基于约束保持法的矢量拟态物理学约束优化算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生产实践中存在很多难以优化的约束优化问题,智能进化算法与传统约束处理方法相结合成为解决这类问题的有效方法。拟态物理学优化算法是一种最近提出的启发式算法。矢量拟态物理学算法是在拟态物理学优化算法的基础上引入了矢量模型,增强了种群多样性,个体在引斥力规则作用下向目标函数最优值所在的区域移动。矢量拟态物理学算法具有良好的全局搜索能力,并且不受约束条件函数本身特点的影响,算法原理简单,适合与传统约束处理方法结合处理约束优化问题。
     本文采用矢量拟态物理学优化算法与约束保持法相结合来求解约束优化问题。约束保持法是一种传统约束处理方法,它要求所有个体在任何时刻都在可行域内,这就要求个体在初始情况下均为可行解。首先分别采用随机方法和矢量拟态物理学优化算法来产生可行个体,仿真实验表明在产生初始可行解时矢量拟态物理学优化算法优于随机方法;然后针对越界个体引入收缩系数,使得越界个体在不改变其速度方向的前提下收缩回问题空间。利用违反约束量函数来判断个体是否在可行域内,分别采用斐波那契法、黄金分割法、二分法等一维搜索方法将不可行个体拉回可行域,再利用矢量拟态物理学优化算法搜索目标问题的最优解;仿真实验表明这三种方法中,混合黄金分割法的矢量拟态物理学优化算法的搜索精度最优,搜索性能最稳定,混合二分法的矢量拟态物理学优化算法和混合斐波那契法的矢量拟态物理学优化算法次之。混合多维搜索约束保持法的矢量拟态物理学优化算法求解约束优化问题时,将不可行个体拉回可行域的过程转化为求解以收缩矩阵η为变量的违反约束量函数的最优值问题,其搜索过程相当于在超多方体内进行搜索。对比一维搜索方法在超曲面内搜索,多维搜索方法搜索到可行个体的概率比一维搜索方法要大,并且增加了种群多样性。仿真结果表明混合多维搜索的矢量拟态物理学算法比混合一维搜索的矢量拟态物理学算法具有更好的搜索性能和稳定性。
There are many constraint optimization problems which are difficult to optimize in the production, combining intelligence evolutionary algorithm with the traditional constraint processing method become the effective method to solve this kind of problem. APO algorithm is a new proposed heuristic algorithm. VM-APO algorithm introduces vector model based on the artificial physics optimization algorithm, enhance the diversity of population, and the individual move to the area in which the optimal value of objective function under the regular action of gravitation and repulsion. The VM-APO algorithm which is not affected by the characteristics of constrained function itself has good global search capability, and the theory of the algorithm is simple. It’s suited to combine the VM-APO algorithm with traditional constraint processing method to solve the constraint optimization problems.
     A new method which is combined the VM-APO algorithm with constraint-preserving method is adopted to solve the constrained optimization problem in this text. Constraint-preserving method which is a kind of traditional constraint processing method requires all individual in the feasible region at all times, so it requires that the individuals must be feasible solutions in the initial case. First random method and VM-APO algorithm are used respectively to produce all feasible individuals. Simulation experiment shows that VM-APO algorithm is better than random method when the initial feasible solutions to produce. Then shrinkage coefficient is introduced aiming at cross-border individual, which is shrinked back to the problem space without changing the direction of speed. The violation degree function is used to determine whether every individual is in the feasible region or not, and the Gold Cutting Method, the Dichotomy Method and Fibonacci method are used respectively to pull the unfeasible individuals back to the feasible region. Finally the VM -APO algorithm is adopted to search the optimal value of objective function. The Simulation results show that the search performance and stability of VM-APO-GDM algorithm is the best and the most stable, this is followed by VM-APO-FM and VM-APO-DM algorithm. When the VM-APO algorithm with mixed multidimensional search is used to solve constraint optimization problems, the process of pulling infeasible individual back to the feasible region is turned into solving optimal value problem of the violation degree function in terms of contraction matrixη. Contrasting multi-dimensional search method with one-dimension search method on searching feasible individual in hypersurface, the probability of former is greater than the latter, and the diversity of population is increased. The simulation results indicate that the VM-APO-MDCPM algorithm is better than VM-APO-ODCPM algorithm in search performance and stability.
引文
[1]陈加民.非线性规划问题的算法研究[D].太原:太原科技大学,2008.
    [2]甘应爱,田丰,李维铮等.运筹学[M]. 2001,北京:清华大学出版社.136-174.
    [3] Gregorio Toscano Pulido, Carlos A. Coello Coello. A Constraint-Handling Mechanism for Particle Swarm Optimization[J].CEC,2004,36(2):1396-1403.
    [4] Sun C L,Zeng J C, Pan J S. An New Vector Particle Swarm Optimization for Constrained Optimization Problems[J]. Computational Sciences and Optimization, IEEE, 2009, 5779(2009): 485-488.
    [5]汪岚.基于混合遗传算法的染色优化模型与仿真[J].计算机工程, 2009, 35(22):218-220.
    [6] Zhang Wen-Jun, Xie Xiao-Feng. Hybrid Particle Swarm with Differential Evolution Operator[J]. (SMCC),2003,3816-3821.
    [7] Ozgur Yeniay. Penalty Function Methods for Constrained Optimization with Genetic Algorithms[J]. Mathematical and Computational Applications.2005,10(1)45-46.
    [8]王凌,何碶,金以慧.智能约束处理技术综述[J].化工自动化及仪表, 2008, 35(1): 1-7.
    [9]高显忠,罗文彩,侯中喜.应用改进PSO算法求解约束优化问题[J].计算机仿真, 2009, 26(10): 212-215.
    [10] Wang Ling, He Qie. A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization[J]. Mathematical and Computational, 2006, 186(2):1407- 1422.
    [11] Efrén Mezura-Montes, Carlos A . A Simple Multimembered Evolution Strategy to Solve Constrained Optimization Problems[J]. IEEE,2005,9(1):1-17.
    [12]胡中波,王曙霞,熊盛武,苏清华.求解约束优化的自适应杂交差分演化算法[J].计算机工程与应用, 2009, 45(31): 211-214.
    [13] Ana Maria A.C. Rocha, Edite M.G.P. Fernandes. Feasibility and dominance rules in the electromagnetism-like algorithm for constrained global optimization[C]. Computational Science and Its Applications(ICCSA) , 2008, 5073(2008):768-783.
    [14]孙超利,谭瑛.一种求解约束优化问题的微粒群算法[J].太原科技大学学报,2010,36(3):453-457.
    [15] A.Kapsalis, V.J.Rayward-Smith, G.D.Smith. Solving the Graphical Steiner Tree ProblemUsing Genetic Algorithms.journal of the operational Research Society. 1993,44(4):397- 399.
    [16] Ho S Y, Shu Li-sun, Chen J H. Intelligent Evolutionary Algorithms for Large Parameter Optimization Problems[J]. Trans on Evolutionary Computation,2004,8(6):522-541.
    [17]林丹,李敏强,寇纪淞.基于遗传算法求解约束优化问题的一种算法[J].软件学报,2001,12: (4)629-632.
    [18]谢晓峰,张文俊,阮骏.针对带约束非线性规划问题的遗传算法[J].计算机工程与应用, 2002,38(21)64-67.
    [19]闫建国.一种基于多样性保持的遗传算法及其仿真[J].计算机仿真,2010,27(4):206-209.
    [20] D. Beasley, D.R. Bull, R.R. Martin. An overview of genetic algorithms: Part 2, Research topics[J]. Proceedings of the Second International Conference on Genetic Algorithms, Lawrence Erlbaum Associates,1993, 15(2): 170-181.
    [21] Rocha A, Fernandes E. A modified electromagnetism-like algorithm based on a pattern search method[C]. European Computing Conference. Springer-Verlag,2009:1035-1042.
    [22] Rocha A., Fernandes E. Feasibility and dominance rules in the electromagnetism-like algorithm for constrained global optimization[C]. (ICCSA 2008). 2008:768-783.
    [23]郭鹏.基于类电磁机制算法的函数优化研究[D].西安,西安电子科技大学.2009.
    [24]高亮,王晓娟,魏巍.一种改进的类电磁机制算法[J].华中科技大学学报,2006,34(11):4-6.
    [25]韩丽霞,王宇平.求解无约束优化问题的类电磁机制算法[J].电子学报,2009,37(3):665-668.
    [26]韩丽霞,王宇平,兰绍江.双目标优化问题的类电磁算法[J].系统工程与电子技术,2010:32(3)621-623.
    [27]韩丽霞,王宇平,兰绍江.基于模式搜索的类电磁算法求解约束优化问题[J].系统工程与电子技术,2009,9(31):2220-2222.
    [28] Konstantinos E.Parsopoulos,Michael N.Vrahatis. Particle Swarm Optimization Method for Constrained Optimization Problems[J].Intelligent Technologies Theory and applications. IOSpress, 214-217.
    [29] R. Eberhart. Solving Constrained Nonlinear Optimization Problems with Particle Swarm Optimization[C]. In: Proceedings of the sixth World Multiconference on Systemics,Cybernetics and Informatics. Orlando, USA, 2002.
    [30] T. Pulido, C.A.C. Coello. A constraint-handling mechanism for particle swarm optimization[C]. IEEE Congress on Evolutionary Computation. Portland, Oregon, USA, 2004, 1396–1403.
    [31]王丽芳,曾建潮.基于微粒群算法与模拟退火算法的协同进化方法[J].自动化学报, 2006, 32(4): 630-635.
    [32]胡静,曾建潮,谭瑛.动态环境下基于种群多样性的微粒群算法[J].系统仿真学报, 2007, 19(21): 4932-4935.
    [33]曾建潮,介婧,崔志华.微粒群算法[M].北京出版社,2005.
    [34] Xie L P, Zeng J C, Cui Z H. General Frameworkof Artificial Physics Optimization Algorithm. Proceedings of 2009 World Congress on Nature and Biologically Inspired Computing[C], India.2009:1321-1326.
    [35]谢丽萍,曾建潮.受拟态物理学启发的全局优化算法[J],系统工程理论与实践,2010,30(12):2277-2282.
    [36] Spears W M, Spears D F, Kerr W. An Overview of Physicomimetics [C]. Lecture Notes in Computer Science-State of the Art Series, 2005, 3342(2005): 84-97
    [37] Xie L P, Zeng J C. A global optimization based on Physicomimetics framework[C],Proceedings of World Summit on Genetic and Evolutionary Computation, 2009,609-616.
    [38] Xie L P, Zeng J C. Using artificial physics to solve global optimization problems[C]. Proceedings of the 8th IEEE International Conference on Cognitive Informatics(ICCI’09) 2009:502-508.
    [39] Xie L P, Zeng J C. The Performance Analysis of Artificial Physics Optimization Algorithm Driven by Different Virtual Forces[J]. (ICIC-EL), 2010, 4(1): 239-244.
    [40] Xie L P, Zeng J C, Cui Z H. On mass effects to artificial physics optimization algorithm for global optimization problems[J]. International Journal of Innovative Computing and Applications(IJICA), 2010, 2(2): 69-76.
    [41]谢丽萍.基于拟态物理学的全局优化算法设计及性能分析[D].兰州:兰州理工大学,2010.
    [42] Xie L P, Zeng J C. An Extended Artificial Physics Optimization Algorithm For Global Optimization Problem[C]. Proceedings of Fourth International Conference onInnovative Computing, Information and Control (ICICIC 2009),Kaohsiung, Taiwan, December, 2009.
    [43] Xie L P, Zeng J C, Cui Z H. The Vector Model of Artificial Physics Optimization Algorithm for Global Optimization Problems[J]. Intelligent data engineering and automated learning, 2009, 5788(2009):610-617.
    [44]王艳,曾建潮.解决多目标优化问题的拟态物理学优化算法[J].计算机工程,2010,20(36):188-190.
    [45]王艳,曾建潮.一种基于拟态物理学优化的多目标优化算法[J].控制与决策, 2010, 25(7):1040-1044.
    [46] Wang Yan, Zeng J C,Tan Ying. An Artificial Physics Optimization Algorithm for Multi-Objective Problems Based on Virtual Force Sorting Proceedings [C] SEMCCO2010, International Conference on Swarm, Evolutionary and Memetic Computing , Springer LNCS 6466, Chennai, India, Dec 16-18, 2010, 615–622.
    [47]谢丽萍,曾建潮.面向群机器人目标搜索的拟态物理学方法[J].模式识别与人工智能,2009,22(4):648-652.
    [48] Mo Simin, Zeng J C. Particle Swarm Optimization based on self-organization topology driven by different fitness rank[C]. High Performance Computing and Netwoking.2004,1(3):43-52.
    [49]芦殿军.斐波那契多项式的性质[J].青海大学学报,2005,23(4):57-58.
    [50] Ricardo S.Honorato, Mário César U, Ricardo A.C.Lima. A flow-batch titrator exploiting a one-dimensional optimization algorithm for end point search. Science Direct Scopus Scitopics[J].1999,396(1):91-97.
    [51] Qi Dong xu, Zou Jian-cheng. A new digital image scrambing method based on Fibonacci numbers[J]. ISCAS.2004,18(4):965-968.
    [52] Mei Zhong yi, Liu xiang-yuan,Hu ni-ling. The application of Fibonacci method on physical experiment-physical pendulum of golden section effect[J].physical experiment of college.2006,51(3):195-197.
    [53]郭鹏飞.离散变量结构优化的斐波那契遗传算法[J].辽宁工学院学报,2003,23(1):134-136.
    [54]王海涛,朱洪.改进的二分法查找[J].计算机工程,2006,32(10):61-63.
    [55]王安荣.基本信标计算的一种快速算法[J].西安电子科技大学学报,2008,35(4):633-635.
    [56]魏静萱,王宇平.求解约束优化问题的改进粒子群算法[J].系统工程与电子技术, 2008,30(4):740-742.
    [57]武瑞婵,卫加宁.基于局部正交化德一维搜索预报并行算法[J].武汉理工大学学报,2004,28(6):948-949.
    [58]刘衍民,赵庆祯,牛奔.基于自适应动态邻居和广义学习的改进粒子群算法[J].计算机应用,2010,30(10):2579-2581.
    [59] K.E.Parsopoulos, M.N.Vrahatis. Unified Particle Optimization for Solving Constrained Engineering Optimization Problems[J]. ICNC,2005,3612(10):582-591.
    [60] Ana Maria A.C. Rocha, Edite M.G.P. Fernandes. Feasibility and dominance rules in the electromagnetism-like algorithm for constrained global optimization[J]. Computational Science and Its Applications(ICCSA) , 2008, 5073(2008):768-783.
    [61]郁粉华,于武民,李晓光.自适应黄金分割法在能力评估算法中的运用研究[J].军事运筹与系统工程,2009,29(4):69-71.
    [62]吴仕勇,王天志,李兴平.基于数值计算方法的遗传算法的优化研究[J].计算机工程与技术,2009, 30(12): 3966-3967.
    [63]史文谱,刘迎曦.黄金分割法在无约束多元优化问题中的应用[J].东北师大学报,2003, 35(2):12-14.
    [64] Michalewicz z, Dasgupta D. Evolutionary algorithms for constained optimization parameter problems[J]. Computer & Industrial Engineering Journal, 1996, 30(4): 851-870.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700