大型工业二氯乙烷裂解炉综合建模及优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氯乙烷裂解炉是氯乙烯乃至聚氯乙烯工业生产中的重要设备和用能大户。因此,研究如何降低二氯乙烷裂解炉中的能耗,提高裂解产物质量,有着非常重要的作用。由于现场缺乏足够的检测设备,二氯乙烷裂解炉现场操作水平不高,唯一标识二氯乙烷裂解性能的控制指标为炉管出口温度。因此,工业二氯乙烷裂解炉的操作优化还有很大的提升的空间。为了加深对二氯乙烷裂解炉本质的认识,定量分析现场无法实际测量的关键变量信息,实现二氯乙烷裂解炉的操作优化,建立准确的二氯乙烷裂解炉模型显得非常关键。为此,本文从不同层面出发,建立多个不同复杂度的二氯裂解炉模型,并设计一种高效的多目标算法,实现二氯乙烷裂解炉的多目标操作优化。工作主要的创新点总结如下:
     (1)设计了一种带约束处理机制的自适应差分进化多目标优化算法(SMODE-εCD)。算法在差分进化的变异和交叉过程中引入了自适应调整策略,从而有利于进化前期保持种群的多样性,进化后期收敛到全局最优。此外,算法引入ε约束处理机制,用于处理多目标问题的约束,并且设计了外部存档集,保存非支配关系的最优解,用于引导多目标算法的进化。通过对9个标准约束多目标问题以及4个工程设计优化问题的仿真测试,并与典型的多目标优化算法NSGA-Ⅱ和CMODE算法作对比,有效验证了SMODE-εCD算法在处理各种多目标约束问题的有效性,为二氯乙烷裂解炉性能指标的多目标优化奠定了算法基础。
     (2)建立二氯乙烷裂解炉清洁管时期的简易机理模型。炉膛采用一维Lobo-Evans法描述炉膛烟气传热过程,管内二氯乙烷的裂解以一维平推流假设、裂解反应动力学采用一阶串联的分子反应模型。在该模型的基础上,通过定义燃料气负荷分配因子a,分析不同的燃料气负荷分配策略对二氯乙烷裂解炉中关键的变量以及重要性能指标的影响。此外,通过调整燃料气用量,得到炉管出口温度与裂解性能指标如转化率、选择性、单耗之间的对应关系,用于指导现场操作。
     (3)建立了二氯乙烷裂解炉全周期模型。在清洁管时期模型的基础上,通过引入自由基反应机理和裂解结焦模型,建立二氯乙烷裂解炉全周期模型。乙炔作为唯一的结焦母体,结焦过程作拟稳态假设,炉管外壁最高温度为裂解炉全周期模拟结束的制约条件。通过二氯乙烷裂解炉全周期模拟,定量分析结焦过程对于二氯乙烷裂解炉关键信息的影响,包括炉管内径,炉管外壁温度,炉管传热速率,炉膛烟气温度,二氯乙烷裂解转化率、选择性、单耗随着运行时间的推进的变化情况。此外,由于二氯乙烷原料的纯度以及炉膛内燃料气负荷分配策略对二氯乙烷裂解结焦过程有着重要的影响,本文在全周期的模型的基础上,定量分析二氯乙烷原料中典型的反应促进剂CCl4的浓度以及燃料气负荷分配因子a对于二氯乙烷结焦过程以及全周期裂解性能指标的影响,并给出合理的CCl4浓度以及燃料气负荷分配策略建议。
     (4)建立了二氯乙烷裂解炉CFD模型。由于简易的机理模型忽略了烟气流动情况对于二氯乙烷裂解过程的影响,为了准确描述炉膛内烟气的速度场、温度场、浓度场,以及烟气对管内反应的影响,文章依据计算流体力学的原理,建立复杂的二氯乙烷裂解炉CFD模型。炉膛烟气流动模型用雷诺平均的守恒方程描述,其中的湍流项用k-ε方程封闭;炉膛燃气的燃烧采用一阶串联的简易动力学模型,燃烧过程作全预混假设,其中湍流作用以结合有限速率模型的涡耗散模型描述;烟气的辐射模型采用离散坐标模型(DO模型)。通过二氯乙烷裂解炉的CFD模拟,给出了炉膛详细的炉膛烟气流速、温度、浓度在炉膛中的三维分布信息,有助于加深人们对二氯乙烷裂解炉炉膛燃料气燃烧、烟气流动传热传值过程的本质特征的了解,从而辅助裂解炉的工艺设计。此外,二氯乙烷CFD模拟虽然非常耗时,但其结果更为准确,可用于辅助验证简易模型的准确性。
     (5)完成了二氯乙烷裂解炉多目标优化。考虑计算代价,二氯乙烷裂解炉的操作优化选择简易的机理模型作为多目标优化模型,优化的目标为二氯乙烷裂解的转化率最大化,选择性最大化,单耗最小化。优化的决策变量则为二氯乙烷进料流量,燃料气进料量,燃料气负荷分配因子、以及炉管出口压力等四个重要现场操作变量。通过将整体的多目标优化问题进一步分解,确定了转化率-选择性,转化率-单耗,选择线-单耗三个双目标优化问题。利用所建立的SMODE-εCD多目标优化算法,实现二氯乙烷裂解炉性能指标的多目标优化,找到了转化率-选择性,转化率-单耗,选择线-单耗的近似Pareto边界,并给出了典型边界点所对应的操作工况,用于辅助现场决策者做出正确的判断。
Poly vinyl chloride (PVC), the second most used plastic worldwide, is produced by the polymerization of vinyl chloride monomers (VCMs). The pyrolysis of ethylene dichloride (EDC), is the main commercial route to form VCM. Given the high energy consumption of the EDC cracking process, the EDC cracker is considered as the heart of the entire VCM manufacturing process. Thus, it is very crucial to reduce the energy consumption and improve the quality of VCM production. Due to lack of on-site detecting equipments, only the coil outlet temperature (COT) is measured and controlled to evaluate the EDC cracking performance on site, which is very glib. In order to deepen the understanding of EDC cracking process, it is necessary to build an accurate model of the EDC cracker. This paper aims to establish multi-scale EDC models from different aspects. Besides that, multi-objective optimization strategy of the EDC cracker is developed based on built-up model. The main innovations of this work are summarized as follows:
     (1) An improved multi-objective optimization algorithm, named SMODE-εCD is proposed which integrates self-adaptive differential evolution multi-objective optimization algorithm with epsilon constrained-domination principle together. In SMODE-εCD, the trial vector generation strategies and the variation and cross-over parameters of DE are adaptively adjusted based on evolutionary progress knowledge. Furthermore, epsilon constrained domination principle is adopted to handle constraints in multi-objective problems. The advantageous performance of SMODE-εCD is tested and validated over nine standard test problems and four engineering design problems with comparisons of other two typical multi-objective problems named NSGA-II and CMODE. The performance indicators show that SMODE-εCD is an effective and feasible approach to solving all kinds of constrained multi-objective problems.Thus, the proposed algorithm is solid foundation and preparation for the multi-objective optimization of EDC cracker.
     (2)A simplified mechanistic model of EDC cracker at the clean-tube stage is established. Given the intense heat coupling between the furnace and the reactor, the cracker is divided into two parts:the furnace model and the reactor model, with heat flux and flue gas temperature profiles connecting the two models. The heat transfer process in the furnace is described using one-dimensional Lobo-Evans model. A one-dimensional plug flow reactor model and a two-step serried reaction kinetics model are assumed in the reactor. Based on the fist principle model, different fuel gas allocation strategies are investigated to improve performance indices such as selectivity, conversion, and fuel gas consumption (per vinyl chloride monomer production) with the definition of fuel gas allocation factorα. Based on that, the suitable coil outlet temperature (COT) is suggested to make good compromise among the performance indices.
     (3) Run length model of ethylene dichloride cracker is developed. Radical mechanism with coke formation is adopted to describe the EDC cracking reactions with24reaction equations and31components. Based on the run length model of EDC cracker, the impactions of coke deposition are analyzed with some core information variations with time being discussed. Two important aspects, namely, CCl4concentration and fuel gas allocation, are investigated to understand the overall benefits of the whole operation cycle. A comprehensive analysis shows that the concentration of the CCl4promoter should be controlled at100ppm wt%and the fuel gas allocation factor should be maintained at0.36to guarantee the overall economic benefits of the EDC cracker in the full operation cycle.
     (4) The computational fluid dynamic (CFD) model of EDC cracker is developed. Reynolds-averaged Navier-Stokes (RANS) model is used to describe the flue gas flow with a standard k-ε turbulence model to close that. A finite-rate/eddy dissipation model is used to model a pre-mixed combustion of the sidewall burners. The discrete ordinate model is applied to simulate the radiative heat transfer of a furnace in CFD simulation. The details of flue gas velocity, temperature, composition information are provided in the CFD model, which is effective supplement and verification for the simplified one dimensional Lobo-Evans model.
     (5) The multi-obejective optimization of EDC cracker is solved. The EDC cacker operation optimization problems are converted into standard mathematical constrained multi-objective problem with the definition of objective functions, decision variables and constaints based on the simplified EDC cracker model. In order to cut off the computational burden, the multi-objective optimization is divided into three cases named conversion-selectivity, conversion-consumption, selectivity-consumption. The propsed SMODE-sCD is applied to solve these problems. After that, a set of trade-off pareto optimal solutions are figured out, and some typical operational conditions related preferred solutions are selected and presented to help the on-site decision maker to make a more scientific choice of the on-site operation.
引文
[1]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020年).2006.
    [2]中华人民共和国国家发展和改革委员会.节能中长期专项规划.2004.
    [3]中华人民共和国国务院.关于加快发展循环经济的若干意见.2005.
    [4]中国氯碱网.2013版中国聚氯乙烯行业研究报告.2013.
    [5]中国氯碱工业协会石化联合会化解产能过剩专题报告之二:氯碱行业加快结构调整的建议.2013.
    [6]黄仲九,房鼎业.化工工艺学.北京:高等教育出版社,2008.
    [7]李玉刚,项曙光,岳金彩,等.SRT-Ⅲ型柴油裂解炉的动态模型[J].石油化工.1999,28(10):700-703.
    [8]Zhou Q, et al. Predicting the product yield profile and cracking degrees in an industrial ethylene pyrolysis furnace[C]. Proceedings of the 8th International Conference on Control, Automation, Robotics and Vision.2004,2128-2132.
    [9]Sadrameli S M, Green A E S. Systematics and modeling representations of naphtha thermal cracking for olefin production[J]. Journal of Analytical and Applied Pyrolysis. 2005,73(2):305-313.
    [10]王国清,杜志国,张利军等.应用BP神经网络预测石脑油热裂解产物收率[J].石油化工.2007,36(7):699-704.
    [11]耿志强,朱群雄,顾祥柏,林晓勇.基于多群竞争PSO-RBFNN的乙烯裂解深度智能优化控制[J].化工学报.2010,8:1942-1948.
    [12]蒋勇,王宏刚,梅华,钱锋.乙烯裂解炉裂解深度在线优化研究与应用[J].化工进展.2010,29(7):1373-1376.
    [13]张濂,朱海东.二氯乙烷裂解过程研究[J].化工反应工程与工艺.1995,6(11):160-156.
    [14]朱海东.张濂.二氯乙烷裂解过程模拟研究[J].化学反应工程与工艺.1995,9(12):251-258.
    [15]黄卫,张濂.二氯乙烷裂解过程的模拟与优化[J].华东理工大学学报.1997,12(23):641-648
    [16]阳永荣,曹彬.二氯乙烷裂解管式反应器二维模拟[J].化工学报2002,10(53):1046-1050.
    [17]阳永荣,曹彬,詹晓力.二氯乙烷裂解过程优化与集成.石油学报(石油加工).2002,18(2):71-77.
    [18]金思毅,隋东武,郑平友.二氯乙烷裂解炉的模拟与分析[J].化工进展.2006,25:65-68.
    [19]Barton D H R. Kinetics of the Dehydrochlorination of Substituted Hydrocarbons. Part Ⅰ. Induced Dehydrochlorination[J]. J. Chem. Soc.1949,148-155.
    [20]Barton D H R, Howlett K E. Kinetics of the Dehydrochlorination of Substituted Hydrocarbons. Part Ⅱ. The Mechanism of the Thermal Decomposition of 1:2-Dichloroethane[J]. J. Chem. Soc.1949,156-164.
    [21]Huybrechts G, Wouters G. Mechanism of the Pyrolysis of 1,2-Dichloroethane in the Absence and Presence of Added Chlorine[J]. Int. J. Chem. Kinet.2002,34 (5), 316-321.
    [22]Ashmore G P, Owen A J, Robinson P J. Chlorine-Catalysed Pyrolysis of 1,2-Dichloroethane. Part 1. Experimental Results and Proposed Mechanism[J]. J. Chem. Soc., Faraday Trans.1982,78,657-676.
    [23]Ranzi E, Dente M, Rovaglio M. Pyrolysis and Chlorination of Small Hydrocarbons. Chem. Eng. Commun.1992,17(1),17-39.
    [24]Borsa, A. G.. Industrial Plant/Laboratory Investigation and Computer Modeling of 1,2-Dichloroethane Pyrolysis. Ph.D. Dissertation, Colorado School of Mines, Golden, CO,1999.
    [25]Song, B.H.; Choi, B.S.; Kim, S. Y.; Yi, J.. Kinetics and Mechanism of Pyrolysis of the 1,2-Dichloroethane. J. Korean Inst. Chem. Eng.2001,99,481-487.
    [26]Choi, B. S.; Oh, J. S.; Lee, S. W.; Kim, H.; Yi, J.. Simulation of the Effects of CC14 on the Ethylene Dichloride Pyrolysis Process. Ind. Eng. Chem. Res.2001,40,4040-4049.
    [27]Schirmeister, R.; Kahsnitz J.; Trager, M.. Infuelnce of EDC Cracking Severity on the Marginal Costs of Vinyl Chloride Production Ind. Eng. Chem. Res.2009,48, 2801-2809.
    [28]唐月娥,钱锋,俞金寿.工业裂解炉炉管外比最高温度的推断估计[J].浙江大学学报(自然科学版).1996,增刊.
    [29]郑明方.管式裂解炉温度神经网络优化控制[J].江苏石油化工学院学报.1999,11(3):40-43.
    [30]Nelson W L. Petroleum Refinery Engineering[M]. McGraw Hill Book Company,1958
    [31]Lobo W E, Evans J E. Heat Transfer in the Radiant Section of Petroleum Heaters[J]. Trans.AIChE,1939,35:743
    [32]隋东武.二氯乙烷裂解炉的数值模拟与分析[D].硕士学位论文.青岛:青岛科技大学,2007.
    [33]A.巴赫希扬著,主兰田等译.无焰板式喷嘴双辐射墙管式炉[B].燃料化学工业出版社,1973.
    [34]佐野司朗.管式加热炉设计,化学工场(M),1962:(4),(5)
    [35]Lobo W E. Design of furnaces with flue gas temperature gradients[J]. Chemical Engineering Progress.1974,70(1):65-71.
    [36]李文.辐射室传热分段计算初探[J].石油炼制,1984,12:13-20.
    [37]侯凯湖,王宗祥.罗伯-依万斯分区法在烃类蒸汽裂解炉辐射室模拟计算中的应用[J].大庆石油学院学报,1989,13(4):55-63.
    [38]钱锋.大型乙烯装置中裂解炉模型化与优化的研究[D].博士学位论文,上海:华东理工大学,1995.
    [39]王宏刚.大型裂解炉智能建模、优化及工业应用[D].博士学位论文,上海:华东理工大学,2011.
    [40]徐强.乙烯蒸汽裂解炉的模拟、优化与柔性分析[D].博士学位论文,北京:清华大学,2003.
    [41]Hottel H C. Radiation Heat Transmission[M].3rd ed. New York:McGraw-Hill,1954: 269.
    [42]Mcadams W H. Heat Transmission[M],3rd Ed., Mc Graw Hill Book Company, New York,1954
    [43]Hottel H C. Cohen E S. Radiant heat exchange in a gas filled enclosure, allowance for non-uniformity of gas temperature[J]. AIChE J.,1958 (1):3-14
    [44]Hottel H C, Sarofim A F. Radiative Transfer[M], Mc Graw Hill Book Company, New York,1967.
    [45]潘惠琴等.乙烷裂解炉的数学模拟[J].华东化工学院学报.1981,7(4):47.
    [46]Froment, G F. Thermal Cracking for Olefins Production Fundamentals and Their Application to Industrial Problems[J]. Chem. Eng. Sci..1981,36 (8),1271-1282
    [47]Vandamme P.S.; Froment G. F. Scaling up of Naphtha Cracking Coils[J]. Ind. Eng. Chem. Process Des. Dev.1981,20:366-376..
    [48]Plehiers P M A F. Firebox simulation of olefrn units[J]. Chem.Eng.Comm.1989,80: 81-99.
    [49]Plehiers P M. Simulation of the run length of an ethane cracking furnace[J]. Ind. Eng. Chem. Res.1990,29(4):636-641.
    [50]Rao M V R. The coupled simulation of heat transfer and reaction in a pyrolysis furnace[J]. Chemical Engineering and Science.1988,43(6):1223-1229.
    [51]Howell RJ. Monte Carlo application in heat transfer[J]. Advance in Heat Transfer, 1968:1-23
    [52]Steward F R, Cannon P. International Journal of Heat and Mass Transfer.1971,14: 245-256
    [53]Roesler F C. Theory of radiative heat transfer in co-current tube furnace[J]. Chemical Engineering Science,1967,22:1325-1338
    [54]Lockwood F C, Shah N G. A new radiation solution method for incorporation in general combustion prediction procedure[Z]. Pittsburgh:the Combustion Institute, 1981,1405-1414.
    [55]Chandrasekhar S. Radiative Trandfer[M]. Dover Publications, Inc., New York,1960
    [56]魏小林,徐通模,惠世恩.用改进的离散坐标法计算炉内三维辐射传热[J].燃烧科学与技术,2000,6(2):140-145.
    [57]刘林华,余其铮,阮立明.求解辐射传递方程的离散坐标法[J].计算物理,1998,15(3):337-343.
    [58]李力,李荣先,周力行.三维湍流回流气相和煤粉燃烧辐射传热离散坐标模型和热流模型比较[J].燃烧科学与技术,2000,6(1):19-23.
    [59]Fiveland W A. Discrete ordinate solutions of the radiative heat transport equation for rectangular enclosures[J]. J. Heat Transfer,1984,106(2):699-706.
    [60]Fiveland W A, Jessee J P. Comparison of discrete ordinate formulations for radiation heat transfer in multidimensional geometries[J]. J. Thermophys. Heat Transfer.1995, 9(1):47-54
    [61]Turelove J S. Discrete ordinate solutions of the radiative heat transport equation[J]. J. Heat Transfer.1987,109(4):1048-1051.
    [62]Jamaluddin A S, Smith P J. Predicting radiative transfer in axisymmetric cylindrical enclosures using the discrete ordinate solutions method[J]. Combust. Sci. Tech.,1988, 62(4):173-186.
    [63]Koch K, Krebs W, Witting S, et al. Discrete ordinate quadrature schemes for multidimensional radiative heat transfer[J]. J.Quant. Spectrosc. Radiat. Transfer,1995, 53(4):353-372
    [64]Hu G H, Wang H G, Qian F. Numerical simulation on flow, combustion and heat transfer of ethylene cracking furnaces [J]. Chem. Eng. Sci.,2011,66:1600-1611.
    [65]Hu G H, Wang H G, Qian F, Zhang Y, Li J L. Comprehensive CFD Simulation of Product Yields and Coking Rates for a Floor-and Wall-Fired Naphtha Cracking Furnace[J] Ind. Eng. Chem. Res.,2011,50 (24):13672-13685.
    [66]Hu G H, Wang H G, Qian F, Kevin M V G, Schietekat C M, Marin G B. Coupled simulation of an industrial naphtha cracking furnace equipped with long-flame and radiation burners[J]. Computers & Chemical Engineering.2012,38(5):24-34。
    [67]Li C C, Hu G H, Zhong W M, Cheng H, Du W L, Qian F. Comprehensive Simulation and Optimization of an Ethylene Dichloride Cracker Based on the One-Dimensional Lobo-Evans Method and Computational Fluid Dynamics[J]. Ind. Eng. Chem. Res., 2013,52(2),645-657
    [68]曹彬.二氯乙烷裂解反应器的优化与过程集成[D].硕士学位论文,浙江:浙江大学2000.
    [69]Park Y, Choi B S, Yi J. Simulation of imbalance reduction between two reactors in an ethylene dichloride cracker[J]. Chem. Eng. Sci..2005,60:1237-1249.
    [70]高晓丹.乙烯裂解炉的模拟与优化方法研究[D].博士学位论文,北京:清华大学,2008.
    [71]王晓明,楚纪正,关圣涛.基于粒子群优化算法的乙烯裂解炉全周期建模及参数优化[J].工业控制计算机.2008,(8):61-63.
    [72]尚田丰,耿志强.基于GA-RBF网络的乙烯裂解炉在线操作优化[J].计算机与应用化学.2009,26(8):885-889.
    [73]Tarafder A, Lee B C S, Ray A K, et.al. Multi-objective Optimization of an Industrial Ethylene Reactor using a Non-dominated Sorting genetic algorithm[J]. Industrial & Engineering Chemistry Research.2005,44(1):124-141.
    [74]Nabavi R, Rangaiah, G P Niaei A, Salari D. Multi-objective optimization of an industrial LPG thermal cracker using a first principles model[J], Ind. Eng. Chem. Res., 2009,28:9523-9533.
    [75]Nabavi R, Rangaiah G P, Niaei A, Salari D. Design Optimization of an LPG Thermal Cracker for Multiple Objectives[J]. International Journal of Chemical Reactor Engineering,2012,9:1-34.
    [76]Berreni M, Wang M H. Modelling and dynamic optimization of thermal cracking of propane for ethylene manufacturing[J]. Computers and Chemical Engineering.2011, 35:2876-2885.
    [77]郭秀萍.多目标进化算法及其在制造系统中的应用研究[D].博士学位论文,上海:上海交通大学,2007.
    [78]Schaffer J D. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms[C]. Proceedings of the international conference on genetic algorithm and their applications.1985,93-100
    [79]Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning[M]. Boston, MA, USA:Addison-Wesley Longman Publishing Co., Inc.,1989
    [80]Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization[C]. Proceedings of the Fifth International Conference on Genetic Algorithms.1993,416-423
    [81]Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation.1994,2(3):221-248
    [82]Horn J, Nafpliotis N, Goldberg D E. A niched Pareto genetic algorithm for multiobjective optimization[C]. Proceedings of the First IEEE Conference on Evolutionary Computation,1994,82-87
    [83]Zitzler E, Thiele L. Multiobjective evolutionary algorithms:A comparative case study and the Strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation. 1999,3(4):257-271.
    [84]Zitzler E, Laumanns M, Thiele L. SPEA2:Improving the Strength Pareto Evolutionary Algorithm[J]. Computer Engineering and Networks Laboratory (TIK), Department of Electrical Engineering, Swiss Federal Institute of Technology (ETH) Zurich, ETH Zentrum, Gloriastrasse 35, CH-8092 Zurich, Switzerland.2001.
    [85]Knowles J, Thiele L, Zitzler E. A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers [J]. Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Switzerland.2006.
    [86]Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation.2002,6(2): 182-197
    [87]Storn R, Price K. Differential Evolution-A simple and efficient adaptive scheme for global optimization over continuous spaces[M]. International Computer Science Institute, Berkeley, CA.1995.
    [88]Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization.1997,11(4): 341-359.
    [89]Liu J, Lampinen J. A Fuzzy Adaptive Differential Evolution Algorithm[J]. Soft Computing.2005,9(6):448-462.
    [90]Brest J, Greine S, Boskovic B, Mernik M, Zumer V. Self-Adapting Control Parameters in Differential Evolution:A Comparative Study on Numerical Benchmark Problems[J]. IEEE Transactions on Evolutionary Computation.2006,10(6):646-657.
    [91]Qian W, Li A. Adaptive differential evolution algorithm for multiobjective optimization problems[J]. Applied Mathematics and Computation.2008,201 (2):431-440.
    [92]Teo J. Exploring dynamic self-adaptive populations in differential evolution. Soft Computing[J].2006,10(8):673-686
    [93]Qin A K, Suganthan P N. Self-adaptive differential evolution algorithm for numerical optimization[C]. IEEE Congress on Evolutionary Computation,2005,1785-1791.
    [94]Qin A K, Huang V L, Suganthan P N. Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization[J]. IEEE Transactions on Evolutionary Computation.2009,13(2):398-417.
    [95]Chang C S, Xu D Y, Quek H B. Pareto-optimal set based multiobjective tuning of fuzzy automatic train operation for mass transit system[C]. IEE Proceedings Electric Power Applications.1999,577-583.
    [96]Kukkonen S, Lampinen J. An Extension of Generalized Differential Evolution for Multi-objective Optimization with Constraints:Parallel Problem Solving from Nature-PPSN VIII, Lecture Notes in Computer Science. Berlin:Springer-Verlag,2004, 533-542.
    [97]Kukkonen S, Lampinen J. GDE3:the third evolution step of generalized differential evolution[C].2005 IEEE Congress on Evolutionary Computation,2005,443-450.
    [98]Parsopoulos K E, Tasoulis D K, Pavlidis N G, Plagianakos V P, Vrahatis M N. Vector evaluated differential evolution for multiobjective optimization[C]. IEEE Congress on Evolutionary Computation,2004, pp 204-211
    [99]肖婧.差分进化算法的改进及应用研究[D].博士学位论文,哈尔滨:哈尔滨工程大学,2011.
    [100]Qian F, Xu B, Qi R B, Tianfield, H. Self-adaptive differential evolution algorithm with a-constrained-domination principle for constrained multi-objective optimization[J]. Soft Comput.2012,16(8):1353-1372.
    [101]Deb K, Pratap A, Meyarivan T. Constrained Test Problems for Multi-objective Evolutionary Optimization:Evolutionary Multi-Criterion Optimization, Lecture Notes in Computer Science.2001,284-298.
    [102]Takahama T, Sakai S. Constrained optimization by applying the alpha constrained method to the nonlinear simplex method with mutations[J]. IEEE Transactions on Evolutionary Computation.2005,9(5):437-451.
    [103]王跃宣,刘连臣,牟盛静,吴澄.处理带约束的多目标优化进化算法.清华大学学报(自然科学版).2005,45(1):103-106
    [104]Santana-Quintero L V, Hernandez-Diaz A G, Molina J, Coello C A C. DEMORS:A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems[J]. Computers & Operations Research.2010,37(3): 470-480.
    [105]Ray T, Liew K M. A. Swarm Metaphor for Multiobjective Design Optimization[J]. Engineering Optimization.2002,34 (2):141-153.
    [106]Kurpati A, Azarm S, Wu J. Constraint handling improvements for multiobjective genetic algorithms [J]. Structural and Multidisciplinary Optimization.2002,23 (3): 204-213.
    [107]Kotinis M. A particle swarm optimizer for constrained multi-objective engineering design problems [J]. Engineering Optimization.2010,42(10):907-926
    [108]Nekrasov B B. Hydraulics[M]. Moscow:Peace Publishers,1969.
    [109]Mochida I, Tsunawaki t, Sotowa C, Korai Y, Higuchi K. Coke Produced in the Commercial Pyrolysis of Ethylene Dichloride into Vinyl Chloride[J]. Ind. Eng. Chem. Res.1996,35:3803-3807
    [110]Zychlinski W, Boettger G, Rodewald D. Coke Formation in Thermal Decomposition of 1,2-Dichloroethanes Conclusions from Radiotracer Experiments [J]. Chem. Ing. Tech. 1990,42(8):325 (German).
    [111]Borsa A G, Herring A M, McKinnon J T, McCormick R L, Yamamoto S, Teraoka S, Natori Y. Characterization of Coke Formed in Vinyl Chloride Manufacture [J]. Ind. Eng. Chem. Res.,1999,38:4259-4267.
    [112]Borsa A G, Andrew M. Herring A M, McKinnon J T, McCormick R L. Ko G H. Coke and Byproduct Formation during 1,2-Dichloroethane Pyrolysis in a Laboratory Tubular Reactor[J]. Ind. Eng. Chem. Res.2001,40:2428-2436.
    [113]Graff M J, Alberight L F. Coke deposition from acetylene, butadiene and benzene decompositions at 500-900℃ on solid surfaces[J]. Carbon,1982,20(4):319-330.
    [114]Kopinke F D, Zimmermann G, Nowak S. On the mechanism of coke formation in steam cracking conclusions from results obtained by tracer experiments [J]. Carbon. 1988,26(2):117-124.
    [115]Kopinke F D, Zimmermann G, Reyniers G, Froment G F. Relative Rates of Coke Formation from Hydrocarbons in Steam Cracking of Naphtha.2. Paraffins, Naphthenes, Mono-, Di-, and Cycloolefins, and Acetylenes[J]. Ind. Eng. Chem. Res.1993,32(11): 56-60.
    [116]Kopinke F D, Zimmermann G, Reyniers G, Froment G F. Relative Rates of Coke Formation from Hydrocarbons in Steam Cracking of Naphtha.3. Aromatic Hydrocarbons[J]. Ind. Eng. Chem. Res.1993,32(11):2620-2625.
    [117]Palmer H B, Cullis C F. Chemistry and Physics of Carbon[M]. Marcel Dekker Inc.: New York,1965.
    [118]Ranzi E, Dente M, Pierucci S, Barendregt S, Cronin P. Coking Simulation Aids On-Stream Time[J]. Oil Gas J.1985, September(2):49-52.
    [119]Lacroix R, Fournet R, Ziegler-Devin 1, Marquaire, P M. Major Precursors of Pyrocarbon Deposition from Propane Pyrolysis[J]. ECS Transactions,2009,25(8), 91-98.
    [120]Albright L F. Marekt J C. Mechanistic Model for Formation of Coke in Pyrolysis Units Producing Ethylene[J]. Ind. Eng. Chem. Res.1988,27(5):755-759
    [121]Niaei A, Towfighi J, Sadrameli M. Prediction of Furnace Run Length for the Pyrolysis of Naphtha by a PC Based Simulator[J]. Scientia Iranica,2003,10(3):287-299.
    [122]Sundaram K M, Froment G F. Kinetics of Coke Deposition in the Thermal Cracking of Propane[J]. Chem. Eng. Sci.1979,34(5):635-644.
    [123]Huybrechts G, Wouters G. Mechanism of the Pyrolysis of 1,2-Dichloroethane in the Absence and Presence of Added Chlorine[J]. International journal of chemical kinetics 2002,34(5):316-321.
    [124]Detemmerman T, Froment G F. Three-Dimensional Coupled Simulation of Furnaces and Reactor Tubes for the Thermal Cracking of Hydrocarbons [J]. Rev. Inst. Fr. Pet., 1998.53(2):181-194.
    [125]Heynderickx G J, Oprins, A J M, Marin G B, Dick E. Three-dimensional flow patterns in cracking furnaces with long-flame burners[J]. AIChE J.,2001.47(2):388-400.
    [126]Oprins A J M, Heynderickx G J, Marin G B. Three-dimensional asymmetric flow and temperature fields in cracking furnaces[J]. Ind. Eng. Chem. Res.,2001,40(23): 5087-5094.
    [127]Oprins A J M, Heynderickx G J. Calculation of three-dimensional flow and pressure fields in cracking furnaces[J]. Chem. Eng. Sci.,2003,58(21):4883-4893.
    [128]Stefanidis D, Merci B, Heynderickx G J, Marin G B. CFD simulations of steam cracking furnaces using detailed combustion mechanisms [J]. Comp. Chem. Eng.,2006, 30(4),635-649.
    [129]Stefanidis G D, Heynderickx G J, Marin G B. Development of reduced combustion mechanisms for premixed flame modeling in steam cracking furnaces with emphasis on NO emission[J]. Energy & Fuels,2006.20(1):103-113.
    [130]Stefanidis G D, Merci B, Heynderickx G J, Marin G B. Gray/nongray gas radiation modeling in steam cracker CFD calculations[J]. AIChE J.,2007,53(7):1658-1669.
    [131]Stefanidis G D, Van Geem K M, Heynderickx G J, Marin G B. Evaluation of high-emissivity coatings in steam cracking furnaces using a non-grey gas radiation model[J]. Chem. Eng. J.,2008,137(2),411-421.
    [132]Han Y L, Xiao R, Zhang M Y. Combustion and pyrolysis reactions in a naphtha cracking furnace[J]. Chem. Eng.Technol,2006,29 (1):112-120.
    [133]Lan X Y, Gao J S, Xu C M, Zhang H M. Numerical simulation of transfer and reaction processes in ethylene furnaces[J]. Trans IChemE, Part A, Chem. Eng. Res. Des.,2007, 85(12),1565-1579.
    [134]张朝环,黄国强,吴筱.USC型乙烯裂解炉炉膛燃烧过程数值模拟[J].化工进展.2008,27(2):255-260.
    [135]王国清,张利军.裂解炉炉膛流动及传热状况的数值模拟[J].石油化工.2005,34(7):652-655.
    [136]周瀚章,贾志刚.乙烯裂解炉辐射段流动与燃烧的三维数值模拟[J].石油化工2007,36(6):584-590.
    [137]Launder B E, Spalding D B. Lectures in Mathematical Models of Turbulence[M]. Academic Press, London,1972.
    [138]Westbrook C K, Dryer F L. Simplified reaction-mechanisms for the oxidation of hydrocarbon fuels in flames[J]. Combustion Science and Technology,1981,27:31-43.
    [139]Magnussen B F, Hjertager B H. On mathematical models of turbulent combustion with special emphasis on soot formation and combustion[C]. In Proceedings from the 16th The International Combustion Symposium, Pittsburgh:The Combustion Institute, 1976,719-729.
    [140]Habibi A, Merci B, Heynderickx G J. Impact of radiation models in CFD simulations of steam cracking furnaces[J]. Computers and Chemical Engineering,2007,31: 1389-1406.
    [141]Smith T B F, Shen Z F, Friedman J N. Evaluation of coefficients for the weighted sum of gray gases model[J]. Trans. ASME,1982,104:602-608.
    [142]Wang X P, Tang L X. Multiobjective Operation Optimization of Naphtha Pyrolysis Process Using Parallel Differential Evolution[J]. Ind. Eng. Chem. Res.,2013,52: 14415-14428.
    [143]Tarafder A, Lee B C S, Ray A K, Rangaiah G P. Multiobjective Optimization of an Industrial Ethylene Reactor Using a Nondominated Sorting Genetic Algorithm[J]. Ind. Eng. Chem. Res.2005,44:124-141.
    [144]Behroozsarand A, Ebrahimi H, Zamaniyan A. Multiobjective Optimization of Industrial Autothermal Reformer for Syngas Production Using Nonsorting Genetic Algorithm II[J]. Ind. Eng. Chem. Res.2009,48:7529-7539.
    [145]Quddus M R, Zhang Y, Ray A K. Multiobjective Optimization of a Porous Ceramic Membrane Reactor for Oxidative Coupling of Methane[J]. Ind. Eng. Chem. Res.2010, 49:6469-6481
    [146]Gao X D, Chen B Z, He X R, Qiu T, Li J, Wang C, Zhang L. Multi-objective optimization for the periodic operation of the naphtha pyrolysis process using a new parallel hybrid algorithm combining NSGA-II with SQP[J]. Comput. Chem. Eng.2008: 32:2801-2811.
    [147]Xu B, Qi R B, Zhong W M, Du W L, Qian F. Optimization of p-xylene oxidation reaction process based on self-adaptive multi-objective differential evolution [J].Chemometrics and Intelligent Laboratory Systems,2013,127(15):55-62.
    [148]徐斌.基于差分进化算法的多目标优化方法研究与应用[D]博士学位论文,上海: 华东理工大学,2012.
    [149]Shivom Sharma, Gade Pandu Rangaiah. An improved multi-objective differential evolution with atermination criterion for optimizing chemical processes[J]. Computers and Chemical Engineering, 13,56:155-173.
    [150]Deng W, Yang X H, Zou L, Wang M, Liu Y Q, Li Y Y. An improved self-adaptive differential evolution algorithm and its application[J]. Chemometrics and Intelligent Laboratory Systems,2013,128:66-76
    [151]Bhutani N. Modeling,simulation and muti-objective optimization of indusrial Hydrocrackers. 博士学位论文.2007.
    [152]Tarafder A, Rangaiah G P, Ray A K. Multiobjective optimization of an industrial styrene monomer manufacturing process[J]. Chemical Engineering Science 2005,60: 347-363.
    [153]Salari D, Niaei A, Nabavi S R. Multi-objective genetic optimization of ethane thermal cracking reactor[J]. Iranian Journal of chemical engineering 20085(3):28-39
    [154]Ashish M, Babu G B V. Optimization of Adiabatic Styrene Reactor:A Hybrid Multiobjective Differential Evolution (H-MODE) Approach[J]. Ind. Eng. Chem. Res. 2009,48:11115-11132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700