baradie.Analysis of Surface Defects using a Novel Developed Fiber-optics Laser Scanning System[J].Journal of Materials Processing Technology,2003,143-144:875-879.
    [25] A. Abuazza,D. Brabazon,M.A. El-Baradie.Multi-beam Fibre-optic Laser Scanning System for Surface Defect Recognition[J].Journal of Materials Processing Technology, 2004, 155-156:2065-2070.
    [26] Govindan Gobi,Dillibabu Sastikumar,Athi Balaji Ganesh.Fiber-optic Sensor to Estimate Surface Roughness of Corroded Metals[J].Optica Applicata,2009,39(1):5-11.
    [27] Govindan Gobi,Athi Balaji Ganesh,T. K. Radhakrishnan.An Optical Approach to Estimate the Surface Roughness of Metals[J].Journal of American Science,2007,3(3):49-53.
    [28] Lv Haibao,Xu Tao,Yang Huayong,etal.Researeh of a Reflective Fiber-optic Displacement Sensor with Compensation,SPIE,2000,4222:313-317.
    [29]杨华勇.反射式强度型光纤传感器强度调制特性的数学模型与关键技术的研究[D].长沙:国防科学技术大学,2002.
    [30]马玉真,段发阶,王仲,等.光纤传感器在叶尖间隙测量中的应用[J].传感技术学报,2007,20(12):2724-2727.
    [31]杨亮,张小栋.双圈同轴光纤束位移传感器研究[J].振动、测试与诊断,2009, 29(2):192-243.
    [32] Wei Li,Jie Zhang,Ying Zheng,etal.Enlargement of Measurement Range in a Fiber-Optic Ice Sensor by Artificial Neural Network[J].Lecture Notes in ComputerScience,2009,5553:929-936.
    [33]李建中,李泽仁,邓向阳,等.反射式光纤电流传感的锁相检测法与近似误差[J].传感器与微系统,2010,29(1):87-90.
    [34] ]Zhang Kuiwei,Clive Butler,Yang Qingping.A Fiber Optic Sensor for the Measurement of Surface Roughness and Displacement using Artificial Neural Networks[J].IEEE Transactions on Instrumentation and Measurement,1997,46(4):899-902.
    [35]梁华,谢倩,梁林霞.钢球表面缺陷分析[J].轴承,2004(2):23-24.
    [36] GB/T 15757-2002,产品几何量技术规范(GPS)表面缺陷术语、定义及参数[S].
    [37] Petr Beckmann,Andre Spizzichino.The Scattering of Electromagnetic Waves from Rough Surfaces[M].New York:Pergamon Press,1963.
    [38]曾焱,李润华,邓华秋.以激光散射立体角分布测量表面横向形貌参数[J].红外与激光工程,2010,39(1):156-159.
    [39] Fukuo Suganuma,Atsushi Shimamoto.Development of a Differential Optical-Fiber Displacement Sensor[J].Applied Optics,1999,38(7):1103-1109
    [40]马玉真.旋转叶片叶尖间隙测量的关键技术研究[D].天津:天津大学精密仪器与光电子工程,2007.
    [41]程湘,王宇华,庞振章等.光纤出射光强分布研究[J].中国计量学院学报,2006, 17(1):21-24.
    [42] Zheng Shilie,Zhang Xianmin,Chen Kangsheng.Far Field Pattern and Differential Mode Attenuation of POF[J].Acta Photonica Sinica,2003,32(12):1434-1437.
    [43]李颖娟,孙伟民,王小力,等.塑料光纤纤端光场测试结果及分析[J].光学与光电技术,2006,4(2):46-49.
    [44]苑立波.光源与纤端光场[J].光通信技术,1994,18(1):54-64.
    [45]赵国俭,王静.光纤传感实验设计[J].大学物理实验,2010,23(5):30-40.
    [46]陈幼平,曹汇敏,张冈,等.反射式光纤束位移传感器的建模与仿真[J].光电子?激光,2005,16(6):653-658.
    [47]苑立波.光纤实验技术[M].长春:哈尔滨工程大学出版社,2005.
    [48]李亚非.一种反射式光纤传感器的研究[J].仪器仪表学报,2005,26(10):1097-1100.
    [49]唐国平,杨厚蕙.AVIKOK-E钢球自动检查仪调整参数分析[J].轴承,2002,(1):35-43.
    [50]赵刚,王保义,马松轩.AVKIO型钢球外观检验机中子午线展开机构的理论分析[J].四川大学学报(自然科学版),1997,34(5):636-639.
    [51] Technical Description and Instructions for Attendance of Automatic Sorting Machine forDefect-metric Inspection of Bearing Ball Surfaces.TypesAVIKO K-06140 E AND AVIKO-1418 E.Made in SOMET Ltd.of Czech.
    [52]株式会社天辻鋼球製作所.鋼球の検査装置[P].日本:JPA_2009085907,2009-4-23.
    [53]犬塚博.非線形信号処理を用いたレーザ散乱法によるボールベアリングの探傷装置[J].信号処理,2002,6(6):383-390.
    [54]杨怀玉.钢球检测中的运动分析[J].中国水运,2006,6(10):33-34.
    [55]赵彦玲,王洪运,朱宪臣,等.基于UG的钢球子午线展开轮参数化设计[J].哈尔滨理工大学学报,2007,12(3):141-143.
    [56]安毓英,曾晓东.光电探测技术[M].西安:西安电子科技大学出版社,2004:79-90.
    [57]江月松.光电技术与实验[M].北京:北京理工大学出版社,2005:79-90.
    [58]唐东峰,凌敏.电路原理与模拟电子技术[M].北京:原子能出版社,2006:328-329.
    [59]陶桓齐,张小华,彭其圣.模拟电子技术[M].武汉:华中科技大学出版社,2007:210-211.
    [60]夏勇.锁相放大技术在蓄电池内阻检测中的应用[J].哈尔滨理工大学学报,2004,30(3):21-23.
    [61]刘红丽,李昌禧.一种测量微弱信号的锁定放大电路设计[J].武汉理工大学学报(交通科学与工程版),2002,26(5)58-60.
    [62]王艳菊,李东明,王玉田.CH4传感系统微弱光电信号处理电路的研究[J].自动化仪表,2006,27(10)33-38.
    [63]陈志华,赵淳生.移相器的一种简单实现方法[J].电子工程师,2002,28(10)61-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700