WS_2/W-DLC复合固体润滑薄膜的制备与组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以改善掺钨类金刚石(W-DLC)膜的摩擦学性能为出发点,以多层膜技术为主导,利用复合沉积技术结合低温离子渗硫技术制备了含氢和无氢的WS2/W-DLC复合固体润滑薄膜。在MS-T3000球盘摩擦磨损实验机上对比研究了在离子渗硫处理前后薄膜的摩擦磨损性能。利用扫描电子显微镜、三维白光形貌仪、X射线衍射仪、拉曼光谱、X射线光电子能谱等微观分析仪器全面观察分析了薄膜的形貌、组织结构、元素原子价态与元素分布等,研究了薄膜中钨含量对于WS2/W-DLC复合固体润滑薄膜的微观形貌、成分、结构、力学性能、摩擦学性能的影响,结果表明:
     (1)利用阴极电弧+直流磁控溅射技术结合离子渗硫技术制备了含氢的WS2/W-DLC复合固体润滑薄膜。薄膜表面光滑,仅存在少量纳米级颗粒。薄膜的微观形貌、成分、力学及摩擦学性能均受到W含量的影响。随着W含量增加,薄膜中sp2含量增多,并促使WXC纳米晶生成,薄膜硬度之增大。渗硫处理后,由于石墨化和表层生成软质相WS2,造成薄膜硬度下降。其中渗硫处理W含量为27.7%的薄膜具有最优的摩擦学性能,摩擦系数为0.19,磨损率为1.65×10-7mm3/Nm。
     (2)利用离子束辅助沉积技术结合离子渗硫制备了无氢的WS2/W-DLC复合固体润滑薄膜。薄膜具有纳米尺度光滑表面,无任何缺陷,渗硫处理后表面粗糙度小于30nm。随着W靶束流增大,薄膜硬度和弹性模量增大。渗硫处理后,由于表面生成金属硫化物和富石墨的复合固体润滑层,导致薄膜硬度值下降。渗硫处理W靶束流为75mA的薄膜具有最优的性能,摩擦系数为0.107,磨损率为2.37×10-7mm3/Nm。
     (3)离子渗硫处理后的W-DLC膜,薄膜表层软质金属硫化物和富石墨层,是减摩抗磨主要原因。渗硫处理后,高钨含量的薄膜,为软质表层提高了良好的支撑。在干摩擦条件下,减小了摩擦接触面积和塑性变形,有效地改善了摩擦学性能。
With the purpose of improving the tribological property of W doped diamondlike carbon (W-DLC) film, on the basis of the coating concept of multilayer, twoseries of WS2/W-DLC composite solid lubrication films were prepared using hybriddeposition techniques in combination with low temperature ion sulfurizationtechnique, including hydrogenated and hydrogen-free WS2/W-DLC composite solidlubrication coatings. The tribological property of the films before or after thetreatment was investigated by a MS-T3000friction and wear tester. SEM and three-dimensional light interfering profilometer were employed to observe themorphologies of surface of films, XRD was adopted to detect the surface phasestructure. Raman was adopted to characterize the structure of C atoms and XPS wasused to identify the valence state of different elements of the films. The influence ofW concentration on the micro-morphology, composition, microstructure, mechanicaland tribological property of the coatings were investigated. The results were shown asfollowed:
     (1) The hydrogenated WS2/W-DLC composite solid lubrication films werefabricated by ion beam deposition+magnetron sputtering techniques in combinationwith low temperature ion sulfurization. The surfaces were smooth, only with somenanoscale particles. With the increasing of W concentration, the content of sp2increased, however the formation of hard nanoparticles WXC in carbon matrix to forma nanocomposite structure led to an enhancement in hardness. Graphitization and WS2was formed on the surface of W-DLC film after ion sulfuration, which made thehardness of W-DLC film decreases. The optimum wear performance with frictioncoefficient of0.19and wear rate of1.65×10-7mm3/Nm was achieved for27.7%WS2/W-DLC film.
     (2) The hydrogen-free WS2/W-DLC composite solid lubrication film wasprepared by ion beam assistant deposition technique in combination with lowtemperature ion sulfurization. All the surfaces were nanoscale and without defect. Theroughness was lower than30nm after ion sulfurization. The hardness and elastic modulus of the films were increased gradually, as the W target current increased.After ion sulfurization the hardness decreased, due to the formation of metal sulfidesand graphite-rich composite solid lubrication layer on the top surface. The lowestfriction coefficient0.107and wear rate2.37×10-7mm3/Nm were achieved from thesample at W target beam current of75mA.
     (3) The metal sulfides and graphite-rich composite solid lubrication layer on thetop surface contributed to the friction-reducing and wear-resistence. After ionsulfuizeation, the harder sublayer can provide a strong support for the softer WS2andgraphite-rich toplayer. Under dry friction condition, high W content WS2/W-DLCcomposite solid lubrication film decreased the contact area and plastic deformation,which led to reduce the friction and wear rate efficiently.
引文
A. A. Voevodin, J.P. O’Neill, J.S. Zabinski. WC/DLC/WS2nanocomposite coatings for aerospacetribology. Tribology Letters,1999,6:75-78.
    A. A. Voevodin, J.P. O’Neill, J.S. Zabinski. Nanocomposite tribological coatings for aerospaceapplications. Surface and Coating Technology,1999,116-119:36-45.
    A. A. Voevodin, J.S. Zabinski. Supertough wear-resistant coatings with “chameleon” surfaceadaptation. Thin Solid Film,2000,370:223-231.
    A. A. Voevodin, J.S. Zabinski. Nanocomposite and nanostructured tribological materials for spaceapplications. Composites Science and Technology,2005,65:741-748.
    A. A. Voevodin, J.S. Zabinski, C. Muratore. Recent advances in hard, tough, and low frictionnanocomposite coating. Tsinghua Science and Technology,2005,10(6):665-679.
    A. C. Ferrari, J. Robertson. Interpretation of Raman spectra of disordered and amorphous carbon.Physical Review B,2000,61:14095-14107.
    A. C. Ferrari. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling,doping and nonadiabatic effects. Solid State Communications,2007,143:47-57.
    A. Charitidis. Nanomechanical and nanotribological properties of carbon-based thin films: Areview. International Journal of Refractory Metals and Hard Materials,2010,28(1):51-70.
    A.Erdemir, C. Bindal, G. R. Fenske, et al. Characterization of transfer layers form ing on surfacessliding against diamond-like carbon. Surface and Coat ings Technology,1996,86-87:692-697.
    A. Erdemir. The role of hydrogen in tribological properties of diamond-like carbon films. Surfaceand Coatings Technology,2001,146-147:292-297.
    A. Gicquel, K. Hassouni, F. Silva, et al. CVD diamond films: from growth to applications. CurrentApplied Physics,2001,1(6):479-496.
    A. Lettington. Application of diamond-like carbon thin films. Carbon,1998,36(5-6):555-560.
    A. Nassa, A. Cavaleiro. Mechnical behavior of W-S-N and W-S-C sputtered coating depositedwith a Ti interlayer. Surface and Coating Technology,2003,163-164:552-560.
    A. Nassa, A. Cavaleiro, N. J. M. Carvalho, et al. On the microstructure of tungsten disulfide filmsalloyed with carbon and nitrogen. Thin Solid Films,2005,484:389-395.
    A. Nassa, A. Cavaleiro. Tribological behavior of N(C)-alloyed W-S film. Tribology Letters,2007,28:59-70.
    B. Bhuhan. Chemical, mechanical and tribological characterization of ultra-thin andhardamorphous carbon coatings as thin as3.5nm, recent developments. Diamond and RelatedMaterials,1999,8:1985-2015.
    B. Podgomik, J. Vizintin, S. Jaeobson, et al. Tribological behaviour of WC/C coatings operatingunder different lubrication regimes. Surface and Coatings Teehnology,2004,177-178:558-565.
    B. Window, N. Savvides. Unbalanced dc magnetrons as sources of high ion fluxes. Journal ofVacuum Science and Technology,1986, A4:453-456.
    C. A. Taylor, M. F. Wayne, W.K.S. Chiu. Residual stress measurement in thin carbon films byRaman spectroscopy and nanoindentation. Thin Solid Films,2003,429:190-200.
    C. W. M. E. Silva, J.R. T. Branco, A. Cavaleiro. How can H content influence the tribologicalbehavior of W-containig DLC coatings. Solid State Science,2009,11:1778-1782.
    D. Drescher, J. Koskinen, H. J. Scheibe, et al. A model for particle growth in arc depositedamorphous carbon films. Diamond and Related Materials,1998,7(9):1375-1380.
    D. D. Willis. Fighting friction with bonded coatings. Machine Design,1980,7:123-128.
    D. R. McKenzie, W. T. Li, E. G. Gerstner, et al. Application of tetrahedral amorphous carbon inlimited volatility memory and in field program gate arrays. Diamond and Related Materials,2001,10(2):230-233.
    D. S. Kim, T. E. Fischer, B. Gallois. The effects of oxygen and humidity on friction and wear ofdiamond like carbon films. Surface and Coating Technology,1991,49:537-544.
    D. Sheeja, B.K. Tay, S.P. Lau, et al. Tribological properties and adhesive strength of DLC coatingsprepared under different substrate bias voltages. Wear,2001,249(5-6):433-439.
    D. Y. Wang, C. L. Chang, W. Y. Ho. Microstructure analysis of MoS2deposited on diamond-likecarbon films for wear improvement. Surface and Coating Technology,1999,111:123-127.
    G. A. Camacho-Bragado, J. L. Elechiguerra, A. Olivas, et al. Structure and catalytic properties ofnanostructure molybdenum sulfides. Journal of Catalysis,2005,234:182-190.
    G. B. Zhang, C. M. Hu, P. Y. Yu, et al. An electrothermal model for metal-oxide-metal antifuse.IEEE Transaction on Electron Device,1995,42(8):1548-1558.
    G. Irmer, A. Dorner-Reisel. Micro-Raman studies on DLC coatings. Advanced EngineeringMaterials,2005,7(8):94-705.
    G. Y. Du, D. C. Ba, Z. Tan, K, Liu. Tribological behavior of radio-frequency sputtering WS2thinfilms with vacuum annealing. Thin Solid Film,2011,520:849-852.
    H. Miki, T. Takeno. T. Takagi. Tribologiacal properties of multilayer DLC/W-DLC films on Si.Thin Solid Film,2008,516:5414-5418.
    H. Ronkainen, S. Varjus, J. Koskinen, et al. Differentiating the tribological performace ofhydrogenated and hydrogenated-free DLC coatings. Wear,2001,249:260-266.
    J. C. Claire, I. P. Parkin, E. S. Peters. Atmospheric pressure chemical vapour deposition of WS2thin films on glass. Polyhedron,2003,22:1499-1505.
    J. H. Wu, D.A. Rigney, M.L. Falk, et al. Tribological behavior of WC/DLC/WS2nanocompositecoatings. Surface and Coating Technology,2004,188-189:605-611.
    J. H. Wu, M. Sanghavi, J.H. Sanders, et al. Sliding behavior of multifunctional composite coatingsbased on diamond-like carbon. Wear,2003,255:859-868.
    J. J. Davadasan, C. Sabheevurajaa, M. Jayachandran. Electrodepostion of p-WS2thin film andcharacterization. Journal of Crystal Growth,2001,226(1):67-72.
    J. Libardi, K. Grigorov, M. Massi, et al. Comparative studies of the feed gas composition effectson the characteristics of DLC films deposited by magnetron sputtering. Thin Solid Films,2004,459(1-2):282-285.
    J. Noshiro, S. Waranabe, T. Sakurai, et al. Friction properties of co-sputtered sulfide/DLC solidlubricating films. Surface and Coating Technology,2006,200:5849-5854.
    J. Qi, J. B. Luo, S. Z. Wen et al. Mechanical and tribological properities of non-hydrogenatedDLC films synthesized by IBAD. Surface and Coating Technology,2000,128-129:324-328.
    J. Roberson. Amorphous carbon cathodes for field emission display. Thin Solid Films,1997,296(1-2):61-65.
    J. Robertson. Diamond-like amorphous carbon. Materials Science and Engineering: R: Reports,2002,37(4-6):129-281.
    J. W. Chung, Z. R. Dai, F. S. Ohuchi. WS2thin film by metal organic chemical vapor deposition.Journal of Crystal Growth,1998,186(1-2):137-150.
    K. Baba, R. Hatada. Deposition and characterization of Ti-and W-containing diamond-like carbonfilms by plasma source ion implantation. Surface and Coating Technology,2003,169-170:287-290.
    L. F. Bonetti, G. Capote, L. V. Santos, et al. Adhesion studies of diamond-like carbon filmsdeposited on Ti6Al4V substrate with a silicon interlayer. Thin Solid Films,2006,515:375-379.
    L. N. Zhu, G. L. Li, H. D. Wang, et al. Microstructure and nano mechanical properities of themetal tungsten film. Current Applied Physics,2008,9(2):510-514.
    L. Rapoport, V. Leshchinsky, I. Lapsker, et al. Tribological properties of WS2nanoparticles undermixed lubrication. Wear,2003,255(1):785-793.
    L. Rapoport, V. Leshchinsky, M. Lvovsky, et al. Friction and wear of powdered compositesimpregnated withWS2inorganic fullerene-like nanoparticles. Wear,2002,252(1):518-527.
    M. Krzysztof, W. Jan, B. Jan. Design and performance of the microdroplet filtering system used incathodic arc coating deposition. Plasma and Ion,2000,3(1-4):41-51.
    M. Regula, C. Ballif, J. H. Moser, et al. Structural, chemical, and electrical characterisation ofreactively sputtered WSXthin films. Thin Solid Films,1996,280:67-75.
    M. Weiler, K. Lang, E. Li, et al. Deposition of tetrahedral hydrogenated amorphous carbon using anovel electron cyclotron wave resonance reactor. Applied Physics Letters,1998,72(11):1314-1316.
    M. Xu, L. H. Li, X. Cai, et al. Improvement of adhesion strength of amorphous carbon films ontungsten ion implanted321stainless steel substrate. Diamond and Relative Materials,2006,15:952-957.
    N. Aoki. The war of razors-Gillette-Schick fight over patent shows the cutthroat world ofconsumer products. The Boston Globe,31/8/2003.
    N. A. Sánchez, C. Rincón, G. Zambrano, et al. Characterization of diamond-like carbon (DLC)thin film prepared by r.f. magnetron sputtering. Thin Solid Film,2000,373(1-2):247-250.
    N. M. Renevier, D. G. Teer, J. Hampshire. Coating characteristics and tribological properties ofsputter deposited MoS2/metal composite deposited by closed field unbalanced magnetronsputter ion plating. Surface and Coating Technology,2000,127:24-37.
    O. R. Monteiro, M.-P. Delplancke-Ogletree, I.G. Brown. Tungsten-containing amorphous carbonfilms deposited by pulsed vacuum arc. Thin Solid Films,1999,342:100-107.
    P. Sionshansi, E. J. Tobin. Surface treatment of biomaterials by ion beam processes. Surface andCoatings Technology,1996,83(1-3):175-182.
    R. D. Arnell, P.J. Kelly. Recent advances in magnetron sputtering. Surface and CoatingsTechnology,1999,112:170-176.
    R. G hlin, M. Larsson, P. Hedenqvist. Me-C:H coatings in motor vehicles. Wear,2001,249:302-309.
    S. Aiesenberg, R. Chabot. Thin films of diamond like carbon. Journal of Applied Physics,1971,42(7):29-53.
    S. Liu, D. Lamp, S. Gangopadhyay, et al. A new metal-to-metal antifuse with amorphous carbon.IEEE Electron Device Letters,1998,19(9):317-319.
    S. Ulrich, T. Theel, J. Schwan, et al. Magnetron-sputtered superhard materials. Surface andCoating Technology,1997,97(1-3):45-49.
    T. Polar, A. Nassa, M. Evaristo, et al. Nanocomposite coating of carbon-based and transition metaldichalcogenide phases: a review. Review on Advanced Materials Science,2007,15:118-126.
    T. Polcar, M. Evaristo, A. Cavaleiro. Comparative study of the tribological behavior ofself-lubricating W-S-C and Mo-Se-C sputtered coatings. Wear,2009,266:388-392.
    T. Takeno, S. Abe, K. Adachi, et al. Deposition and structural analyses of molybdenum-disulfied(MoS2)-amorphous hydrogenated carbon (a-C:H) composite coatings. Diamond and RelatedMateials,2010,19(5-6):548-552.
    W. Jacob, W. Moller. On the structure of thin hydrocarbon films. Applied Physics Letters,1993,63:1771-1773.
    W. R. Li, D. R. McKenzie, W. Wiszniewski, A comparative study of the on-off switching behaviorof metal-insulator-metal antifuse. IEEE Electron Device Letters,2000,21(6):295-297.
    W. Yue, X. C. Gao, C. B. Wang, et al. Mircostructure and friction-reducing performance ofsulfurized W doped diamond-like carbon. Materials Letters,2012,73:202-205.
    W. Zhang, A. Tanaka, K. Wazumi, et al. Structural, mechanical and tribological properties ofdiamond-like carbon films prepared under different substrate bias voltage. Diamond andRelated Materials,2002,11(11):1837-1844.
    Y. Funada, K.Awuaz, H.Yasui, et al. Adhesion strength of DLC film on glass with mixing layerprepared by IBAD. Surface and Coating Technology,2000,128-129:208-312.
    Y. Liu, A. Erdemir, E. I. Meletis. An investigation of relationship between graphitization andfrictional behavior of DLC coatings. Surface and Coating Technology,1996,86-87:564-571.
    Y. Liu, A. Erdemir, E. I. Meletis. Influence of environmental parameters on the frictional behaviorof DLC coatings. Surface and Coating Technology,1997,94-95:463-468.
    巴德纯,杜广煜,王晓光.硫化钨薄膜制备方法的研究.真空科学与技术学报,2009,29(1):73-77.
    陈宝清.离子镀及溅射技术.北京:国防工业出版社,1990.
    陈新春.多层碳基质固体润滑薄膜研究:硕士学位论文.北京:中国地质大学(北京),2011.
    杜广煜,巴德纯,王晓光,惠秀梅.二硫化钨固体润滑薄膜润滑机理及研究现状.第八届全国真空冶金与表面工程学术会议论文集.2007,240-245.
    杜开瑛,石瑞英,谢茂浓等.直接光CVD类金刚石碳膜的初期成膜结构.半导体光电,1999,20(6):405-408.
    胡志彪,李贺军,付前刚等.低摩擦系数固体润滑涂层研究进展.材料工程.2006,3:60-68.
    江晓云,金元生, V. P. Kazachenko等.热处理对类金刚石碳膜力学和摩擦学性能的影响.摩擦学学报.2004,24(3):212-215.
    李振军,徐洮,李红轩等.类金刚石DLC膜的摩擦磨损特性及磨损机制研究.材料科学与工程学报.2004,22(5):774-777.
    梁戟华.固体润滑剂的实际应用.润滑与密封,1980,6:46-49.
    刘家浚.材料磨损机理及其耐磨性.北京:清华大学出版社,1993.
    刘亮. DLC基固体润滑薄膜制备及性能表征:硕士学位论文.哈尔滨:哈尔滨工程大学,2008.
    刘沅东.轴承钢的离子渗硫处理及固液复合润滑机理与应用研究:博士学位论文.北京:中国地质大学(北京),2010
    吕反修.超硬材料薄膜涂层研究进展及应用.热处理,2004,19(4):1-6.
    任妮,马占吉,高欣.无氢类金刚石膜的研究进展.真空科学与技术,2003,23(3):176-186.
    孙建.磁控溅射MoS2/WS2复合薄膜的制备及其摩擦学性能研究:硕士学位论文.江苏:江苏大学,2009.
    田民波.薄膜技术与薄膜材料.北京:清华大学出版社,2006.
    谢风,朱江.固体润滑剂概述.合成润滑材料,2007,34(1):31-33.
    薛群基,张俊彦.润滑材料摩擦化学.化学进展,2009,21(11):2445-2457.
    徐均琪,李传志,严一心等.退火对无氢钛掺杂类金刚石(Ti-DLC)膜结构及性能影响.真空,2009,46(2):29-32.
    石淼森.固体润滑技术.北京:中国石化出版社,1998.
    石淼森.固体润滑材料.北京:化学工业出版社,2000.
    王海斗,徐斌士,刘家浚.固体润滑膜层技术与应用.北京:国防工业出版社,2009.
    王成兵,李红轩,徐洮.相对湿度对类金刚石薄膜摩擦磨损性能的影响.摩擦学学报,2005,25(5):426-430.
    王伟.钨含量及摩擦条件对掺钨类金刚石膜摩擦磨损性能影响:硕士学位论文.北京:中国地质大学(北京),2010.
    吴卜显.汽车空调压缩机上斜盘表面润滑的研究.机械工程师,2011,11:59-61.
    吴大维.硬质薄膜材料的最新发展及应用.真空,2003,40(1):1-5.
    张俊彦.薄膜/涂层的摩擦学设计及其研究进展.摩擦学学报,2006,26(4):387-396.
    赵海波.国内外切削刀具涂层技术发展综述.工具技术,2002,36(2):3-7.
    赵洋,谭业发,周兴权.固体润滑技术及其工程应用.机械工程与自动化,2011,164(1):207-209.
    朱丽娜.磁控溅射辅助低温离子渗硫固体润滑薄膜的组织结构与摩擦学性能:硕士学位论文.天津:河北工业大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700