基于模糊聚类的脑磁共振图像分割技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁共振成像(Magnetic Resonance Imaging, MRI)技术以其非介入性、非损伤性、很少受目标物体运动影响等特点,成为脑疾病临床诊断的重要辅助手段。脑MR图像的精确分割对生物医学研究和临床应用具有重要的指导意义。然而,在实际应用中,脑MR图像中存在灰度不均匀性、噪声、脑组织的部分容积效应以及低对比度等缺陷,使脑MR图像的精确分割变得十分困难。为此,本文针对脑MR图像分割问题,采用模糊聚类模型,从目标函数的改进和数据不确定性描述两方面,深入研究了基于模糊聚类模型及其扩展模型的脑MR图像分割算法。本文所做的主要工作与创新性成果如下:
     (1)提出了一种各向异性权重的模糊C均值聚类算法。深入探讨了含噪声脑MR图像的分割策略,分析了传统模糊聚类算法的主要缺陷以及现有改进算法的空间信息构造思路,通过引入新的邻域窗口权重的计算方法,使中心点邻域内各点具有各向异性的权重,有效地克服图像中噪声对于分割的影响,并使用基于灰度级的快速算法,达到精确分割带噪图像的目的。
     (2)提出了一种基于局部和全局信息的概率模糊C均值聚类算法。通过探讨含偏移场脑MR图像的分割策略,给出了模糊聚类算法中估计偏移场的一般思路,综合利用了全局和局部的灰度拟合信息,使分割目标受到局部信息约束力和全局信息约束力两种力量的驱动。该算法在估计偏移场的同时,进一步提高了分割精度。
     (3)提出了一个基于模糊C均值聚类的模型框架。该框架改进了算法聚类中心的初始化方法,有效地克服了噪声、偏移场等对图像的污染;利用局部空间邻域信息的处理,克服噪声保留更多图像细节信息;引入基函数估计偏移场,自动估计各控制参数,并有效克服了部分容积效应对于分割结果的影响;通过基于直方图统计的加速算法,最终达到快速精确分割脑MR图像的目的。该框架具有较强的实用性。
     (4)为了进一步增强对于图像数据中不确定性的描述,在模糊聚类模型中分别引入粗糙集和二型模糊集,提出了广义的基于粗糙模糊集的聚类模型与基于区间二型模糊集的概率模糊C均值聚类模型。前一种模型能够根据图像数据自身内容自动确定各聚类类别的粗糙模糊集,通过多项式基函数拟合灰度不均匀性,自动确定上近似集合与下近似集合对于聚类中心的影响权重值,且该算法对于聚类中心的初始化十分鲁棒;后一种模型首次将区间二型模糊集引入到概率模糊C均值算法中,针对描述不确定性的模糊隶属度和概率典型性同时进行处理,提供了不确定性轨迹的构造,降型和去模糊化的处理,实验结果表明这两种算法各具优势,能够得到较精确的分割结果。
     (5)针对脑MR图像中存在的低对比度的缺陷,提出了两种脑MR图像分割模型:将局部高斯概率模型引入到模糊聚类的目标函数中,提出了模糊局部高斯概率模型的聚类分割算法。该方法引入了二阶统计量局部方差,算法中局部均值和方差随着空间的改变而变化,并严格推导出相应的更新公式,因此该算法具有较强的自适应性。进一步,对图像中各像素点对应的邻域尺度进行自动估计,提出了自适应尺度模糊局部高斯概率模型的聚类分割算法,提高了模型的鲁棒性,达到精确分割的目的。
Magnetic resonance imaging (MRI) has several advantages over other medical imaging modalities, including high contrast among different soft tissues, relatively high spatial resolution across the entire field of view and multi-spectral characteristics. Therefore, it has been widely used in quantitative brain imaging studies. Quantitative volumetric measurement and three-dimensional visualization of brain tissues are helpful for pathological evolution analyses, where image segmentation plays an important role. However, MR images suffer from several major artifacts, including intensity inhomogeneity, noise, partial volume (PV) effect and low contrast, which make MR segmentation remain a challenging topic. Therefore, in this thesis, we focus on brain MR image segmentation based on fuzzy clustering model from two aspects, including the construction and improvement of objective function and the uncertainty description of data. All the algorithms proposed in this thesis can get an accurate segmentation result. Our work mainly includes the following parts:
     (1) A novel anisotropic weighted fuzzy c-means clustering algorithm is proposed to over-come the impact of noise in the image during segmentation. Based on the discussion of the strategies for the segmentations of brain MR image with noise, we analysis the major drawbacks of conventional fuzzy clustering algorithm and the ideas of local information construction for current improved methods. Then we introduce a new method to compute the weights of the neighborhood which makes the pixels in the neighborhood have anisotropic weights. Mean-while, the algorithm is accelerated with histogram of the image. The experimental results show that our method has stronger anti-noise property and higher segmentation accuracy.
     (2) A modified possibilistic fuzzy c-means clustering algorithm is presented by combining the local and global intensity information. Based on the discussion of the strategies for the segmentations of brain MR image with intensity inhomogeneity, we focus on the segmentation based intensity inhomogeneity correction methods. To estimate the intensity inhomogeneities in the image, the proposed algorithm introduces the global intensity into the coherent local intensity clustering algorithm and takes the local and global intensity information into account. The segmentation target therefore is driven by two forces, one induced by the coherent local intensity and the other by the coherent global intensity, to ensure the smoothness of the derived optimal bias field and improve the accuracy of the segmentations. Comparisons with other approaches demonstrate the superior performance of the proposed algorithm.
     (3) A framework with modified fast fuzzy c-means clustering for brain MR images seg-mentation is proposed to overcome the intensity inhomogeneity, noise and partial volume effect simultaneously and improve image segmentation performance. A new automated method for centroids initialization is proposed to overcome the impact of intensity inhomogeneity and noise during initializing the centroids. An adaptive method to incorporate the local spatial continuity is proposed to overcome the noise effectively and prevent the edge from blurring. The frame-work is accelerated with histogram, and utilizes a set of basis function to estimate the bias field in the image. The weights of the regularization terms, which make the segmentations more accuracy, are all automatically computed to avoid the manually-tuned parameter and reduce the iteration steps of the algorithm. The proposed framework is fast and robust, thereby allowing for fully automatic applications.
     (4) To improve the uncertainty description of the dataset, we introduce the rough sets and interval type-2fuzzy sets into the fuzzy clustering model, and propose a generalized rough fuzzy c-means algorithm and an interval possibilistic fuzzy c-means clustering algorithm. In the first algorithm, a novel hybrid rough fuzzy c-means algorithm is proposed for brain MR image segmentation. Each cluster is characterized by three automatically determined rough-fuzzy regions, and accordingly the membership of each pixel is estimated with respect to the region it locates. The importance of each region is balanced by a weighting parameter, and the bias field in MR images is modeled by a linear combination of orthogonal polynomials. The weighting parameter estimation and bias field correction have been incorporated into the itera- tive clustering process. Experimental results demonstrate that the proposed algorithm is more robust to the initialization, noise, and bias field, and can produce more accurate and reliable segmentations. In the second algorithm, we utilize the interval type-2fuzzy set, and focus on the representation and management of uncertainty which is present in both fuzzy memberships and possibilistic typicalities of the patterns associated with the varying of fuzzifiers. Therefore, we extend a pattern set to interval type-2fuzzy sets using two fuzzifiers for membership and two fuzzifiers for possibilistic. Consequently, the proposed algorithm can simultaneously overcome the drawbacks and inherit the advantages of current interval type-2fuzzy set based algorithms. Experiments demonstrate the advantages of the method over state-of-the-art.
     (5) To overcome the low contrast in brain MR images, we introduce the second-order statistics (local variance) into the fuzzy clustering model, and propose two improved algorithms. By introducing the local Gaussian distribution fitting energy into the fuzzy clustering model, a fuzzy local Gaussian distribution fitting model is proposed to segment brain MR images. The means and standard deviation of local Gaussian distributions are updated iteratively and varying spatially, therefore the proposed model is more adaptive. Then, a new local scale computing method is introduced to estimate the local variances for local Gaussian distributions. Then the adaptive scale fuzzy local Gaussian distribution fitting model is proposed to improve the robust of the algorithm over the initializations. The experimental results show the advantages of the method over the state-of-the-art.
引文
[1]Huseyin T, Kimia B. Volumetric segmentation of medical images by three dimensional bubbles. Computer vision and Image Understanding,1997,65(2):246-258
    [2]Chakraborty A, Staib H, Duncan S. Deformable boundary finding in medical images by integrating gradient and region information. IEEE Transactions on Medical Image,1996, 15(6):859-870
    [3]Johnston B, Atkins M, Mackiewich B. Segmentation of multiple sclerosis lesions in intensity corrected multispectral. IEEE Transactions on Medical Image,1996,15(2): 154-169
    [4]Mackiewich B. Intracranial boundary diction and radio frequency correction in magnetic resonance images.1995
    [5]Rogowska J. Overview and fundamentals of medical image segmentation.2000
    [6]Ginneken B, Frangi A. F, Joes J. Active shape model.segmentation with optimal features. IEEE Transactions on Medical Image,2002,21(8):924-933
    [7]Pham L, Xu C, Prince L. A survey of current methods in medcial image segmentation. Annual Review of Biomedical Engineering,2000,2:315-317
    [8]Ourselin S. Overview on computer-assisted medical image segmentation. World Congress on Medical Physics and Biomedical Engineering, Sydney, Australia,2003
    [9]Kass M, Witkin A, Terzopoulous D. Snake:active contour models. Proceedings of the 1st International Conference on Computer Vision. London:IEEE Computer Society Press, 1987:257-268
    [10]Cohen L, Cohen I. Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans on Patt Anal Mach Intell,1993,15(11):1131-1147
    [11]Mcinerney T, Terzopoulos D. Deformable Models in Medical Image Analysis:A Survey. Medical Image Analysis,1996,1:91-108
    [12]Xu C, Prince J. Snakes, shapes, and gradient vector flow. IEEE Trans Imag Proc,1998, (3):359-369
    [13]Amini A. A, Weymouth T, Jain R. Using Dynamic Programming for Solving Variational Problems in Vision. IEEE Trans on Patt Anal Mach Intell,1990, (9):855-867
    [14]Williams D, Shah M. A Fast Algorithm for Active Contours and Curvature Estimation. CVGIP,1992, (1):14-26
    [15]Wang Y, Teoh E. Dynamic B-snake model for complex objects segmentation. Image and Vision Computing,2005, (12):1029-1040
    [16]Osher S, Sethian J. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comp Phys,1988, (1):12-49
    [17]Osher S, Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, New York,2002
    [18]Adalsteinsson D, Sethian J. A fast level set method for propagating interfaces. J Comp Phys,1995, (2):269-277
    [19]Adalsteinsson D, J J. S. The fast construction of extension velocities in level set methods. J Comp Phys,1999:2-22
    [20]Malladi R, Sethian J. Shape modeling with front propagating:a level set approach. IEEE Trasaction on Pattern Analysis and Machine Intelligence,1995, (2):158-175
    [21]Sethian J. A. An analysis of flame propagation. Ph.D. Thesis, Dept. of Mathematics, University of California, Berkeley, CA, USA,1982
    [22]Mumford D, Shah J. Optimal approximations by piecewise smooth functions and asso-ciated variational problems. Commun Pure Appl Math,1989,42(5):577-685
    [23]Mumford D, Shah J. Boundary detection by minimizing functionals. Proc. IEEE Conf. Computer Vision and Pattern Recognition, San Francisco, CA,1985:22-26
    [24]Ambrosio L, Tortorelli V. On the approximation of functionals depending on jumps by elliptic functionals via convergence. Communication on Pure and Applied Mathematics, 1990,43(8):999-1036
    [25]Ambrosio L, Tortorelli V. On the approximation of free discontinuity problems. BollUn-MatItal,1992,7(6-B):105-123
    [26]Chan T, Vese L. Active contours without edges. IEEE Trans Imag Proc, February 2001, 10(2):266-277
    [27]Chan T, Vese L. An efficient variational multiphase motion for the Mumford-Shah model. In:Proceedings of the 34'th Asilomar Conference on Signals, Systems and Computers, 2000:490-494
    [28]Vese L, Chan T. A Multiphase Level set framework for Image segmentation Using the Mumford and Shah Model. Int'l J Comp Vis, December 2002,50(3):271-293
    [29]Tsai A, Yezzi A, Willsky A. S. Curve evolution implementation of the Mumford-Shah Functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans Imag Proc, August 2001,10(8):1169-1186
    [30]Li C, Kao C, Gore J, Ding Z. Implicit Active Contours Driven by Local Binary Fitting Energy. CVPR,2007:1-7
    [31]Li C, Huang R, Ding Z, Gatenby C, Metaxas D. N, Gore J. C. A Level Set Method for Image Segmentation in the Presence of Intensity Inhomogeneities with Application to MRI. IEEE Trans Image Processing,2011,20(7):2007-2016
    [32]An J, Rousson M, Xu C. Γ-Convergence Approximation to Piecewise Smooth Medical Image Segmentation. Proceedings of Medical Image Computing and Computer Aided Intervention,2007:495-502
    [33]Lankton S, Nain D, Yezzi A, Tannenbaun A. Hybrid geodesic region-based curve evo-lutions for image segmentation. SPIE Medical Imaging 2007 Symposium, March 2007, 6510:65104U
    [34]Wang L, He L, Mishra A, Li C. Active Contours Driven by Local Gaussian Distribution Fitting Energy. Signal Processing,2009,89(12):2435-2447
    [35]Wang L, Chen Y, Pan X, Hong X, Xia D. Level set segmentation of brain magnetic resonance images based on local Gaussian distribution fitting energy. Journal of Neuro-scienceMethods,2010,188(2):316-325
    [36]Wang L, Li C, Sun Q, Xia D, Kao C.-Y. Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Computerized Medical Imaging and Graphics, October 2009,33(7):520-531
    [37]Wang L, Shi F, Lin W, Gilmore J. H, Shen D. Automatic segmentation of neonatal images using convex optimization and coupled level sets. NeuroImage,2011,58(3):805-817
    [38]Cootes T. F, Taylor C. J, Cooper D. H, Graham J. Active shape models-their training and application. Computer Vision and Image Understanding,1995,61(1):38-59
    [39]Cootes T. F, Edwards G. J, Taylor C. J. Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(6):681-685
    [40]Lelieveldt B. P. F, Uzumcu M, van der Geest R. J, Reiber J. H. C, Sonka M. Multi-view active appearance models for consistent segmentation of multiple standard views: application to long and short-axis cardiac MR images. CARS,2003:1141-1146
    [41]Cashman T. J, Fitzgibbon A. W. What Shape are Dolphins? Building 3D Morphable Models from 2D Images. IEEE Trans on Pattern Analysis and Machine Intelligence, PrePrint,2012
    [42]Zahn C. T. Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters. IEEE Trans Comput,1971,20(1):68-86
    [43]Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Patt Anal Mach Intell,2000,22(8):888-905
    [44]Felzenszwalb P. F, Huttenlocher D. P. Efficient graph-based image segmentation. Inter-national Journal of Computer Vision,2004,59(2):167-181
    [45]闫成新,桑农,张天序.基于图论的图像分割研究发展.计算机工程与应用,2006,42(5):11-14
    [46]Teppera M, Museb P, Almansac A, Mejail M. Automatically finding clusters in normal-ized cuts. Pattern Recognition,2011,44(7):1372-1386
    [47]Xue H, Srinivasan L, Jiang S, Rutherford M, Edwards A. D, Rueckert D, Hajnal J. V. Au-tomatic segmentation and reconstruction of the cortex from neonatal MRI. NeuroImage, 2007,38(3):461-477
    [48]Song Z, Tustison N, Avants B, Gee J. C. Integrated Graph Cuts for Brain MRI Segmenta-tion. Proceedings of Medical Image Computing and Computer Aided Intervention,2006: 831-838
    [49]Boykov Y, Lee V. S, Rusinek H, Bansal R. Segmentation of dynamic N-D data sets via graph cuts using markov models. In Proc. Medical Image Computing and ComputerAs-sisted Intervention,2001:1058-1066
    [50]Brown E. S, Chan T. F, Bresson X. Convex Formulation and Exact Global Solutions for Multi-phase Piecewise Constant Mumford-Shah Image Segmentation. Technical Report 09-66, UCLA Computational and Applied Mathematics, July 2009
    [51]Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative perfor-mance evaluation. Journal of Electronic Imaging,2004,13(1):146-165
    [52]Zou Y. B, Liu H, Song E, Huang Z. Y. Image bilevel thresholding based on multiscale gradient multiplication. Computers and Electrical Engineering,2012,38(4):853-861
    [53]章毓晋.图像工程,第2版.北京:清华大学出版社,2007
    [54]Saad N. M, Abu-Bakar S. A. R, Muda S, Mokji M, Abdullah A. R. Fully Automated Region Growing Segmentation of Brain Lesion in Diffusion-weighted MRI. IAENG International Journal of Computer Science,2012,39(2):155-164
    [55]Gonzalez R. C, Woods R. E. Digital Image Processing,2nd Edition. New Jersey:Prentice Hall,2002
    [56]Ji Z. X, Xia Y, Sun Q. S, Chen Q, Shen D, Feng D. Fuzzy Local Gaussian Mixture Model for brain MR image segmentation. IEEE Transactions on Information Technology in BioMedicine,2012,16(3):339-347
    [57]Ji Z. X, Xia Y, Sun Q. S, Chen Q, Shen D, Feng D. Fuzzy C-Means Clustering with Weighted Image Patch for Image Segmentation. Applied Soft Computing,2012,12(6): 1659-1667
    [58]Backer E, Jain A. A clustering performance measure based on fuzzy set decomposition. IEEE Trans Pattern Anal Mach Intell,1981,3(1):66-75
    [59]MacQueen J. B. Some Methods for classification and Analysis of Multivariate Obser-vations.5-th Berkeley Symposium on Mathematical Statistics and Probability,1967,1: 281-297
    [60]McLachlan G, Krishnan T. The EM algorithm and extensions. New York: Wiley,1997
    [61]Zhuang X, Huang Y, Palaniappan K, Zhao Y. Gaussian mixture density modeling, de-composition, and applications. IEEE Trans Image Process,1996,5(9):1293-1302
    [62]Sharan R, Shamir R. CLICK: A clustering algorithm with applications to gene expression analysis. in 8th Int Conf Intelligent Systems for Molecular Biology,2000:307-316
    [63]Hall L, Ozyurt I, Bezdek J. Clustering with a genetically optimized approach. IEEE Trans Evol Comput,1999,3(2):103-112
    [64]Baraldi A, Blonda P. A survey of fuzzy clustering algorithms for pattern recognition-Part I and Ⅱ. IEEE Trans Syst, Man, Cybern B, Cybern,1999,29(6):778-801
    [65]Vesanto J, Alhoniemi E. Clustering of the self-organizing map.2000,11(3):586-600
    [66]Ben-Hur A, Horn D, Siegelmann H. T, Vapnik V. A support vector clustering method. in 15th International Conference on Pattern Recognition,2000,2:724-727
    [67]Hoppner F, Klawonn F, Kruse R. Fuzzy cluster analysis:methods for classification, data analysis, and image recognition. New York:Wiley,1999
    [68]Zadeh L. A. Fuzzy sets. Inform and Control,1965,8:338-353
    [69]高新波.模糊聚类分析及其应用.西安:西安点击科技大学出版社,2004
    [70]Prewitt J. M. Object Enhancement and Extraction In Picture Processing and Psychopic-tories. Acad. Press:B.S. Lipkin, A. Rosenfeld eds.,1970
    [71]Pappas T. N. An Adaptive Clustering Algorithm for Image Segmentation. IEEE Trans on Signal Processing,1992,40(4):901-914
    [72]Tolias Y. A, Panas S. M. Image Segmentation by A Fuzzy Clustering Algorithm Using Adaptive Spatially Constrained Membership Functions. IEEE Transon System,Man and Cybernetics,1998,28(3):359-369
    [73]Krstinic D, Skelin A. K, Slapniccar I. Fast two-step histogram-based image segmentation. IET Image Processing,2011,5(1):63-72
    [74]Li S, G.Zollner F, A. D. Merrem Y. H. P, Roervik J, Lundervold A, R.Scha L. Wavelet-based segmentation of renal compartments in DCE-MRI of human kidney:Initial results in patients and healthy volunteers. Computerized Medical Imaging and Graphics,2012, 36(2):108-118
    [75]Zhang D. S, Islam M, Lu G. J. A review on automatic image annotation techniques. Pattern Recognition,2012,45(1):346-362
    [76]Chaudhuri B. B, Sarkar N. Texture Segmentation Using Fractal Dimension. IEEE PAMI, 1995,17(1):72-77
    [77]Yang C, Bruzzone L, Sun F. Y, Lu L. J, Guan R. C, Liang Y. C. A Fuzzy-Statistics-Based Affinity Propagation Technique for Clustering in Multispectral Images. IEEE Transactions on Geoscience and Remote Sensing,2010,48(6):2647-2659
    [78]纪则轩,潘瑜,陈强,孙权森,夏德深.基于无监督模糊C均值聚类的自然图像分割.中国图象图形学报,2011,16(5):773-783
    [79]Feng H. C, Hu W. G, Gong Y. Research for Algorithm of Shot Boundary Detection Robustness Based on Fuzzy Clustering. Journal Applied Mechanics and Materials,2012, 182-183(7):1698-1702
    [80]曲福恒.模糊聚类算法用应用.国防工业出版社,2011
    [81]Dunn J.C. A Fuzzy Relative of The ISODATA Process and Its Use in Detecting Compact Well Separated Cluster. J Cybernet,1974,3:32-57
    [82]Bezdek J. C. Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum Press,1981
    [83]Bezdek J. C. A Convergence Theorem for The Fuzzy ISODATA Clustering Algorithm. IEEE PAMI,1980,1(2):1-8
    [84]Dubes R. C, Jain A. K. Algorithm for clustering Data. NJ:Prentice-Hall:Englewood Cliffs,1988
    [85]Duda R. O, Hart P. E. Pattern Classification and Scene Analysis. New York:John Wiley & Sons,1973
    [86]李相镐.模糊聚类分析及其应用.贵州:贵州科技出版社,1994
    [87]Krishnapuram R, Keller J. M. Possibilistic approach to clustering. IEEE Trans Fuzzy Syst,1993,1(2):98-110
    [88]Barni M, Cappellini V, Mecocci A. Comments on'a possibilistic approach to clustering. IEEE Trans Fuzzy Syst,1996,4(3):393-396
    [89]Krishnapuram R, Keller J. M. The possibilistic c-means algorithm: Insights and recom-mendations. IEEE Trans Fuzzy Syst,1996,4(3):383-395
    [90]Timm H, Borgelt C, Doring C, Kruse R. An extension to possibilistic fuzzy cluster analysiss. Fuzzy Sets Syst,2004,147(1):3-16
    [91]Zhang J. S, Leung Y. W. Improved possibilistic c-means clustering algorithms. IEEE Trans Fuzzy Syst,2004,12(2):209-217
    [92]Pal N. R, Pal K, Keller J. M, Bezdek J. C. A possibilistic fuzzy c-means clustering algorithm. IEEE Trans Fuzzy Syst,2005,13(4):517-530
    [93]Selim S. Z, Ismail M. A. Soft clustering of multidimensional data: a semi-fuzzy ap-proach. Pattern Recognition,1984,17(5):559-568
    [94]Kamel M. S, Selim S. Z. A threshold fuzzy c-means algorithm for semi-fuzzy clustering. Pattern Recognition,1991,24(9):825-833
    [95]裴继红,谢维信.基于空间信息及灰度信息的聚类图像分割.第七届全国语音图像与通讯信号处理学术会议论文集,1995:241-244
    [96]Lingras P, West C. Interval set clustering of web users with rough kmeans. Dept Math-Comput Sci, St Mary's Univ, Halifax, NS, Canada, Tech Rep, No 2002-002,2002
    [97]Pawlak Z. Rough Sets, Theoretical Aspects of Reasoning About Data. The Netherlands: Kluwer: Dordrecht,1991
    [98]Dubois D, Prade H. Rough Fuzzy·Sets and Fuzzy Rough Sets. International Journal of General Systems,1990,17(2-3):191-209
    [99]Mushrif M. M, Ray A. K. Color Image Segmentation:Rough-Set Theoretic Approach. Pattern Recognition Letters,2008,29(4):483-493
    [100]Pal S. K, Mitra P. Multi-spectral Image Segmentation Using Rough Set Initialized EM Algorithm. IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2495-2501
    [101]Widz S, Slezak D. pproximation Degrees in Decision Reduct-Based MRI Segmenta-tion. Proceedings of the Frontiers in the Convergence of Bioscience and Information Technologies,2007:431-436
    [102]Mitra S, Banka H, Pedrycz W. Rough-fuzzy collaborative clustering systems. IEEE Trans Syst, Man, Cybern B, Cybern,2006,36(4):795-805
    [103]Ji Z. X, Sun Q. S, Xia Y, Chen Q, Xia D. S, Feng D. G. Generalized Rough Fuzzy C-Means Algorithm for Brain MR Image Segmentation. Computer Methods and Programs in Biomedicine To be pressed,2011
    [104]Dubois D, Prade H. Possibility theory. New York: Plenum Press,1988
    [105]Maji P, Pal S. K. RFCM:a hybrid clustering algorithm using rough and fuzzy sets. Fundamenta Informaticae,2007,80(4):475-496
    [106]Maji P, Pal S. K. Rough set based generalized fuzzy c-means algorithm and quantitative indices. IEEE Transactions on System, Man and Cybernetics, Part B, Cybernetics,2007, 37(6):1529-1540
    [107]Mitra S, Pedrycz W, Barman B. Shadowed c-means:Integrating fuzzy and rough clus-tering. Pattern Recognition,2008,43(4):1282-1291
    [108]Mendel J. Uncertain Rule-Based Fuzzy Logic Systems:Introduction and New Direc-tions. NJ:Prentice Hall, Upper Saddle River,2001
    [109]Mendel J, John R. Type-2 fuzzy set made simple. IEEE Trans Fuzzy Syst,2002,10(2): 117-127
    [110]Rhee F. C. Uncertain Fuzzy Clustering:Insights and Recommendations. IEEE Compu-tational Intelligence Magazine,2007,2(1):44-56
    [111]Hwang C, Rhee F. C. Uncertain Fuzzy Clustering:Interval Type-2 Fuzzy Approach To C-Means. IEEE Transactions on Fuzzy Systems,2007,15(1):107-120
    [112]Min J.-H, Shim E.-A, Rhee F. C.-H. An Interval Type-2 Fuzzy PCM Algorithm for Pattern Recognition. Proceedings of the 18th international conference on Fuzzy Systems, FUZZ-IEEE'09
    [113]Pham D, Prince J. Adaptive fuzzy segmentation of magnetic resonance images. IEEE Transactions on Medical Imaging,1999,18(9):737-752
    [114]Ahmed M. N, Yamany S. M, Mohamed N, Farag A. A. A modified fuzzy C-mean al-gorithm for bias field estimation and segmentation of MRI data. IEEE Transactions on Medical Imaging,2002,21(3):193-199
    [115]Chen S. C, Zhang D. Q. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Transactions on System Man and Cybernetics Part B,2004,34(4):1907-1916
    [116]Szilagyi L, Benyo Z, Szilogyi S. M, Adam H. S. MR brain image segmentation using an enhanced fuzzy C-means algorithm. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Cancun,2003: 724-726
    [117]Cai W, Chen S, Zhang D. Q. Fast and robust fuzzy c-means algorithms incorporating local information for image segmentation. Pattern Recognition,2007,40(3):825-838
    [118]Szilagyi L, Benyo Z, Szilogyi S. M. A Modified FCM Algorithm for Fast Segmentation of Brain MR Images. ICIAR LNCS,2007,4633:866-877
    [119]Kang J. Y, Min L. Q, Luan Q. X, Li X, Liu J. Z. Novel modified fuzzy c-means algorithm with applications. Digital Signal Process,2009,19(2):309-319
    [120]Kang B. Y, Kim D. W, Li Q. Homogeneity-Based Fuzzy c-Means Algorithm for Image Segmentation. FSKD LNAI,2005,3613:462-469
    [121]Liew A. W. C, Leung S. H, Lau W. H. Fuzzy image clustering incorporating spatial continuity. Proc Inst Elect Eng-Vision, Image, Signal Process,2000,147(2):185-192
    [122]Liew A. W. C, Yan H. An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation. IEEE Trans Med Imaging,2003,22(9):1063-1075
    [123]Liew A. W. C, Yan H, Law N. F. Image segmentation based on adaptive cluster prototype estimation. IEEE Trans Fuzzy Systems,2005,13(4):444-453
    [124]Ji Z. X, Sun Q. S, Xia D. S. A Framework with Modified Fast FCM for Brain MR Images Segmentation. Pattern Recognition,2011,44(5):999-1013
    [125]Ji Z. X, Sun Q. S, Xia D. S. A Modified Possibilistic Fuzzy c-means Clustering algorithm for Bias Field Estimation and Segmentation of Brain MR Image. Computerized Medical Imaging and Graphics,2011,35(5):383-397
    [126]Ji Z. X, Chen Q, Sun Q. S, Xia D. S, Heng P. A. MR Image Segmentation and Bias Field Estimation Using Coherent Local and Global Intensity Clustering. Proceedings 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery,2010,2: 578-582
    [127]纪则轩,陈强,孙权森,夏德深.各向异性权重的模糊C均值聚类图像分割.计算机辅助设计与图形学学报,2010,21(10):1451-1459
    [128]Hoppner F, Klawonn F. Improved fuzzy partitions for fuzzy regression models. Int J Approx Reason,2003,32(2-3):85-102
    [129]Zhu L, Chung F. L, Wang S. Generalized Fuzzy C-Means Clustering Algorithm with Improved Fuzzy Partitions. IEEE Transactions on In Systems, Man, and Cybernetics, Part B:Cybernetics,2009,39(3):578-591
    [130]Pal N, Pal S. A Review on Image Segmentation Techniques. Pattern Recognition,1993, 26(9):1277-1294
    [131]Frigui H, Krishnapuram R. Clustering by Competitive Agglomeration. Pattern Recogni-tion Letters,1987,30(7):1109-1119
    [132]Rosenberger C, Chehdi K. Unsupervised Clustering Method with Optimal Estimation of The Number of Clusters:Application to Image Segmentation. Proceedings of 15th International Conference on Pattern Recognition. Barcelona Spain,2000,1:656-659
    [133]Boujemaa N. Generalized Competitive Clustering for Image Segmentation. Fuzzy Infor-mation Processing Society,2000. NAFIPS.19th International Conference of the North American. Atlanta, GA USA,2000:133-137
    [134]Hoover A, Jean-baptiste G, Jiang X, Flynn P. J, Bunke H, Goldgof D, Bowyer K, Eggert D, Fitzgibbon A, Fisher R. An Experimental Comparison of Range Image Segmentation Algorithms. IEEE Transactions on PAMI,1996,18(7):673-689
    [135]Hoffman R, Jain A. K. Segment and Classification of Range Images. IEEE Transactions on PAMI,1996,9(5):608-620
    [136]Alrashedi M, Sbihi M, Touahni R, Moussa A, Sbihi A. Mode Detection in Cluster Anal-ysis using the EM and ICM Algorithms. European Journal of Scientific Research,2012, 74(3):456-468
    [137]Pham D. L, Prince J. L. An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recognition Letters,1999,20(1): 57-68
    [138]Yager R. R, Filev D. P. Approximate Clustering via The Mountain Method. IEEE SMC, 1994,2:480-485
    [139]Chiu S. L. Fuzzy Model Identification Based on Cluster Estimation. J Intelligent and Fuzzy System,1994,2:267-278
    [140]Chaudhuri D, Chaudhuri B. B. A Novel Multiseed Nonhierarchical Data Clustering Tech-nique. IEEE SMC,1997,27(5):871-877
    [141]Postaire J. G, Zhuang R. D, Lecocq-Botte C. Cluster Analysis by Binary Morphology. IEEE PAMI,1993,15(2):170-180
    [142]Hasan M. J. A, Ramakrishnan S. A survey:hybrid evolutionary algorithms for cluster analysis. Artif Intell Rev,2011,36(3):179-204
    [143]Yuan H, Khorram S, Dai X. L. Applications of Simulated Annealing Minimization Tech-nique to Unsupervised Classification of Remotely Sensed Data. IGARSS'99 Proceedings of IEEE 1999 International Conference on Geoscience and Remote Sensing Symposium. Hamburg Germany,1999,1:134-136
    [144]Tian G, Xia Y, Zhang Y. N, Feng D. Hybrid Genetic and Variational Expectation-Maximization Algorithm for Gaussian-Mixture-Model-Based Brain MR Image Segmen-tation. IEEE Transactions on Information Technology in Biomedicine,2011,15(3):373-380
    [145]AL-Sultan K. S, Fediji C. A. A tabu search-based algorithm for the fuzzy clustering problem. Pattern Recognition. IEEE PAMI,1997,12(30):2023-2039
    [146]Karmakar G. C, Dooley L. A Generic Fuzzy Rule Based Technique for Image Seg-mentation. Proceedings (ICASSP'01) of IEEE International Conference on Acous-tics,Speech,and Signal Processing. Salt Lake City, UT USA,2001,3:1577-1580
    [147]Udupa J. K, Samarasekera S. Fuzzy Connectedness and Object Definition:Theory, Al-gorithms and Applications in Image Segmentation. Graphical Models and Image Pro-cessing,1996,58(3):246-261
    [148]Udupa J. K, Saha P. K, Lotufo R. A. Fuzzy Connected Object Definition in Images with Respect to Co-Objects. Proc. Int'l Soc. For Optical Eng-(SPIE) Conf. Medical Imaging, 1999,3661:236-245
    [149]Udupa J. K, Saha P. K, Lotufo R. A. Relative Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image segmentation. IEEE Trans on Pattern Analysis and Machine Intelligence,2003,24(11):1485-1500
    [150]Vovk U, Pernus F, Likar B. A Review of Methods for Correction of Intensity Inhomo-geneity in MRI. IEEE Transactions on Medical Imaging,2007,26(3):405-421
    [151]Wells W. M, Grimson W, Kikinis R, Jolesz F. Adaptive segmentation of MRI data. IEEE Transactions on Medical Imaging,1996,15(4):429-442
    [152]Leempu K. V, Maes F, Vandermeulen D, Suetens P. Automated model-based bias field correction of MR images of the brain. IEEE Transactions on Medical Imaging,1999, 18(10):885-896
    [153]Ashburner J, Friston K. J. Voxel-based morphometry-the methods. Neuro Image,2000, 11(6):805-821
    [154]Salvado O, Hillenbrand C, Zhang S. X, Suri J, Wilson D. MR signal inhomogeneity correction for visual and computerized atherosclerosis lesion assessment. Proceedings of the IEEE International Symposium on Biomedical Imaging:From Nano to Macro, Arlington,2004:1143-1146
    [155]Li C. M, Gatenby C, Wang L, Gore J. A robust parametric method for bias field estimation and segmentation of MR images. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2009:218-223
    [156]Li C. M, Xu C, Anderson A, Gore J. MRI tissue classification and bias field estima-tion based on coherent local intensity clustering:a unified energy minimization frame-work. Information processing in medical imaging (IPMI), Lect. Notes Comput. Sci., 2009,5636:288-299
    [157]Choi H. S, Haynor D. R, Kim Y. Partial volume tissue classification of multichannel magnetic resonance images - A mixel model. IEEE Transactions on Medical Imaging, 1991,10(3):395-407
    [158]Szilagyi. Novel image processing methods based on fuzzy logic. Ph.D. Thesis, BME Budapest,2008
    [159]Leempu K. V, Maes F, Vandermeulen D, Suetens P. A unifying framework for partial volume segmentation of brain MR images. IEEE Transactions on Medical Imaging, 2003,22(1):105-119
    [160]Sikka K, Sinha N, Singh P. K, Mishra A. K. A fully automated algorithm under modi-fied FCM framework for improved brain MR image segmentation. Magnetic resonance imaging,2009,27(7):994-1004
    [161]http://www.cma.mgh.harvard.edu/ibsr/
    [1.62]http://www.bic.mni.mcgill.ca/brainweb/
    [163]http://brainmaps.org/index.php/
    [164]Mendez-Rial R, Martin-Herrero J. Efficiency of Semi-Implicit Schemes for Anisotropic Diffusion in the Hypercube. IEEE Transactions on Image Processing,2012,21(5):2389-2398
    [165]刘华军,任明武,杨静宇.一种改进的基于模糊聚类的图像分割方法.中国图象图形学报,2006,11(9):1312-1316
    [166]Xia Y, Feng D. G, Wang T. J, Zhao R. C, Zhang Y. N. Image segmentation by clustering of spatial patterns. Pattern Recognition Letters,2007,28(12):1548-1555
    [167]Ma L, Staunton R. C. A modified fuzzy C-means image segmentation algorithm for use with uneven illumination patterns. Pattern Recognition,2007,40(11):3005-3011
    [168]Wang J. Z, Kong J, Lu Y. H, Qi M, Zhang B. X. A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constrains. Computerized Medical Imaging and Graphics,2008,32(8):685-698
    [169]Mallat S. G, Zhang Z. F. Matching pursuit with time-frequency dictionaries. IEEE Trans on signal processing,1993,41(12):3397-3415
    [170]Pennec E. L, Mallat S. Sparse geometric image representation with Bandelets. IEEE Trans on Image processing,2004,14(4):423-438
    [171]Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans on Image processing,2006,15(12):3736-3745
    [172]Mairal J, Elad M, Sapiro G. Sparse representation for color image restoration. IEEE Trans on Image processing,2008,17(1):53-69
    [173]Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell,1990,12(7):629-639
    [174]Smith S. M, Brady J. M. SUSAN - a new approach to low level image processing. Int Journal of Computer Vision,1997,23(1):45-78
    [175]Tomasi C, Manduchi R. Bilateral filtering for gray and color images. In proceedings of the Sixth International Conference on Computer Vision,1998:839-846
    [176]Buades A, Coll B, Morel J. A nonlocal algorithm for image denoising. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR,2005,2:60-65
    [177]Brox T, Cremers D. Iterated nonlocal means for texture restoration. Lecture Notes in Computer Science. Heigelbeg:Springer Verlag,2007,4485:13-24
    [178]Azzabou N, Paragios N, Guichard F, Cao F. Variable bandwidth image denoising using image-based noise models. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR,2007:1-7
    [179]Kervrann C, Boulanger J, Coupe P. Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal. Proceedings of the 1st international confer-ence on Scale space and variational methods in computer vision,2007,4485:520-532
    [180]Kervrann C, Boulanger J. Local adaptivity to variable smoothness for exemplar-based image regularization and representation. Int Journal of Computer Vision,2008,79(1): 45-69
    [181]Ji Z. X, Chen Q, Sun Q. S, Xia D. S. A moment-based nonlocal-means algorithm for image denoising. Information Processing Letters,2009,109(23-24):1238-1244
    [182]Chuang K. S, ans S Chen H. L. T, Wu J, Chen T. J. Fuzzy c-means clustering with spa-tial information for image segmentation. Computerized Medical Imaging and Graphics, 2006,30(1):9-15
    [183]Likar B, Viergever M. A, Pernus F. Retrospective Correction of MR Intensity Inhomo-geneity by Information Minimization. IEEE Transactions on Medical Imaging,2001, 20(12):1398-1410
    [184]Hou Z, Huang S, Hu Q, Nowinski W. L. A fast and automatic method to correct intensity inhomogeneity in MR brain images. Med Image Comput Comput Assist Interv,2006, 9(2):324-331
    [185]Zheng Y, Grossman M, Awate S. P, Gee J. C. Automatic correction of intensity nonuni-formity from sparseness of gradient distribution in medical images. Med Image Comput Comput Assist Interv,2009,12(2):852-859
    [186]Zhuge Y, Udupa J. K. Intensity Standardization simplifies brain MR image segmentation. Computer Vision and Image Understanding,2009,113(10):1095-1103
    [187]Zhang Y, Brady M, Smith S. Segmentation of Brain MR Images Through a Hidden Markov Random Field Model and the Expectation-Maximization Algorithm. IEEE Transactions on Medical Imaging,2001,20(1):45-57
    [188]Li X, Li L, Lu H. B, Liang Z. R. Partial Volume Segmentation of Brain Magnetic Reso-nance Images Based on Maximum a Posteriori Probability. Medical physics,2005,32(7): 2337-2345
    [189]Mohabey A, Ray A. K. Rough set theory based segmentation of color images. Proc.19th Internat. Conf. North Amer. Fuzzy Inform. Process. Soc,2000:338-342
    [190]Powell M. J. D. Approximation Theory and Methods. Cambridge:Cambridge University Press,1981
    [191]Black M. J, Sapiro G. Edges as outliers:Anisotropic smoothing using local image statis-tics. Scale-Space Conf. Kerkyra, LNCS,1999,1682:259-270
    [192]Hirano S, Tsumoto S. Rough representation of a region of interest in medical images. Int J Approx Reason,2008,40(1):23-34
    [193]Meena T, Smriti S. A new Kernelized hybrid c-mean clustering model with optimized parameters. Applied Soft Computing,2010,10(2):381-389
    [194]Zadeh L. A. The concept of a linguistic variable and its application to approximate reasoning. Information Sciences,1975,8(2):199-249
    [195]Mizumoto M, Tanaka K. Some properties of fuzzy sets of type-2. Information and Control,1976,31(1):312-340
    [196]Mizumoto M, Tanaka K. Fuzzy sets of type-2 under algebraic product and algebraic sum. Fuzzy Sets and Systems,1981,5(3):277-290
    [197]Karnik N. N, Mendel J. M. Centroid of a type-2 fuzzy set. Inf Sci,2001,132(1-4): 195-220
    [198]Asuncion A, Newman D. J. UCI Machine Learning Repository,2007. URL http: //www.ics.uci.edu/-mlearn/MLRepository.html
    [199]Yang M. S, Tsai H. S. A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction. Pattern Recognition Letters,2008,29(9):1713-1725
    [200]Liao L, Lin T, Li B. MRI brain image segmentation and bias field correction based on fast spatially constrained kernel clustering approach. Pattern Recognition Letters,2008, 29(7):1580-1588
    [201]Permuter H, Francos J, Jermyn I. A study of Gaussian mixture models of color and texture features for image classification and segmentation. Pattern Recognition,2006, 39(4):695-706
    [202]Gupta L, Sortrakul T. A Gaussian mixture based image segmentation algorithm. Pattern Recognition,1998,31(3):315-325
    [203]Greenspan H, Ruf A, Goldberger J. Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Trans Med Imag,2006,25(9): 1233-1245
    [204]Blekas K, Likas A, Galatsanos N. P, Lagaris I. E. A spatially constrained mixture model for image segmentation. IEEE Trans Neural Networks,2005,16(2):494-498
    [205]Tran D, Le T, Wagner M. Fuzzy Gaussian mixture models for speaker recognition. Pro-ceedings of the International Conference on Spoken Language,1998:759-762
    [206]Zeng J, L L. X, Liu Z. Type-2 Fuzzy Gaussian Mixture. Pattern Recognition,2008, 41(12):3636-3643
    [207]Paragios N, Deriche R. Geodesic active regions:A new paradigm to deal with frame partition problems in computer vision. Journal of Visual Communication and Image Representation,2002,13(1-2):249-268
    [208]Saha P. K, Udupa J. K. Optimum image thresholding via class uncertainty and region homogeneity. IEEE Trans Pattern Anal Mach Intell,2001,23(7):689-706
    [209]Madabhushi A, Udupa J. K, Souza A. Generalized scale:theory, algorithms, and appli-cation to image inhomogeneity correction. Computer Vision and Image Understanding, 2006,21(101):100-121
    [210]Katkovnik V, Shmulevich I. Nonparametric density estimation with adaptive varying window size. Image and Signal Processing for Remote Sensing VI,2001,4170(1):141-150
    [211]Shafei B, Steidl G. Segmentation of images with separating layers by fuzzy c-means and convex optimization. Journal of Visual Communication and Image Representation,2012, 23(4):611-621
    [212]Yu J, Cheng Q, Huang H. Analysis of the weighting exponent in the FCM. IEEE Trans Syst Man Cybern B,2004,34(1):634-639
    [213]Ozkan I, Turksen I. B. Upper and lower values for the level of fuzziness in FCM. Infor-mation Sciences,2007,177(23):5143-5152

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700