耳迷走神经刺激与抗癫痫效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耳针刺激耳甲区域能激活迷走神经增强副交感神经系统兴奋性。本课题组研究结果表明耳针刺激耳甲区能更好地激活孤束核和迷走神经背核神经元放电,产生耳迷走效应,调整心率和血压,并促进胃运动;同时在对糖尿病的降糖效应、高血压病的降压作用的研究中也已经取得了不少的研究成果。
     癫痫是一种脑部疾病,其特点是脑部有持续存在的癫痫反复发作的易感性,以及由于这种疾病引起的神经生化、认知、心理和社会后果;癫痫具体表现是反复发作的神经元异常放电所致的暂时性中枢神经系统功能失常。根据有关神经元的部位和放电扩散的范围的不同,功能失常可能分为运动、感觉、意识、行为、自主神经等不同障碍,或混合存在。治疗癫痫病的主要手段为药物控制,或是手术治疗(切除致痫灶本身或切断其传导通路)。除此之外还有迷走神经刺激(vagus nerve stimulation, VNS)疗法。VNS疗法的作用机制多数认为是通过激活迷走神经投射到NTS的通路,通过NTS与脑内的广泛联系达到去同步化脑电来完成抗癫痫作用的。
     在本课题组之前的研究中发现,耳针刺激耳甲区域(耳迷走神经刺激),具有与VNS相类似的神经投射规律,同样能抑制癫痫发作,具有较好的抗癫痫效应。如果耳迷走神经刺激能替代迷走神经刺激疗法,就可以解决VNS手术并发症和费用昂贵等问题,为癫痫病的治疗提供便利、经济的方法。本课题将在前期研究基础上从动物实验及人体试验两方面研究耳迷走神经刺激抑制癫痫发作的效应机制及其刺激参数等,进一步探讨耳迷走刺激抑制癫痫的作用机理,为临床应用提供理论依据。
     实验1耳迷走神经刺激对癫痫模型大鼠大脑皮层场电位的影响
     1.1实验动物
     健康成年雄性Sprague-Dawley大鼠14只,体重300±49g,清洁级,由中国医学科学院实验动物中心提供。
     1.2实验过程
     大鼠14只,10%乌拉坦腹腔注射麻醉(1.2-1.4g/kg)。俯卧,头部用耳棒固定于脑立体定位仪上。头顶部备皮,沿正中矢状线切开皮肤,分离皮下组织,刮除骨膜,将前后囱调至同一水平。根据大鼠脑立体定位图谱(Paxinos和Watson,1998),在距正中线右侧4-6mm,前囟前后1mm处用颅骨钻开窗后,显微镜下剥离硬脑膜,将微电极阵列(microelectrode arrays, MEA)放置在大鼠右侧大脑皮层初级躯体感觉皮层(primary somatosensory cortices, S1)区。用微电极推进器推进至皮层内0.5-1.0mm,参考电极用合金螺丝钉铆在距电极阵列3mm的颅骨上,皮层表面用37℃液体石蜡覆盖保湿。MEA另一端用headstage接于微电极放大器,放大的电信号经CerebusTM 5.0数据采集分析系统采集和分析。给予大鼠腹腔注射戊四氮(pentylenetetrazol, PTZ) 60 mg/kg造成急性癫痫模型。对大鼠进行30秒、20Hz耳迷走神经刺激,观察耳迷走刺激对癫痫模型大鼠大脑皮层场电位的变化。
     1.3实验结果
     采用电极阵列记录癫痫造模前大鼠正常皮层场电位,表现为散在的棘波,没有脑神经元异常和过度超同步化放电;造模后耳迷走神经刺激前,大鼠皮层场电位出现变化,表现为脑神经元异常和过度超同步化放电引起的高振幅的癫痫波。在耳迷走神经刺激后,大鼠癫痫发作持续时间减少。给予癫痫模型大鼠(n=14)耳迷走神经刺激后,单位时间(120sec)内发作时间从101.55±6.39秒,减少到58.5±10.25秒(P<0.01),抑制率为58.74±10.10%。耳迷走神经刺激前后单位时间内大鼠皮层场电位中癫痫波持续时间比较,差异具有统计学意义,说明耳迷走神经刺激能明显抑制大鼠癫痫发作。
     实验2左右耳迷走神经刺激对癫痫模型大鼠大脑皮层场电位的影响
     2.1实验动物
     健康成年雄性Sprague-Dawley大鼠27只,体重300±34g,清洁级,由中国医学科学院实验动物中心提供。
     2.2实验过程
     实验动物用10%乌拉坦腹腔注射麻醉(1.2-1.4g/kg)。俯卧,头部用耳棒固定于脑立体定位仪上。头顶部备皮,沿正中矢状线切开皮肤,分离皮下组织,刮除骨膜,将前后囱调至同一水平。根据大鼠脑立体定位图谱(Paxinos和Watson,1998),在距正中线右侧5-6mm,前囟前后1mm处用颅骨钻开窗后,显微镜下剥离硬脑膜,将MEA放置在大鼠右侧大脑S1区。用微电极推进器推进至皮层内0.5-1.0mm,参考电极用合金螺丝钉铆在距电极阵列3mm的颅骨上,皮层表面用37℃液体石蜡覆盖保湿。MEA另一端用headstage接于微电极放大器,放大的电信号经CerebusTM5.0数据采集分析系统采集和分析。给予大鼠腹腔注射PTZ 60 mg/kg造成急性癫痫模型。
     将27只大鼠随机分为两组,同侧刺激组11只,对侧刺激组16只,经PTZ造模成功后,分别在左右两侧耳甲腔区域给予耳迷走神经刺激,观察进行30秒、20Hz耳迷走神经刺激后,两组癫痫模型大鼠大脑皮层场电位的变化。
     2.3实验结果
     在两侧耳甲腔给予20 Hz,强度1 mA,脉宽500μm,持续时间30s的耳迷走神经刺激均可减少癫痫模型大鼠癫痫发作持续时间。其中,在单位时间(120秒)内,对侧刺激组(n=16)刺激前后,癫痫波持续时间分别为116.00±3.21秒和88.67±6.43秒,癫痫发作减少了16.29±9.53%;同侧刺激组(n=11)刺激前后,癫痫波持续时间分别为113.83±2.47秒和61.867±16.79秒,癫痫发作减少了58.47±10.24%,两组变化相比具有显著差异性(P<0.01),同侧耳迷走神经刺激效应明显优于对侧。
     实验3观察不同频率(2Hz、20Hz和100Hz)耳迷走神经刺激对癫痫模型大鼠异常皮层场电位影响的差异
     3.1实验动物
     健康成年雄性Sprague-Dawley大鼠51只,体重300±29g,清洁级,由中国医学科学院实验动物中心提供。
     3.2实验过程
     手术过程中动物体温用计算机温度时间控制仪维持在37℃。10%乌拉坦腹腔注射麻醉(1.2g/kg)。俯卧,头部用耳棒固定于脑立体定位仪上。头顶部备皮,沿正中矢状线切开皮肤,分离皮下组织,刮除骨膜,将前后囱调至同一水平。根据大鼠脑立体定位图谱(Paxinos和Watson,1998),在距正中线右侧5-6mm,前囟前后1mm处用颅骨钻开窗后,显微镜下剥离硬脑膜,将MEA放置在大鼠右侧大脑皮层S1。用微电极推进器推进至皮层内0.5-1.0mm,参考电极用合金螺丝钉铆在距电极阵列3mm的颅骨上,皮层表面用37℃液体石蜡覆盖保湿。MEA另一端用headstage接于微电极放大器,放大的电信号经CerebusTM 5.0数据采集分析系统采集和分析。
     选择不同的刺激频率,将51只癫痫模型大鼠根据刺激持续时间不同随机分为4组:30秒组、5分钟组、10分钟组和30分钟组,观察这4组大鼠在刺激后大脑皮层场电位的变化和癫痫发作情况的差异。
     3.3实验结果
     3.3.1 2Hz频率不同刺激持续时间的耳迷走神经刺激对癫痫模型大鼠电位影响的比较
     给予不同刺激持续时间的2Hz频率的耳迷走神经刺激后,在单位时间内(120sec),刺激持续时间30秒组抑制率最高,与其他刺激持续时间组相比,差异具有统计学意义(P<0.01);刺激5分钟、10分钟和30分钟的3个组之间相比较,其差异没有统计学意义(P>0.05)。
     给予癫痫模型大鼠2Hz的耳迷走神经刺激后,不同持续时间的刺激抑制癫痫发作的效应有所不同。刺激结束后5分钟内,每隔30秒钟观察统计耳迷走神经刺激抑制癫痫发作的情况,发现:在2Hz不同刺激持续时间的耳迷走神经刺激后,30秒刺激组与其他刺激时间组相比,在刺激后30和60秒钟时间段癫痫发作率明显降低,表现出了很好的抑制发作的效应,差异具有统计学意义(P<0.01);在刺激后90秒钟时间段,30秒刺激组与其他刺激时间组相比,同样表现出较好的抑制发作的效应,差异具有统计学意义(P<0.05)。说明,在2Hz的耳迷走刺激中,持续时间为30秒的刺激产生的抑制癫痫发作的效应优于其他刺激持续时间组。
     3.5.2 20Hz频率不同刺激持续时间的耳迷走神经刺激对癫痫模型大鼠电位影响的比较
     给予20Hz频率不同刺激持续时间的耳迷走神经刺激后,在单位时间内(120sec),刺激30秒组、刺激5分钟、10分钟组和刺激30分钟组抑制率分别为:58.74±10.10%、36.34±13.87%、38.53±12.85%和61.36±16.14%,这四组间的差异不具有统计学意义(P>0.05)。
     比较刺激后癫痫模型大鼠癫痫波被抑制的后效应时间,刺激30秒组、刺激5分钟、10分钟组和刺激30分钟组后效应持续时间分别为:149.22±59.80秒、205.00±134.37秒、213.25±122.46秒、166.00±89.71秒,这四组间的差异同样不具有统计学意义(P>0.05)。
     给予癫痫模型大鼠20Hz耳迷走刺激后,观察不同持续时间的刺激抑制癫痫发作的效应的差异。以30秒钟为单位时间,分段统计刺激结束后5分钟内十个时间段中大鼠癫痫发作率。30秒组、5分钟组、10分钟和30分钟组在各时间段中癫痫发作率下降,均表现出了明显的抑制发作的效应,在不同的时间段的组间相比中,4组间差异不具有统计学意义(P>0.05)。说明,在20Hz的耳迷走刺激中,刺激持续时间长短对癫痫发作的抑制效应的影响不明显。
     3.5.3 100Hz频率不同刺激持续时间耳迷走神经刺激对癫痫模型大鼠皮层电位影响的比较
     给予100Hz频率不同刺激持续时间的耳迷走神经刺激后,在单位时间内(120sec),刺激30秒组的抑制率为12.58±4.33%、30分钟组抑制率为50.92±17.99%,两者相比差异具有统计学意义(P<0.01);5分钟组抑制率为36.26±11.92%、10分钟组抑制率为32.87±14.04%,分别与30秒组和30分钟组相比其抑制率差异没有统计学意义(P>0.05)。
     比较不同时间刺激对大鼠癫痫发作抑制的后效应的差别,刺激30分钟组与其它的三个刺激时间组相比,具有最长的后效应,差异具有统计学意义(P<0.05);刺激30秒组和30分钟组间相比较,差异具有统计学意义(P<0.05);刺激5分钟和10分钟组与30秒组相比,差异没有统计学意义(P>0.05);5分钟和10分钟的两组之间相比较,其差异也没有统计学意义(P>O.05)。刺激30秒组和其他不同刺激时间组相比,具有最短的后效应。
     3.5.4不同频率的耳迷走神经刺激对大鼠癫痫发作影响的比较
     2Hz低频率刺激在30秒短时间刺激后,对大鼠癫痫发作的抑制率为61.51±18.21%,和同为低频刺激的其他时间组相比具有更明显的抑制作用,与其余各组之间比较差异具有统计学意义(P<0.01)。100Hz高频率刺激在30秒短时间刺激后,对大鼠癫痫发作的抑制率为12.58±4.33%,和同为高频刺激的其他时间组相比其抑制作用最不明显,各组之间具有差异性(P<0.01)。20Hz的刺激在30秒、5分钟、10分钟、30分钟刺激持续时间下均有良好的抑制作用,其抑制率分别为:58.74±10.10%、36.34±13.87%、38.53±12.85%、61.36±16.14%,四组数据间的差异不具有统计学意义(P>0.05)。
     实验4观察不同刺激持续时间(30秒、5分钟、10分钟和30分钟)耳迷走神经刺激对癫痫模型大鼠异常皮层场电位影响的差异
     4.1实验动物
     健康成年雄性Sprague-Dawley大鼠51只,体重300±29g,清洁级,由中国医学科学院实验动物中心提供。
     4.2实验过程
     手术过程中动物体温用计算机温度时间控制仪维持在37℃。10%乌拉坦腹腔注射麻醉(1.2g/kg)。俯卧,头部用耳棒固定于脑立体定位仪上。头顶部备皮,沿正中矢状线切开皮肤,分离皮下组织,刮除骨膜,将前后囱调至同一水平。根据大鼠脑立体定位图谱(Paxinos和Watson,1998),在距正中线右侧5-6mm,前囟前后1mm处用颅骨钻开窗后,显微镜下剥离硬脑膜,将MEA放置在大鼠右侧大脑皮层S1。用微电极推进器推进至皮层内0.5-1.0mm,参考电极用合金螺丝钉铆在距电极阵列3mm的颅骨上,皮层表面用37℃液体石蜡覆盖保湿。MEA另一端用headstage接于微电极放大器,放大的电信号经CerebusTM5.0数据采集分析系统采集和分析。
     选择不同的刺激频率,将51只癫痫模型大鼠根据刺激频率不同随机分为3组:2Hz、20Hz和100Hz,观察这3组大鼠在刺激后大脑皮层场电位的变化和癫痫发作情况的差异。
     4.3实验结果
     4.3.1刺激持续时间为30秒条件下,不同频率的耳迷走神经刺激对癫痫模型大鼠场电位影响的比较
     给予癫痫模型大鼠30秒不同刺激频率耳迷走神经刺激后,在单位时间内(120sec),2Hz刺激组、20Hz刺激组中对癫痫发作的抑制率为61.51±18.21%、58.744±10.10%,与100Hz组的抑制率12.58±4.33%相比,2Hz和20Hz组抑制率更高,差异具有统计学意义(P<0.01)。2Hz组、20Hz组中癫痫发作抑制的后效应持续时间为142.38±61.83秒、149.22±59.80秒,与100Hz组的抑制后效应时间13.50±4.37秒相比,2Hz和20Hz组具有更好的抑制癫痫发作的后效应,差异具有统计学意义(P<0.01)。
     给予癫痫模型大鼠30秒不同刺激频率耳迷走神经刺激后,观察不同刺激对癫痫发作抑制效应的差异性。以30秒钟为单位时间,分段统计刺激结束后5分钟内十个时间段中大鼠癫痫发作率:刺激后120秒内,2Hz和20Hz组发作率下降,100Hz组刺激后发作率变化不大,其差异具有显著的统计学意义(P<0.01);在刺激后120秒至210秒时间段,2Hz和20Hz组癫痫发作率低于100Hz组,差异具有统计学意义(P<0.05);在刺激后240秒至300秒时间段,2Hz和20Hz组中单位时间癫痫发作率升高,和100Hz组相比差异不具有统计学意义(P>0.05)。
     4.3.2刺激持续时间为5分钟条件下,不同频率的耳迷走神经刺激对癫痫模型大鼠场电位影响的比较
     给予癫痫模型大鼠5分钟不同刺激频率耳迷走神经刺激后,在单位时间内(120sec),20Hz组、100Hz组对癫痫发作的抑制率分别为36.34±13.87%、36.26±11.92%,与2Hz组的抑制率10.87±3.1%相比,差异具有统计学意义(P<0.05)。20Hz组、100Hz组对癫痫发作抑制的后效应持续时间分别为205.00±134.37秒、59.56±10.25秒,与2Hz组的抑制后效应持续时间19.00±4.43秒相比,20Hz和100Hz的刺激具有更好的抑制癫痫发作的后效应,差异具有统计学意义(P<0.01)。
     给予癫痫模型大鼠5分钟不同刺激频率的耳迷走神经刺激后,各组抑制癫痫发作的效应不尽相同。以30秒钟为单位时间,分段统计刺激结束后5分钟内十个时间段中大鼠癫痫发作率。在5分钟刺激持续时间条件下,刺激后90秒内,20Hz组较2Hz组发作率下降,对癫痫发作的抑制作用较强,差异具有统计学意义(P<0.05)。在其余时间段中,2Hz、20Hz和100Hz组发作率相比没有统计学意义(P>0.05)。
     4.3.3刺激持续时间为10分钟条件下,不同频率的耳迷走神经刺激对癫痫模型大鼠场电位影响的比较
     给予癫痫模型大鼠10分钟不同刺激频率耳迷走神经刺激后,在单位时间内(120sec),20Hz组、100Hz组对癫痫发作的抑制率为38.53±12.85%、32.87±14.04%,与2Hz组的抑制率11.57±13.71%相比,差异具有统计学意义(P<0.05)。20Hz组、100Hz组对癫痫发作抑制的后效应持续时间为213.25±122.46秒、55.51±10.04秒,与2Hz组的后效应持续时间16.67±11.00秒相比,20Hz和100Hz组具有更好的抑制癫痫发作的后效应,差异具有显著统计学意义(P<0.01)。
     给予癫痫模型大鼠10分钟不同刺激频率耳迷走神经刺激后,不同频率刺激抑制癫痫发作的效应有所不同。以30秒钟为单位时间,分段统计刺激结束后5分钟内十个时间段中大鼠癫痫发作率,在10分钟刺激持续时间条件下,刺激后30秒内,20Hz组较2Hz组发作率下降,对癫痫发作的抑制作用较强,差异具有统计学意义(P<0.01);刺激后30至60秒内,20Hz组较2Hz组发作率下降,对癫痫发作的抑制作用较强,差异具有统计学意义(P<0.05)。在其余时间段中,2Hz、20Hz和100Hz组发作率比较高,组间相比没有统计学意义(P>0.05)。
     4.3.4刺激持续时间为30分钟条件下,不同频率的耳迷走神经刺激对癫痫模型大鼠场电位影响的比较
     给予癫痫模型大鼠30分钟不同刺激频率耳迷走神经刺激后,在单位时间内(120sec),20Hz组、100Hz组对癫痫发作的抑制率为61.36±16.14%、50.92±17.99%,与2Hz组的抑制率5.17±4.84%相比,差异具有统计学意义(P<0.01)。20Hz组、100Hz组对癫痫发作抑制的后效应持续时间为166.00±89.71秒、160.20±58.26秒,与2Hz组的后效应持续时间11.00±4.95秒相比,20Hz和100Hz组具有更好的抑制癫痫发作的后效应,差异具有统计学意义(P<0.01)。
     给予癫痫模型大鼠10分钟不同刺激频率耳迷走神经刺激后,不同频率抑制癫痫发作的效应有所不同。以30秒钟为单位时间,分段统计刺激结束后5分钟内十个时间段中大鼠癫痫发作率,在30分钟刺激持续时间条件下,刺激后60秒内,20Hz组较2Hz组发作率下降,对癫痫发作的抑制作用较强,差异具有统计学意义(P<0.05);刺激后90至180秒,100Hz组较2Hz组发作率下降,对癫痫发作的抑制作用较强,差异具有统计学意义(P<0.05)。在其余时间段中,2Hz、20Hz和100Hz组发作率相比没有统计学意义(P>0.05)。
     4.3.5不同刺激持续时间的耳迷走神经刺激对大鼠癫痫发作影响的比较
     30秒刺激后,100Hz组对大鼠癫痫发作的抑制率为12.58±4.33%,和同为短期刺激的其他组相比抑制作用较不明显,差异具有统计学意义(P<0.01)。2Hz低频刺激在5分钟、10分钟和30分钟刺激后,对大鼠癫痫发作的抑制率为10.87±3.1%、11.57±13.71%、5.17±4.84%,其抑制作用最不明显,和20Hz和100Hz各组相比具有显著的差异性(P<0.01)。20Hz刺激在30秒、5分钟、10分钟、30分钟刺激持续时间下均表现出良好的抑制作用,其抑制率分别为:58.74±10.10%、36.344±13.87%、38.53±12.85%、61.36±16.14%,四组数据间的差异不具有统计学意义(P>0.05)。
     100Hz高频率刺激在30秒刺激后,大鼠癫痫发作抑制的后效应持续时间为13.544±4.37秒,和同为短期刺激的其他时间组相比抑制作用不明显,差异具有统计学意义(P<0.01)。2Hz低频率刺激在5分钟、10分钟、30分钟刺激后,大鼠癫痫发作抑制的后效应持续时间为19.00±4.43秒、16.67±11.00秒、11.00±4.95秒,和其他刺激频率组相比其抑制作用最不明显,差异具有统计学意义(P<0.01);20Hz的刺激在30秒、5分钟、10分钟、30分钟刺激持续时间下均有良好的抑制作用,刺激后大鼠癫痫发作抑制的后效应持续时间分别为:149.22±59.80秒、205.00±134.37秒、213.25±122.46秒、166.00±89.71秒,四组数据间的差异不具有统计学意义(P>0.05)。
     不同持续时间的耳迷走神经刺激,对大鼠癫痫发作的抑制效应的影响差别不大,高频率的短期刺激和低频频率的长期刺激,对大鼠癫痫发作的抑制效应均不明显。
     实验5切断大鼠耳廓不同部位,观察耳迷走神经刺激对癫痫模型大鼠异常皮层场电位影响的差异及切断部位的神经分布情况
     5.1实验动物
     健康成年雄性Sprague-Dawley大鼠27只,体重300±32g,清洁级,由中国医学科学院实验动物中心提供。
     5.2实验过程
     手术过程中动物体温用计算机温度时间控制仪维持在37℃。10%乌拉坦腹腔注射麻醉(1.2g/kg)。俯卧,头部用耳棒固定于脑立体定位仪上。头顶部备皮,沿正中矢状线切开皮肤,分离皮下组织,刮除骨膜,将前后囱调至同一水平。根据大鼠脑立体定位图谱(Paxinos和Watson,1998),在距正中线右侧5-6mm,前囟前后1mm处用颅骨钻开窗后,显微镜下剥离硬脑膜,将MEA放置在大鼠右侧大脑皮层S1。用微电极推进器推进至皮层内0.5-1.0mm,参考电极用合金螺丝钉铆在距电极阵列3mm的颅骨上,皮层表面用37℃液体石蜡覆盖保湿。MEA另一端用headstage接于微电极放大器,放大的电信号经CerebusTM5.0数据采集分析系统采集和分析。
     将21只大鼠随机分为两组,其中11只在记录癫痫模型大鼠大脑皮层场电位的过程中,沿大鼠耳根部,(将右侧外耳和躯体连接的部位分为长度相等的5份),切断外耳与躯体连接部位的后5/2处,另11只切断外耳与躯体连接部位的前5/2处,使用频率20 Hz,强度1mA,脉宽500μm,持续时间30秒为刺激参数,在右侧耳甲腔区域给予耳迷走神经刺激,观察切断外耳不同部位后耳迷走神经刺激对癫痫模型大鼠大脑皮层场电位的影响。
     5.3结果
     在切断大鼠耳根后2/5前,右侧耳迷走神经刺激可以减少大鼠癫痫发作持续时间。其中,在单位时间(120秒)内,耳迷走神经刺激前后(n=11),发作持续时间分别为118.29±4.3秒和78.4±7.66秒,两者相比其差别具有统计学意义(P<0.01),抑制率为31.26±3.07%。在切断大鼠耳根后2/5后,右侧耳迷走神经刺激减少大鼠癫痫发作的效应消失。在切断大鼠耳根后2/5后,在单位时间(120秒)内,右侧耳迷走神经刺激前后(n=11),发作持续时间分别为116.44±6.35秒和113.76±3.28秒,前后相比没有统计学意义(P>0.05),抑制率为2.15±1.10%。切断前后抑制率相比其差别具有统计学意义(P<0.01)。
     在切断大鼠耳根前2/5前,右侧耳迷走神经刺激可以减少大鼠癫痫发作持续时间。其中,在单位时间(120秒)内,耳迷走神经刺激刺激前后(n=10),发作持续时间分别为111.6±2.74秒和52.7±12.02秒,两者相比其差别具有统计学意义(P<0.01),抑制率为51.72±9.85%。在切断大鼠耳根前2/5后,在单位时间(120秒)内,耳迷走神经刺激前后(n=10),发作持续时间分别为110.38±3.38秒和66.625±7.26秒,抑制率为38.87±7.64%。切断前后抑制率相比其差别不具有统计学意义(P>0.05)。
     从耳后开口,解剖观察切割耳廓后2/5处的神经分布情况,可以明显观察到该区域有两支较大的神经干走行。
     6.人体迷走体感诱发电位的测量
     6.1研究对象
     选取研究所内职工及学生,询问其病史和健康状况,确认没有神经疾患史、心理疾患史及心血管系统疾患史、没有服用能影响中枢神经系统功能的药物、听力正常的实验者共8人,年龄24-34岁,2男6女,均自述为右利手。
     6.2试验过程
     采用NeuroScan公司生产的64通道脑电图及诱发电位工作站记录受试者在接受耳迷走神经刺激时全程的脑电图,由提供耳迷走神经刺激的刺激器外触发同步在脑电图上标记刺激信号,根据标记到的信号时间点对刺激前后的脑电图数据进行分段、叠加和平均,呈现出与耳迷走神经刺激相关的迷走体感诱发电位。
     6.3结果
     在给予右侧耳迷走神经刺激的过程中,在双极导联C4-F4间得到一组相对稳定的诱发电位,其中包含一个出现在刺激后2.4ms的负偏差(1.3微伏),并持续2ms。在双极导联Fz-F4间得到电位变化也是一个正的偏差(小于1微伏),出现在刺激后1.7ms处;一个负向的成分随后出现在2.6ms处;这个诱发电位在3.9ms处以一个正向的偏差作为结束。同时在对侧C3-F3之间没有记录到明显的诱发电位。这个诱发电位的呈现在两个不同个体的样本中表现出成分明显,波形稳定,潜伏期固定,同时分布相同的特性。在耳朵的其他部位的刺激,没有出现相同电位变化。
     二结论
     本项研究主要从电生理的角度探讨了耳针刺激耳甲区域(耳迷走神经刺激)治疗癫痫的效应机制。实验结果表明:癫痫的发病表现脑电图的高幅癫痫波,耳迷走神经刺激能抑制癫痫大鼠发作时异常的场电位变化。这种作用可能是通过激活NTS的活动来增强副交感的功能从而去同步化脑电来完成的。同侧耳迷走神经刺激的效应明显优于对侧,也是符合耳部神经与NTS之间的联系,以及NTS在神经解剖学上的投射规律的。同时切断相应的神经后,耳迷走神经刺激的效应消失,说明耳迷走神经刺激的抑制癫痫效应是由神经介导来完成的。同时本研究发现在不同的刺激频率下,20Hz刺激相对于其他频率刺激来说,在各个不同的刺激持续时间中都能对大鼠癫痫发作起到最好的抑制作用。不同持续时间的耳迷走神经刺激,对大鼠癫痫发作的抑制效应的区别不是特别明显。以上结果为耳迷走神经刺激治疗癫痫在临床应用提供理论依据。
     本研究对人体迷走体感诱发电位的测量进行了摸索。在数名受试者进行耳迷走神经刺激过程中,采集到了一组相对稳定的诱发电位。为下一步在人体进行相关研究提供了一种新的方法和思路。
Parasympathetic excitation responses can be induced by the stimulation at auditory canal or auricular concha, such as auriculo-vagus-stimulation. Our previous study verifies that the stimulation of acupuncture at auricular concha might induce the excitation of nucleus of solitary tract (NTS) and alter the frequency of discharged neurons in nucleus originis dorsalis nerve vagus. Stimulation of auricular concha could regulate heart rate and blood pressure, and strengthen gastric motility. Our previous study also shows that electroacupuncture at auricular concha might induce parasympathetic excitation responses, including suppressing hypertension, suppressing hyperglycemia.
     The epilepsy is a chronic disease with temporal disorder function of the central nervous system caused by recurrent seizures. According to the different parts of the diseased nerve cells and the scopes of discharging with the proliferation, The seizure can be manifested as disorders in motion, feeling, intention, behavior, autonomic nerve, etc. To cure the epilepsy we can mainly use the medicine under control, or surgical operation surgical operation (cut off the nidus or its conduction passages) and vagus nerve stimulation (VNS). It is mostly considered that that the mechanism of VNS therapy is through activating projection from the vagus nerve to the NTS and the broad connection between the NTS and brain, with a result of desynchronization of EEG.
     In our previous study, it is found that stimulation of auricular branch of vagus nerve can also suppress the epilepsy and play a rather good effect of anti-epilepsy. If we can use the therapy of vagus nerve stimulation, we can resolve the complication of patients caused by VNS surgical operation and the high expenses and etc. and provide the treatment methods as convenient and money-saved for the people suffering epilepsy. Based on the previous study, this research will study on the effects, mechanism of effect and stimulation parameters on animal subjects and the human subjects by the stimulation to the concha auriculae of the vagus nerve to repress the epilepsy. Furthermore, we discuss the mechanism of function about how we provide the stimulation to the auricular branch of vagus nerve to repress the epilepsy, providing the corresponding theory for the clinical application.
     Experiments
     1. Effect of Transcutaneous Auriculo-vagus-stimulation on Local field potentials in cortex of epilepsy rats
     1.1 Animals Experiments were performed on 14 adult male Sprague-Dawley rats weighing 300±49g.
     1.2 Methods Anesthesia was performed by 10% urethane (1.2 g/kg, i.p.), additional sodium pentobarbital was administered as needed. Four recordings of field potentials (FPs) by microelectrode arrays (2×2,4 channels) were carried out in the right primary somatosensory cortices (AP:±1.0 mm, ML:4-6 mm, DV:0.5-1.0mm). Rats were induced by intraperitoneal injection of PTZ (pentylenetetrazol, PTZ) 60 mg/kg. Stimulation was performed by two iron slice electrodes sticked on auricular concha,with parameter as follows:Frequency of 20Hz, duration of 30 seconds, intensity of 1 mA. Field potentials was observed and recorded by CerebusTM5.0 system.
     1.3 Results Before PTZ, the EEG traces were horizontal relatively. After PTZ, highly synchronous, large-amplitude activity traces in field potentials occurred. Before auriculo-vagus-stimulation, the attack time of seizures in two mimutes, was 101.55±6.39 sec; after stimulation, the attack time in two mimutes was 58.5±10.25 sec. Compared with stimulation, the attack time of epilepsy decreased 58.74±10.10%(P<0.01).
     2. Comparation of ipsilateral and contralateral transcutaneous auriculo-vagus-stimulation on field potentials of epilepsy rats
     2.1 Animals Experiments were performed on 27 adult male Sprague-Dawley rats weighing 300±34g.
     2.2 Methods Anesthesia was performed by 10% urethane (1.2 g/kg, i.p.); additional sodium pentobarbital was administered as needed. Four recordings of field potentials (FPs) by microelectrode arrays (2×2,4 channels) were carried out in the right primary somatosensory cortices (AP:±1.0 mm, ML:4-6 mm, DV:0.5-1.0mm). Rats were induced by intraperitoneal injection of PTZ (pentylenetetrazol, PTZ) 60 mg/kg. Stimulation was performed by two iron slice electrodes sticked on auricular concha,with parameter as follows:Frequency of 20Hz, duration of 30 seconds, intensity of 1 mA. Field potentials was observed and recorded by CerebusTM 5.0 system. 27 Sprague-Dawley rats were divided into two groups, ipsilateral vagus-stimulation group and contralateral vagus-stimulation group.
     2.3 Results Ipsilateral and contralateral transcutaneous auriculo-vagus-stimulation could both suppress epileptic seizures of rats. The inhibiting rate in ipsilateral vagus-stimulation group (n=16) was 16.29±9.53% and the inhibiting rate in contralateral vagus-stimulation group (n= 16) was 16.29±9.53%(n=11). There is significant difference between the inhibiting rate in the two groups. (P<0.01).
     3. Effect of different frequency (2Hz,20Hz,100Hz) of Transcutaneous Auriculo-vagus-stimulation on field potentials of epilepsy rats
     3.1 Animals Experiments were performed on 51 adult male Sprague-Dawley rats weighing 300±29g.
     3.2 Methods Anesthesia was performed by 10% urethane (1.2 g/kg, i.p.); additional sodium pentobarbital was administered as needed. Four recordings of field potentials (FPs) by microelectrode arrays (2×2,4 channels) were carried out in the right primary somatosensory cortices (AP:±1.0 mm, ML:4-6 mm, DV:0.5-1.0mm). Rats were induced by intraperitoneal injection of PTZ (pentylenetetrazol, PTZ) 60 mg/kg. Stimulation was performed by two iron slice electrodes sticked on auricular concha,with parameter as follows:duration of 30 seconds, intensity of 1 mA. Field potentials was observed and recorded by CerebusTM 5.0 system.
     According to different durations of simulation,51 Sprague-Dawley rats were divided into four groups:30 seconds group,5 minutes group,10 minutes group and 30 minutes group.
     3.3 Results
     3.3.1 Effect of 2Hz transcutaneous auriculo-vagus-stimulation on field potentials of epilepsy rats After 2 Hz stimulation, the inhibiting rate in 30 seconds group (n=10) was 61.51±18.21%; the inhibiting rate in 5 minutes group (n=9) was 10.87±3.1%; the inhibiting rate in 10 minutes group (n=10) was 11.57±13.71%; and the inhibiting rate in 30 minutes group (n=8) was 5.17±4.84%. Compared with 5 minutes group, the inhibiting rate of epilepsy seizure decreased significantly in the others groups (P<0.01).
     3.3.2 Effect of 20Hz transcutaneous Auriculo-vagus-stimulation on field potentials of epilepsy rats
     After 20 Hz stimulation, the inhibiting rate in 30 seconds group (n=14) was 58.74±10.10%, in 5 minutes group (n=8) 36.34±13.87%, in 10 minutes group (n=9) 38.53±12.85%, and in 30 minutes group (n=7) 61.36±16.14%. The post anti-epileptic effect in 30 seconds group (n=14) was 149.22±59.80 sec, in 5 minutes group (n=8) 205.00±134.37 sec, in 10 minutes group (n=9) 213.25±122.46 sec, and in 30 minutes group (n=7) 166.00±89.71 sec. All groups could suppress the epileptic seizure, but with no significant difference between them (P>0.05).
     3.3.3 Effect of 100Hz transcutaneous Auriculo-vagus-stimulation on field potentials of epilepsy rats
     After 100 Hz stimulation, the inhibiting rate in 30 seconds group (n=10) was 12.58±4.33%, in 5 minutes group (n=8) 36.26±11.92%, in 10 minutes group (n=9) 32.87±14.04%, and in 30 minutes group (n=7) 50.92±17.99%. Compared with 30 seconds group, the inhibiting rate in 30 minutes group increased significantly (P<0.01) with no significant difference between 5 minutes group and 10 minutes group.
     The post anti-epileptic effect in 30 seconds group (n=10) was 13.54±4.37 sec, in 5 minutes group (n=8) 59.56±10.25 sec, in 10 minutes group (n=9) 55.51±10.04 sec, and in 30 minutes group (n=7) 160.20±58.26 sec. Compared with 30 seconds group, the post anti-epileptic effect increased significantly in the others groups (P<0.05).
     4. Effect of Different time (30sec,5min, 10min,30min) of Transcutaneous Auriculo-vagus-stimulation on field potentials of epilepsy rats
     4.1 Animals Experiments were performed on 51 adult male Sprague-Dawley rats weighing 300±29g.
     4.2 Methods Anesthesia was performed by 10% urethane (1.2 g/kg, i.p.); additional sodium pentobarbital was administered as needed. Four recordings of field potentials (FPs) by microelectrode arrays (2×2,4 channels) were carried out in the right primary somatosensory cortices (AP:±1.0 mm, ML:4-6 mm, DV:0.5-1.0mm). Rats were induced by intraperitoneal injection of PTZ (pentylenetetrazol, PTZ) 60 mg/kg. Stimulation was performed by two iron slice electrodes sticked on auricular concha,with parameter as follows:duration of 30 seconds, intensity of 1 mA. Field potentials was observed and recorded by CerebusTM 5.0 system.
     According to different durations of simulation,51 Sprague-Dawley rats were divided into three groups:2Hz group,20Hz group and 100Hz group.
     4.3 Results
     4.3.1 Effect of 30 seconds transcutaneous Auriculo-vagus-stimulation on field potentials of epilepsy rats
     After 30 seconds stimulation, the inhibiting rate in 2Hz group (n=9) was 61.51±18.21%, in 20Hz group (n=14) 58.74±10.10% and in 100Hz group (n=10) 12.58±4.33%. Compared with 100Hz group, the inhibiting rate of epilepsy seizure increased significantly in the others groups (P<0.01). The post anti-epileptic effect in 2Hz group (n=9) was 142.38±61.83 seconds, in 20Hz group (n=14) 149.22±59.80 seconds and in 100 Hz group (n=10) 13.50±4.37. Compared with 100Hz group, other groups possessed good inhibitory effect on epileptic seizure.
     4.3.2 Effect of 5 minutes transcutaneous Auriculo-vagus-stimulation on field potentials of epilepsy rats
     After 5 minutes stimulation, the inhibiting rate in 2Hz group (n=9) was 10.87±3.1%, in 20Hz group (n=8) 36.34±13.87% and in 100Hz group (n=8) 36.26±11.92%. Compared with 2Hz group, the inhibiting rate of anti-epileptic effect was increased in the others groups (P<0.05). The post anti-epileptic effect in 2Hz group (n=9) was 19.00±4.43 sec, in 20Hz group (n=14) 205.00±134.37 sec and in 100 Hz group (n=10) 59.56±10.25 sec. Compared with 2Hz group, other groups possessed the good inhibitory effect on epileptic seizure (P<0.05). There was no significant difference between 20Hz group and 100Hz group (P>0.05).
     4.3.3 Effect of 10 minutes transcutaneous Auriculo-vagus-stimulation on field potentials of epilepsy rats
     After 10 minutes stimulation, the inhibiting rate in 2Hz group (n=10) was 11.57±13.71%, in 20Hz group (n=9) 38.53±12.85% and in 100Hz group (n=9) 32.87±14.04%. Compared with 2Hz group, the inhibiting rate of anti-epileptic effect increased in the others groups (P<0.05). The post anti-epileptic effect in 2Hz group (n=10) was 16.67±11.00 sec, in 20Hz group (n=9) 213.25±122.46 sec and in 100 Hz group (n=9) 55.51±10.04 sec. Compared with 2Hz group, the others group possessed the good inhibitory effect on epileptic seizure (P<0.05).
     4.3.4 Effect of 30 minutes transcutaneous Auriculo-vagus-stimulation on field potentials of epilepsy rats
     After 10 minutes stimulation, the inhibiting rate in 2Hz group (n=8) was 5.17±4.84%, in 20Hz group (n=7) 61.36±16.14% and in 100Hz group (n=7) 50.92±17.99%. Compared with 2Hz group, the inhibiting rate of epilepsy seizure was increased in the others groups (P<0.01). The time of after effect in 2Hz group (n=8) was 11.00±4.95 seconds, in 20Hz group (n=7) 166.00±89.71 seconds and in 100 Hz group (n=7) 160.20±58.26 seconds. Compared with 2Hz group, the other groups possessed the good inhibitory effect on epileptic seizure (P<0.01). There was no significant difference between 20Hz group and 100 Hz group (P>0.05).
     5. Effect of Transcutaneous Auriculo-vagus-stimulation on field potentials of epilepsy rats after disconnection different regions of auricle
     5.1 Animals Experiments were performed on 21 adult male Sprague-Dawley rats weighing 300±32g.
     5.2 Methods Anesthesia was performed by 10% urethane (1.2 g/kg, i.p.); additional sodium pentobarbital was administered as needed. Four recordings of field potentials (FPs) by microelectrode arrays (2×2,4 channels) were carried out in the right primary somatosensory cortices (AP:±1.0 mm, ML:4-6 mm, DV:0.5-1.0mm). Rats were induced by intraperitoneal injection of PTZ (pentylenetetrazol, PTZ) 60 mg/kg. Stimulation was performed by two iron slice electrodes sticked on auricular concha,with parameter as follows:Frequency of 20Hz, duration of 30 seconds, intensity of 1 mA. Field potentials was observed and recorded by CerebusTM 5.0 system. According to disconnection different regions of right auricle,21 Sprague-Dawley rats were divided into two groups, the front disconnection group and the back disconnection group.
     5.3 Results
     Before the disconnection different regions of right auricle, the inhibiting rate in the front disconnection group (n=10) was 51.72±9.85% and the rate in back disconnection group was 36.26±3.07%(n=11).There was no significant difference between the front group and the back group (P>0.05). After the disconnection, the inhibiting rate in the front disconnection group (n=10) was 38.87±7.64% and the rate in back disconnection group was 2.15±1.10%(n= 11).Compared with the front disconnection group, the inhibiting rate of epilepsy in the back group was impaired significantly (P<0.01).
     6. Measure of Vagus Sensory Evoked Potential
     6.1 Subject of research:
     A group of 8 healthy subjects (6f,2m; age range 24-34years, all self-reported right-handers)
     6.2 Process of experiment:
     The work station with 64 channels for the electroencephalograms and the inducting electric potential (NeuroScanTM) was used to record the EEG of the subjects in the whole process of the stimulation to the auricular branch of vagus nerve. The stimulator providing stimulation to the auricular branch of vagus nerve was used to trigger it externally and mark the stimulation signals on the EEG synchronously. According to the time point of signals marked, the data of EEG before or after the stimulation was divided、folded and analyzed, providing and presenting the appeared induction electric potential by somatic sensation of the vagus nerve concerned with the auricular branch of vagus nerve.
     6.3 Result:In the process of stimulation to the auricular branch of vagus nerve, we can get a stable inducting Evoked potential (EP). This EP consisted of a positive deflection of about 1.3μV occurring about 2.4ms after stimulation and a lasting about 2ms measured between electrodes C4 and F4. We can also get the electric potential variety between the electrodes Fz and F4. No Clear EP was measured in the recording of C3 vs F3.The two dissimilarity individual samples presented by the inducting EP can show the feature of an obvious composition with stable wave form and fixed incubation period and same distribution. The same EP could not be acquired by presenting the stimulation on other parts in the ear.
     Conclusion
     This research mainly investigated the mechanism of transcutaneous auriculo-vagus-stimulation for the treatment of epilepsy by using electrophysiological techniques. it was showed that stimulation at the auricular branch of vagus nerve of the rat can suppress epileptic seizures. This kind of function can strengthen the function of parasympathetic activities by activating the activities of the NTS and thus alter the desynchronization process of the brain electricity, producing the effect of repressing the epilepsy. The effect of the auricular branch of vagus nerve on the same side is much better than that on the other side which is consistent with the projecting laws of the NTS in neurotomy. After cutting off the homologous nerve, the anti-epileptic effect of stimulation at the auricular branch of vagus nerve disappeared. It perhaps can be explained that simulation of the auricular branch of vagus nerve can suppress the epilepsy through the nerve media. This research finds that among all the stimulations at different frequencies, the stimulation at 20 Hz can optimally repress the epilepsy of rat compared with the stimulations in other frequencies. As to the different duration time of the stimulation to the auricular branch of vagus nerve, the influenced effect to repressing the epilepsy of rat is not so obvious. The result mentioned above can provide the theory to support the clinical application as to stimulate the auricular branch of vagus nerve to cure epilepsy.
引文
1. 邢锦秀,刘春霞.关于耳穴的理论研究.吉林中医药.1996;6:39-40.
    2. Bourdiol R耳针疗法.周一方译自《生物疗法讲座》(法文)33期副本,1972:pp.1-22.
    3. Tblkouuheka R.eA. OcHo BblNrpope'nekcu Tepan Nm,1979:p.287.
    4. Nogier.PDeutseheZeitsehritfuferAkuPunetu.r1957;6(3-4):25.
    5. ehoMH, Nogier.P医道。日本,1978:(11):]6.
    6. Chen H. Recent studies on auriculoacupuncture and its mechanism. J Tradit Chin Med.1993; 13: 129-143.
    7. Nogier P. From Auriculotherapy to Auriculomedicine. Moulins-les Meta, France; Maisonneruve; 1983.
    8. Oleson TD. Auriculotherapy Manual:Chinese and Western Systems of Ear Acupuncture.2nd ed. Los Angeles, Calif:Health Care Alternatives:1996.
    9. 严振国,糜兢华.耳穴的神经分布及耳廓的形成.上海针灸杂志.1989;145-146.
    10.戴衡茹,赵学敏.耳廓的神经供应.安徽医科大学学报.1960;3(2-3):65-69
    11.雷琦.外耳的神经和动脉的解剖.解剖学报.1963;2(1):29-37.
    12.中国科学院动物研究所.人耳廓及其穴位里的神经分布.针刺麻醉原理的探讨.北京:人民卫生出版社.1974年版.41-46.
    13.中国科学院动物研究所.猫耳廓的神经分布.针刺麻醉原理的探讨.北京:人民卫生出版社.1974年版.37-40.
    14.管遵信,李惠芳.耳穴诊治疾病的原理.中国针灸.1993;1:42-44.
    15. Mitchell, G.A. The autonomic nerve supply of throat, nose and ear. J. Laryngol. Otol.1953:68: 495-516.
    16. Hunt Jr. The sensory field of hte facial nerve:A further contribution to the symptomatology of the enicuiate ganglion. Brain.1915; 38:418.
    37. Hollinshead WH. Anatomy for Surgeons:Ⅰ, The Head-Neck. New York, Harper and Row,1968. P190-191.
    18. Hollinshead WH. Anatomy for Surgeons:Ⅰ, The Head-Neck.3rd ed. New York, Harper and Row, 1982.P162.
    19. Guild SR. The glomus jugulare, a non chromaffin paraganlion in man. Ann Otol Rhinol Laryngol.1953; 62(4):1045-1071.
    20. Tekdemir I, Aslan A, Elhan A. A ciinico-anatomic study of the auricular branch of the vagus nerve and Arnold's ear-cough reflex. Surg Radiol Anat.1998; 20(4):253-257.
    21. Barr ML, Kiernan JA. The Human Nervous System. An anatomical view point,4th ed. Philadelphia:Harper and Row,1983. P138.
    22. Williams PL, Warwick R in Gray's Anatomy,36th ed. London:Churchill-Livingstone, Edinburgh,1980, P1079-1081.
    23. Liu D, Hu Y. The central projections of the great auricular nerve primary afferent fibers-an HRP transganglionic tracing method. Brain Res.1988; 445(2):205-210.
    24.张诗兴,周坤福,姜文方等.耳穴的脑、脊神经节投射.上海针灸杂志.2002;21(3):35-36.
    25. Chien CH, Shieh JY, Ling EA, et al. The composition and central projections of the internal porjections of the intermal auricular nerves of the dog. J Anat.1996; 189(Pt2):349-362.
    26. Peuker ET, Filler TJ. The Nerve Supply of the Human Auricle. Clinical Anatomy.2002; 15:35-37.
    27.张启兵.耳针作用的形态学机理研究.上海针灸杂志.2003;22(1):46-47.
    28..lean A. The nucleus tractus solitarius:neuroanatomic, neurochemical and functional aspects. Arch Int Physiol Biochim Biophys.1991; 99(5):A3-52.
    29. Zhang LL, Ashwell KW. The development of cranial nerve and visceral afferents to the nucleus of the solitary tract in the rat. Anat Embryol (Berl).2001; 204(2):135-151.
    30. Kalia M, Mesulam MM. Brain stem projections of sensory an motor components of the vagus complex in the cat:Ⅰ. The cervical vagus and nodose ganglion. J Comp Neurol.1980; 193(2): 435-465.
    31. Kalia M, Mesulam MM. Mesulam. Brain stem projections of sensory an motor components of the vagus complex in the cat:Ⅱ. Laryngeal, tracheobronchial, pumonary, cardiac, and gastrointestinal branches.J Comp Neurol.1980; 193(2):467-508.
    32. Estes ML, Block CH, Barnes KL. The canine nucleus tractus solitarii:light microscopic analysis of subnuclear divisions. Brain Res Bull.1989; 23(6):509-517.
    33. Loewy AD, Burton H. Nuclei of the solitary tract:efferent projections to the lower brain stem and spinal cord of the cat. J Comp Neurol.1978; 181(2):421-449.
    34. Kalia M, Sullivan JM. Brainstem porjection of sensory and motor components of vagus nerve in the rat. J. Comp Neurol.1982; 211(3):248-265.
    35. Hyde TM, Miselis RR. Subnuclear organization of the humna caudal nucleus of the solitary tract. Brain Res Bull.1992:29(1):95-109.
    36. Berk ML. Projections of the lateral hypothalamus and bed nucleus of the stria timinalis to the dorsal vagal complex in the pigeon. J Comp. Neurol.1987; 260(1):140-156.
    37. Gray TS, Magnuso DJ. Neuropeptide neurooanl efferents from the bed nucleus of the striaterminalis and central amgydaloid nucleus to the dorsal vagal complex in the rat. J Comp Neurol.1987; 262(3):365-374.
    38. Okuma Y, Osumi Y. Central cholinergic descending pathway to the dorsal motor nucleus of the vagus in the regulation of gastric function. J Pharmacol.1986; 41(3):373-379.
    39. Kalia M, and Richter D. Morphology of identified slowly adapting lung strech receptor afferents stained with intr-axonal horseradish peroxidase in the tractus solitarius of the cat. I. A light microscopic analysis. J Comp Neurol.1985; 241(4):503-520.
    40. Gwyn DG, Leslie RA, Hopkins DA. Observations on the afferent and efferent organization of the vagus nerve and the innervation of the stomach in the squirrel minkey. J Comp Neurol.1985: 239(2):163-175.
    41. Massari VJ, Shirahata M, Johnson TA, Gatti PJ. Carotid sinus nerve terminals which are tyrosine hydroxylas immunoreactive are found in the commissural nucleus of the tractus solitarius. J Neurocutol.1996; 25(3):197-208.
    42. Menetrey D, Basbaum AI. Spinal and trigeminal projections to the mucleus of the solitary tract: a possible substrate for somatovisceral and viscerovisceral reflexes activation. J. Comp. Neurol. 1987; 255(3):439-450.
    43. Boscan P, Pickering AE, Paton JF. The nucleus of the solitary tract:an integration station for nociceptive and cardiorespiratory afferents. p Physiol.2002; 87(2):259-266.
    44. Nomura S, Mizuno N. Central distribution of primary afferent fibers in the Arnold's nerve (the auricular branch of the vagus nerve):a transganglionic HRP study in the cat. Brain Res.1984; 292(2):199-205.
    45. Gwyn DG, Leslie RA, Hopkins DA. Gastric afferents to the nucleus of solitray tract in the cat. Neurosci. Lett.1979; 14(1):13-17.
    46. Leslie RA, Gwyn DG and Hopkins DA. The central distribution of the cervical vagus nerve and gastric afferent and efferent projections in the rat. Brain Res. Bull.1892; 8(1):37-44.
    47. Roger RC, Hermann GE. Central connection fo the hepatic branch of the vagus nerve:a horseradish peroxidase histochemical study. Jauton Nerv Syst.1983; 7(2):165-174.
    48. Satomi H. Takahashi K. Distribution of the cells of primary afferent fibers to the cat auricle in relation to the innervated region. Anat Anz.1991; 173(2):107-112.
    49. Folan-Curran J, Hickey K, Monkhouse WS. Innervation of the rat external auditory meatus:a retrograde tracing study. Somatosens Mor Res.1994; 11(1):65-68.
    50. Keller JT, Beduk A, Saunder MC. Central brainstem projections of the superior vagal ganglion of the cat. Neurosci Lett.1987; 75(3):265-270.
    51. Liu D, Hu Y. The central projections of the great auricular nerve primary afferent fibers-an HRP transganglionic tracing method. Brain Res.1988; 445(2):205-210.
    52. Bengoechea O, Insausti R, Gonzalo LM. Spinal topography of the projection of the auricular nerve in the rabbit:a transganglionic WGA-HRP study. Brain Res.1985; 329(1-2):340-345.
    53.江苏新医学院第二附院.耳麻取穴与内脏神经的关系.针刺麻醉原理的探讨.北京:人民卫生出版社1974年版.PP.364-366.
    54.瞿治平,俞丽云.实用癫痫学.上海:上海医科大学出版社,1997,13-14.
    55.张爱华,伍国强,程志强,等.湘乡市80万农村人口癫痫流行病学调查报告.当代医师杂志1997,13-14.
    56.王华,雷花香,黄定梅,等.湘西土家族、苗族、侗族癫痫流行病学调查.临床神经疾病杂志,1994,4(1):214-215.
    57. Diop AG, de-Boer HM, Mandlhate C, et al. The global campaign against epilepsy in Afica. Acta Trop,2003,87(1):149-159.
    58.谭启富.癫痫外科治疗现状.中华神经外科杂志,1999,5(6):327.
    59.粟秀初,吴保仁,黄远桂.新编神经病学.西安:第四军医大学出版社.2002,4.
    60. Koyama I, Ueki K, Nagatsu I, Karasawa N, Shimizu H, Ishijima B, Kawakami Y. A GABA and glutamate immunocytochemical study of cortical neurons of temporal epilepsy in humans. The Japanese Journal of Psychiatry Neurology,1990,44(2):445-447.
    61. Houser CR. Neuronal loss and synaptic reorgnization in temporal lobe epilepsy. Advances in Neurology,1999,79:743-761.
    62. Houser CR. [J] Epilepxy Res Suppl,1992,7(1):223-234
    63. Chorsky RL, Yaghmai F, Hill WD, et al. [J] Med Hypotheses,2001,56(1):124-127
    64.朱长庚.神经免疫内分泌网络与癫痫发病机理的关系.解剖学报,1993,24(2):216-221.
    65.癫痫的药物治疗现状及其进展.中国社区医师,2006,22(310):8-9.
    66. Morrell F, Kanner AM, deToledo-Morrell L, et al. Multiple subpial transection.Advances of Neurology,1999,81:259-270.
    67. Uthman BM. Vagus nerve stimulation for seizures. Arch Med Res,2000,31:300-303.
    68. Lanska, D.J. Corning and vagal nerve stimulation for seizures in the 1880s. Neurology,2002,58: 452-459.
    69. George, M.S., Sackeim, H.A., Rush, A.J., Marangell, L.B., Nahas, Z.,Husain, M.M., Lisanby. S., Burt, T., Goldman, J., Ballenger, J.C., Vagus nerve stimulation:a new tool for brain research and therapy. Biol. Psychiatr,2000,47:287-295.
    70. Duncan A. Groves, Verity J. Brown. Vagal nerve stimulation:a review of its applications and potential mechanisms that mediate its clinical effects. Neuroscience and Biobehavioral Reviews,2005,29:493-500.
    71. Gadol AA, Britton JW, Wetjen NW, et al. Neurostimulation therapy for epilepsy:Current modalities and future directions.Rochester.2003,78:238-249.
    72. Steven C.Schacher, Dieter Schmidt. Vagus Nerve Stimulation, Second edition,2003, the Talor & Francis Group.
    73. Rutecki P. Anatomical, physiological, and theoretical basis for the antiepileptic effect of vagus nerve stimulation. Epilepsia,1990,31:126
    74. Zagon A. Synaptic interactions in neurones of the rat rostral ventrolateral medulla oblongata Brain Res Protoc,2001,7:2129-2138.
    75. Holmes MD,Miller JW,Voipio J,et al. Vagal nerve stimulation induces intermittent hypocapnia [J]. Epilepsia,2003,44:1588-1591.
    76. Henry TR,Bakay RA, Pennell PB.et al. Brain blood—flow alterations induced by therapeutic vagus nerve stimulation in partial epilepsy:Ⅱ. prolonged effects at high and low levels of stimulation. Epilepsia,2004,45:1064-1070.
    77. Rutecki P. Anatomical, hysiological, and theoretical basis for the antiepileptic effect of vagus nerve stimulation[J]. Epilepsia,1990,31:S1-S6.
    78. Naritoku DK, Terry WJ, Helfert RH. Regional induction of fosim munoreactivity in the brain by anticonvulsant stimulation of the vagus nerve. Epilesy Research,1995,22:53-62.
    79.王润萍,李菁锦,吕国蔚.盆神经和阴部神经传入在大鼠腰骶髓的相互作用.生理学报,2000.52:115-117.
    80. Ko D, Heck C, Grafton S, et al. Vagus nerve stimulation activates central nervous system structures in epileptic patients during PET H215O blood flow imaging. Neurosurgery,1996, 9:426-430.
    81. Schachter SC, Saper CB. Vagus nerve stimulation. Epilepsia,1998,39:677-686
    82. Amar AP, Heck CN, Levy ML, et al. An institutional experience with cervical vagus nerve trunk stimulation for medically refractory epilepsy:rationale, technique, and outcome. Neurosurgery,1998,43:1265-1276.
    83. The Vagus Nerve Stimulation Study Group. A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. Neurology,1995,45:224-230.
    84.徐笨人.针刺大椎穴治疗癫痫95例.中国针灸,1982,2:4-4
    85.冯文华.针灸奇经俞穴为主治疗癫痫35例.陕西中医,1989,10:131-132
    86.张丹玲.治脑三穴治癫痫病95例.中医函授通讯,1991,2:41-41
    87.闫万魁.穴位埋线治疗癫痫100例临床观察.中国针灸,1998,18:377-378.
    88.张仁.中医治疗现代难痫集成.第1版,上海:文汇出版社,1998:P494.
    89.徐非.督脉穴埋线治疗癫痫60例临床观察.国医论坛,1999,14:34-35.
    90.孙曙霞.针刺配合药物贴脐治疗癫痫48例.上海针灸杂志.1997,16:13-13.
    91.邢贵升.针药并施治疗癫痫19例.针灸临床杂志,1999,15:13-14.
    92.闫丽萍.近年来针灸治疗癫痫综述.针灸临床杂志,1995,11:52-54.
    93.衣运铃,姜军作.耳针治疗原发性癫痫1例报道.吉林中医药,2003,23:40-40.
    94. Jia Shu, Rong-Yu liu, et al. Efficacy of Ear-Point stimulation on experimentally induced seizure. Acupuncture & Electro-therapeutics research,2005,30:43-52.
    95. Enrique C.G. Vetureyra.Transcutaneous vagus nerve stimulation for partial onset seizure therapy. Child's Nerv Syst,2000,16:101-102.
    96.邹义良,欧桂珍.针刺治疗癫痫的机理探讨近况.贵阳中医学院学报,1993,15:19-21.
    97.闫丽萍,李建军,等.针刺对实验性急性癫痫大鼠脑干γ-氨基丁酸和谷氨酸含量的影响.中国针灸,1999,19:235-237. 98.张仁.中医治疗现代难病集成.第1版,上海:文汇出版社,1998:P494.99. Koyama I, Ueki K, Nagatsu I, et al. A GABA and glutamate immunocytochemical study of cortical neurons of temporal epilepsy in humans. The Japanese Journal of Psychiatry Neurology, 1990,44(2):445-447. 100. Houser CR. Neuronal loss and synaptic reorgnization in temporal lobe epilepsy. Advances in Neurology,1999,79:743-761. 101. House CR. Morphological changes in the dentate gyrus in human temporal lobe epilepsy. Epilepxy Res Suppl,1992,7(1):223-234. 102. Carlson RL, Yaghmai F, Hill WD, et al. Alzheimer's disease:a review concerning immune response and microischemia. [J] Med Hypotheses.2001,56(1):124-127
    103. Uthman BM. Vagus nerve stimulation for seizures. Arch Med Res,2000,31:300-303.
    104. lanska, D.J. Corning and vagal nerve stimulation for seizures in the 1880s. Neurology,2002,58: 452-459.
    105. George, M.S., Sackeim, H.A., Rush, A.J., et al. Vagus nerve stimulation:a new tool for brain research and therapy. Biol. Psychiatr,2000,47:287-295.
    106. Duncan A. G.,Verity J. B. Vagal nerve stimulation:a review of its applications and potential mechanisms that mediate its clinical effects. Neuroscience and Biobehavioral Reviews.2005,29: 493-500.
    107. Steven C.Schacher,Dieter Schmidt. Vagus Nerve Stimulation, Second edition,2003, the Talor & Francis Group.
    108. Terry R, Tarver WB, Zabara J. An implantable neurocybernetic prosthesis system. Epilepsia, 1990,31:332-337.
    109. Schachter SC, Saper CB. Vagus nervestimulation. Epilepsia,1998,39:677-686.
    110. Holmes MD, Miller JW.Voipio J,et al. Vagal nerve stimulation induces intermittent hypocapnia [J]. Epilepsia,2003,44:1588-1591.
    111. Fallgatter AJ, Neuhauser B, Herrmann MJ, et al. Far field potentials from the brain stem after transcutaneous vagus nerve stimulation. J Neural Transm.2003; 110(12):1437-43.
    112. Gao XY, Zhu B, Rong PJ, et al. Auriculo-Cardiac-Vagal Reflex in Auricular Depressor Effect Traditional Medicine and People's Health (the 3nd International Congress on Traditional Medicine). Publishing House of Ancient Chinese Medicine Books,2004:P438.
    113.Gao XY, Zhang SP,Zhu B, et al.lnvestigation of specificity of auricular acupuncture points in regulation of autonomic function in anesthetized rats. Auton Neurosci.2008,138:50-56.
    114.Erika E F, Ashlan P R, Miguel A. L, et al. Reduction of pentylenetetrazole-ilnduced seizure activity in awake rats by seizure-triggered trigeminal nerve stimulation. The Journal of Neuroscience,2000,20:8160-8166.
    115. Wen Jiang, Ken Wolfe, Lan Xiao, et al. Ionotropic glutamate receptor antagonists inhibit the proliferation of granule cell precursors in the adult brain after seizures induced by pentylenetrazol.Brain Research,2004:154-158.
    116. Chen KS, Hu ZH,Zhu B. Survey of studies on adjuvant diagnostic method of stimulating auricular points at home and abroad. Zhongguo Zhen Jiu,2007,27:939-941.
    117.中华人民共和国国家标准-耳穴名称与部位(GB-T 13734-92).北京,国家标准出版社,1993年版.
    118. Nogier P. Deutsche Zeitschrift fuer Akupunctur.1957,6:25.
    119.Nogier p. from auriculo-therapy to auriculomedicine.Moulins-les Metz, France:Maisonneuve:1983.
    120. Steven C.Schacher, Dieter Schmidt.. Vagus nerve stimulation. Second edition,2003, the Talor & Francis Group.
    121. Thomas R. Henry, MD.Therapeutic mechanisms of vagus nerve stimulation. Neurology,2002, 59:S3-S14.
    122. Viktoria O, Vitaly B, Fabrice W, et al. Autonomic response and Fos expression in the NTS following intermittent vagal stimulation:Importance of pulse frequency. Autonomic Neuroscience:Basic and Clinical,2006,6:1-9.
    123. Benjamin R. Walker A.E, and Karen G. Regulation of Limbic Motor Seizures by GABA and Glutamate Transmission in Nucleus Tractus Solitarius. Laboratory Research.Epilepsia,1999, 40:1051-1058.
    124. Naritoku DK, Terry WJ, Helfert RH. Regional induction of fos immunoreactivity in the brain by anticonvulsant stimulation of the vagus nerve. Epilepsy Res,1995,22:53-62
    125. Kalia M, Sullivan JM. Brainstem projection of sensory and motor components of the vagus nerve in the rat. J. Comp Neurol.1982; 211(3):248-265.
    126.卢峻,时宇静,金智秀,等.不同频率电针对模型大鼠抗抑郁效应的比较研究.北京中医药大学学报,2003,26(6):83.
    127.蒋袁絮,王韵,韩济生等.2Hz和100Hz经皮神经电刺激对大鼠慢性炎症痛治疗作用的比较.
    [J]中国中西医结合杂志,2001,21(12):923-925.
    128. Walsh DM, Liggett C, Baxter D, et al. A double-blind investigation of the hypoalgesia effects of transcutaneous electricalnerve stimulation upon experimentally induced ischemic pain. Pain 1995;61(1):39-45.
    129.王友京,王双坤.不同强度和频率电针的镇痛效应.针刺研究1993;18(1):44-47.
    130.韩济生.针刺镇痛频率特异性的进一步证明.针刺研究,2001,26(3):224-225.
    131.朱玲.不同频率电针对晚孕大鼠子宫收缩活动及其机制的研究.北京:北京中医药大学,2004.
    132.郭轶君.不同频率电针对糖尿病大鼠血糖-血脂-血液流变的影响.北京:中国中医科学院,2003.
    133.张幼美.不同频率电针对风湿痹证患者免疫球蛋白及补体含量的影响.安徽中医学院学报,2000,19(3):31-32.
    134.姚凤祯,郭加利,唐强,等.头穴透刺的不同量与时间对急性脑梗塞疗效影响[J].中医药信息,1997,14(2):18-19.
    135.陈日新.针灸作用的基本特点与时效关系[J].江西中医学院学报,2008,20(4):56-57.
    136.陈少宗.针刺作用时效关系研究的临床意义[J]针灸临床杂志,2008,24(6):1-3.
    137.戴蘅茹,赵学敏.耳郭的神经供应.安徽医科大学学报,1960,3:65-69.
    ]38.中国科学院动物研究所.人耳郭及其穴位的神经分布.北京:人民卫生出版社,1974年版41-46
    139. Mitchell, G.A.G. The autonomic nerve supply of the throat, nose and ear, J. Laryngol. Otol.1953; 68:495-516.
    140. Hollinshead WH. Anatomy of Surgeons:The Head—Neck,3rd edition. New York, Harper and Row,1982, pp.162
    141. Guild SR. The glomus jugulare, a non chromaffin paraganglion in man. Ann Otol Rhinol Laryngol.1953; 62 (4):1045-1071.
    142. Tekdemir I, Aslan A, Elhan A. A clinico-anatomic study of the auricular branch of the vagus nerve and Arnold's ear-cough reflex. Surg Radiol Anat.1998;20(4):253-257.
    143.张诗兴,周坤福,姜文方等.耳穴的脑、脊神经节投射.上海针灸杂志.2002;21(3):35-36.
    144. Liu D, Hu Y. The central projections of the great auricular nerve primary afferent fibers-an HRP transganglionic tracing method. Brain Res.1988; 445(2):205-210.
    145. Chien CH, Shieh JY, Ling EA, et al. The composition and central projections of the internal
    auricular nerves of the dog. J Anat.1996; 189(Pt2):349-362.
    146. Satomi H, Takahashi K. Distribution of the cells of primary afferent fibers to the cat auricle in relation to the innervated region. Anat Anz.1991; 173(2):107-112.
    147. Folan-Curran J, Hickey K, Monkhouse WS. Innervation of the rat external auditory meatus:a retrograde tracing study. Somatosens Mot Res.1994; 11(1):65-68.
    148. Keller JT, Beduk A, Saunders MC. Central brainstem projections of the superior vagal ganglion of the cat. Neurosci Lett.1987; 75(3):265-270.
    149. Fallgatter AJ. Far field potentials from the brain stem after transcutaneous vagus nerve stimulation. J Neural Transm,2003,110:1437-1443.
    150. Fallgatter AJ. Age effect on far field potentials from the brain stemafter transcutaneous vagus nerve stimulation. International Journal of Psychophysiology,2005.56:37-43.
    151. Fallgatter AJ. Neuhauser B. Herrmann MJ. Far field potentials from the brain stem after transcutaneous vagus nerve stimulation. J Neural Transm,2009,116:1237-1242.
    152. Kerr FW. The divisional organization of afferent fibers of the trigeminal nerve. Brain. 1963;86(12):721-732.
    153. Kerr FW. The organization of primary afferents in the subnucleus caudal is of the trigeminal:a light and electron microscopic study of degeneration. Brain Res.1970; 23(2):147-165.
    154. Bossy J. On the presence of a sensory nucleus of the Ⅸ nerve attached to the spinal tract of the Ⅴ nernv. Acta Anat (Basel).1968;70(3):332-340.
    155. Bradal A., Neurological Anatomy in Relation to Clinical Medicine,3rd ed., Oxford University Press, New York 1981.
    156.张文斌.三叉神经初级传入与孤束核的联系:HRP跨越神经节追踪研究.1990;6(1):97-106.
    157. Beckstead RM, Norgren R. An autoradiographic examination of the central distribution of the trigeminal, facial, glossopharyngeal, and vagal nerves in the monkey. J Comp Neurol.1979; 184(3):303-322.
    158. Contreras RJ, Beckstead RM, Norgren R. The central projections of trigeminal, facial, glossopharyngeal and vagus nerves:an autoradiographic study in the rat. J Auton NervSyst.1982; 6(3):368-373.
    159.. Takemura M, Sugimoto T, Sakai A. Topographic organization of central terminal region of different sensory branches of the rat mandibular nerve. Exp Neural.1987; 96(3):540-557.
    160. Whitehead MC, Frank ME. Anatomy of the gustatory system in the hamster:central projections of the chorda tympani and the lingual nerve. J Comp Neurol.1983; 220(4):378-395.
    161. Nomura S, Yasui Y, Takada M, et al. Trigeminal primary afferent neurons projection directly to the solitary nucleus in the cat:A transganglionic and retrograde horseradish peroxidase study. Neurosci Lett.1984; 50(1-3):257-262.
    162.张文斌,李继硕,李慧民.三叉神经初级传入成分向孤束核投射的间接途径-HRP跨节和逆行追踪技术的光镜和电镜研究.解剖学报.1992:23(3):253-259.
    163.张文斌,李继硕,李慧民.三叉神经初级传入纤维与孤束核的联系.神经解剖学杂志.1990:6(1):97-106.
    164. Nomura S, Mizuno N. Central distribution of primary afferent fibers in the Arnold's nerve (the auricular branch of the vagus nerve):a transganglionic HRP study in the cat. Brain Res,1984, 292:199-205.
    165. Gwyn DG,Leslie RA, Hopkins DA. Gastric afferents to the nucleus of the solitary tract in the cat. Neurosci. Lett.,1979,14:13-17.
    166. Leslie RA, Gwyn DG and Hopkins, D.A., The central distribution of the cervical vagus nerve and gastric afferent and efferent projections in the rat. Brain Res.Bull,1892,8:37-44.
    167. Estes ML, Block CH, Barnes KL. The canine nucleus tractus solitarii:light microscopic analysis of subnuclear divisions. Brain Res Bull,1989,23:509-517.
    168. Keller.JT, Beduk A, Saunders MC. Central brainstem projections of the superior vagal ganglion of the cat. Neurosci Lett,1987.75:265-270.
    169. Liu D, Hu Y. The central projections of the great auricular nerve primary afferent fibers—an HRP transganglionic tracing method. Brain Res,1988.445:205-210.
    170. Engel D. The gastroauricular phenomenon and related vagus reflexes. Arch Psychiatr Nervenkr, 1979:227:271-277.
    171. Engel D. Uber das reflektorische Ohrenjucken bei Sodbrennen. Med. Klin,1922:47:1495-1497.
    172. Malherbe, W.D.F. Otalgia with oesophageal hiatus hernia, Lancet 1958 1:1368-1369.
    173. Deutsch, M. Ein Beitrag zur Symptomatomatologie der beginnenden Lungentuberkulose. Med. Klin,1919,43:1090-1091.
    174. Bradford, F K. The auriculo-genital reflex in cats. J Exp Physiol,1937,27:272-279.
    175. Vasiliu, D.I. Reflex auriculo-uterin. Spitalul,1932,52:P396.
    176. Aschner. In:The neurological examination, De Jong, R.N. (ed.), Hober Med. Division. New York; London,1967:p.315.
    177. Kalchschmidt, In:Lehrbuch der klinischen Diagnostik. J.mared, J. Mosci (eds); Jena:G. Fischer, 1956, pp.293-294.
    178. Berlin, R. Theagstro-auricular phenomenon. Lancet,1959 I; pp.734-735.
    179. Fallgatter AJ. Far field potentials from the brain stem after transcutaneous vagus nerve stimulation. J Neural Transm,2003,110:1437-1443.
    180.杨期东.神经病学.人民卫生出版社,第一版,217.
    181. Lanska, D.J. Corning and vagal nerve stimulation for seizures in the 1880s. Neurology,2002, 58:452-459.
    182. George, M.S., Sackeim, H.A., Rush, A.J., Marangell, L.B., Nahas,Z.,Husain, M.M., Lisanby, S., Burt, T., Goldman, J., Ballenger, J.C., Vagus nerve stimulation:a new tool for brain research and therapy. Biol. Psychiatr,2000,47:287-295.
    183. Duncan A. Groves, Verity J. Brown. Vagal nerve stimulation:a review of its applications and potential mechanisms that mediate its clinical effects. Neuroscience and Biobehavioral Reviews,2005,29:493-500.
    184. Cohen2Gadol AA, Britton JW, Wetjen NW, et al. Neurostimulation therapy for epilepsy: Current modalities and future directions.Rochester,2003,78:238-249.
    185. Steven C.Schacher, Dieter Schmidt. Vagus Nerve Stimulation, Second edition,2003; the Talor & Francis Group.
    186. Schachter SC, Saper CB. Vagus nerve stimulation. Epilepsia,1998,39:677-686
    187. Amar AP, Heck CN, Levy ML, et al. An institutional experience with cervical vagus nerve trunk stimulation for medically refractory epilepsy:rationale, technique, and outcome. Neurosurgery,1998,43:1265-1276.
    188. The Vagus Nerve Stimulation Study Group. A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. Neurology,1995,45:224-230.
    189. Schachter SC, Saper CB. Vagus nerve stimulation. Epilepsia,1998.39:677-686.
    190. Handforth A, Degiorgio CM, Schachter SC,et al. Vagus nerve stimulation therapy for partial2onset seizures:a randomized, active control trial. Neurology,1998,51:48-55.
    191.冯周琴,徐军,等.刺激迷走神经治疗癫痫的实验研究与临床观察.河南医学研究,1995,4:
    3-6.
    192.党雷,冯周琴,等.经皮刺激迷走神经治疗癫痫持续状态的临床研究.中原医刊,1998,25:12-13.
    193.徐笨人,等.针刺大椎穴治疗癫痫95例.中国针灸,1982,2:4-4
    194.冯文华.针灸奇经俞穴为主治疗癫痫35例.陕西中医,1989,10:131-132
    195.张丹玲.治脑三穴治癫痫病95例.中医函授通讯,1991,2:41-41
    196.闫万魁.穴位埋线治疗癫痫100例临床观察.中国针灸,1998,18:377-378.
    197.徐非.督脉穴埋线治疗癫痫60例临床观察.国医论坛,1999,14:34-35.
    198.孙曙霞.针刺配合药物贴脐治疗癫痫48例.上海针灸杂志,1997,16:13-13.
    199.邢贵升.针药并施治疗癫痫19例.针灸临床杂志,1999,15:13-14.
    200.闫丽萍.近年来针灸治疗癫痫综述.针灸临床杂志,1995,11:52-54.
    201.衣运铃,姜军作.耳针治疗原发性癫痫1例报道.吉林中医药, 2003,23:40-40.
    202. Jia Shu, Rong-Yu liu, et al. Efficacy of Ear-Point stimulation on experimentally induced seizure. Acupuncture & Electro-therapeutics research,2005,30:43-52.
    203. Enrique C.G. Vetureyra.Transcutaneous vagus nerve stimulation for partial onset seizure therapy. Child's Nerv Syst,2000,16:101-102.
    204.邹义良,欧桂珍.针刺治疗癫痫的机理探讨近况.贵阳中医学院学报,1993,15:19-21.
    205.闫丽萍,张爱华,等.针刺对马桑内酯致痫大鼠的防治效果观察.上海针灸杂志,1999,18:36-37.
    206.闫丽萍,李建军,等.针刺对实验性急性癫痫大鼠脑干γ-氨基丁酸和谷氨酸含量的影响.中国针灸,1999,19:235-237.
    207.顾陈怿,胡军,蔡云彪.电针刺激参数的研究进展.中国针灸,2003,23(8):489-490.
    208.黄晓卿,陈凌.针刺研究中电针应用状况的文献分析和初步研究.中国中医基础医学杂志,2001,7(7):73.
    209.张幼美.不同频率电针对风湿痹证患者免疫球蛋白及补体含量的影响.安徽中医学院学报,2000,19(3):31-32.
    210.王洪蓓,董晓彤,王双昆,等.不同频率电针对急性实验性关节炎大鼠痛阈及血浆环核苷酸和皮质醇含量的影响.中国针灸,1999,19(3):170-173.
    211.贾萍,陈日新,刘金香,等.不同频率电针对家兔胃电节律紊乱调整效应研究.中国针灸,2006,26(11):801-803.
    212.梁跃,王磊,肖川,等.不同频率电针足三里、太冲穴对大鼠游泳耐力的影响.上海针灸杂志,2006,25(5):39-40.
    213.贾萍,田宁.不同频率电针对小鼠胃肠推进功能的影响.江西中医学院学报,2004,16(3):42-43.
    214.李庆雯,石田寅夫,郭义.不同频率电针对大鼠坐骨神经损伤后神经组织形态学与骨骼肌肌电图的影响.中国针灸,2005,25(3):217-210.
    215.周杰芳,靳瑞.中等强度电针对虚实不同高血.压病人的影响.针灸临床杂志,2004,20(9):28-29.
    216.王少军,朱兵.不同刺激强度电针对正常大鼠大脑p-Akt表达的影响.针刺研究,2005,30(2):72-74.
    217.蒯乐,杨华元,刘堂义,等.不同脉冲波形电针对佐剂性关节炎大鼠的影响.中国针灸,2005,25(1):68-71.
    2]8.孙克兴.不同参数电针对人体超微发光的影响.中国中医基础医学杂志,1998,4(3):51.
    219.中东原,申鹏飞.不同电针波形治疗高尿道压型FUS的临床研究.辽宁中医杂志,2003,30(11):923-924.
    220.左芳,伺芙蓉,尹淑英.不同波形电针对颈椎病所致疼痛的治疗效果.中国临床康复,2004,8(20):4093.
    221.姚凤祯.郭加利,唐强,等.头穴透刺的不同量与时间对急性脑梗塞疗效影响[J].中医药信息,1997,14(2):18-19.
    222.陈日新.针灸作用的基本特点与时效关系[J].江西中医学院学报,2008,20(4):56-57.
    223.陈少宗.针刺作用时效关系研究的临床意义[J].针灸临床杂志,2008,24(6):1-3.
    224. Terry R, Tarver WB, Zabara J. An implantable neurocybernetic prosthesis system. Epilepsia, 1990,31:332-337.
    225.何玮.耳-迷走反射及耳针抗癫痫的效应机制研究.博士毕业论文,2008.
    226.高昕妍.耳针疗法与耳-迷走-内脏反射.博士毕业论文,2005.
    227.梅志刚.耳-迷走反射与耳针降糖的效应机制研究.博士毕业论文,2007.
    228. Adachi T, Meguro K. Sato A and Sato Y. Cutaneous stimulation regulates blood flow in cerebral cortex in anesthetized rats. Neuroreport,1990,1:41.
    229. Litscher G.. Computer-based quantification of traditional Chinese-, ear-and Korean hand acupuncture:needle induced changes of regional cerebral blood flow velocity. Neurol Res, 2002,24:377-380.
    230. Haker E. Effect of sensory stimulation on sympathetic and parasympathetic activities in healthy subjects. J Auto Nerve Syst,2000,79:52-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700