基于DEM的起伏地形下散射辐射计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合现代空间信息技术,利用高分辨率的数字高程模型(Digital Elevation Model),探讨了实际地形下散射辐射的计算方法问题。
     本文的讨论主要着眼于三个方面:
     1、散射辐射各向异性特点
     利用环日假设理论,把太阳散射辐射分解为各向同性散射和环日散射两部分,并以水平地面上的直接辐射和散射辐射各自在总辐射中所占比例来表示其权重,描述实际散射辐射各向异性的特征。再对“可见”天穹积分,得到瞬时来自“可见”天穹的散射辐射总量。最后从日出到日没时间段进行积分,得到散射辐射日总量。
     2、地形因子的影响
     在对“可见”天穹积分时,对2π范围内各方向上的遮蔽状况进行判断,确定每个方向上由前方地势所造成的遮蔽角度,从而反映周围地形造成的遮蔽影响,实现对“可见天穹”的积分。
     同时,与各向异性密切相关的要素:坡度、坡向和太阳位置都考虑在其中。计算结果表明:各向同性假设下散射辐射量的坡向差别甚小,仅与开阔度有关,随开阔度增大而增大,随坡度增大而减小;各向异性假设下,散射辐射南坡最大,向东、西方向对称减小,北坡最小;南坡散射辐射随坡度增加而增加;北坡随坡度增加而减小;散射辐射量随太阳季节变化显著,冬季太阳高度角小,地形影响较大;夏季太阳高度角大,地形影响小。
     3、地理空间信息技术
     在计算地形因子对散射辐射的影响时,利用了全国1km×1km分辨率的数字高程模型(DEM),以栅格数据形式,在PCI geomatica软件支持下,计算每个格点的遮蔽状况及相关地形参数,结果表明,地形作用的表现效果良好。
     总结本文的技术与方法,本文以各向同性与各向异性权重分离方法描述了散射辐射各向异性特征;以平地散射辐射与地形因子结合方式详细探讨了地形
    
    因子的作用;以DEM数据与现代地理信息软件相配合,尝试了高效的现代地理
    空间信息计算技术。
    最后,本文给出了计算的实际起伏地形下的散射辐射全国分布图。
Attempt to calculate the diffuse irradiation on the actual terra by used of the modern geo-information technology and the high resolution Digital Elevation Model, we focused on 3 points in discussion:
    1. To construct an appropriate model to describe the anisotropic character of the diffuse-radiation. According to the circle-sun suppose, we decomposed it into 2 parts, one is the isotopic part and the other is anisotropic. A ratio allocates them. Then integral the whole visible vault of heaven to get the amount of diffuse radiation at one moment. Next, integral again from the sun-rise time to down, it is the one whole day diffuse radiation amount.
    2. Study the landform effects on the diffuse irradiation. When integralling the visible vault of heaven, it is necessary to estimate the shadow status on every direction in 2 circle. The slope and aspect are also effective. In isotropic model, the aspect is unimportant and the diffuse radiation is reducing with the slope's increase. While the anisotropic model showed differently. The max diffuse irradiation is on the South aspect and the min on the North. On the South aspect, the diffuse radiation is increased with the slope's going up while the North is reversed. In winter, the sun high is low, the landform effect seriously, while summer is opposition.
    3. The compute technology based on the high resolution DEM. We used 1km 1km DEM and PCI-geomatica software to deal with the multitudinous geo-information data, and evaluated every grid point landform shadow status. The results showed the landform well.
    In summaries, we use two parts, isotropic and anisotropic, to describe the anisotropic diffuse-radiation; Connected the horizontal diffuse-radiation and the land modulus to calculate the diffuse irradiation on actual terra; And modem geo-tech, DEM and PCI-geomatica software and so on, is convenient and helpful to deal with
    
    
    mass geo-data and geo-information.
    At the end of the paper, the distributing map of anisotropic diffuse-radiation on actual terra in China area are given.
引文
[1]廖国男.大气辐射导论.北京:气象出版社,1985.
    [2]翁笃鸣,罗哲贤.山区地形气候.北京:气象出版社,1990.
    [3]翁笃鸣.中国辐射气候.北京:气象出版社,1997.
    [4]傅抱璞.坡地对日照和太阳辐射的影响.南京大学学报(自然科学),1958,(2):23-46
    [5]朱志辉.非水平面天文辐射的全球分布.中国科学(B辑),1988.(10):1100-1110
    [6]翁笃鸣,孙治安,史兵.中国坡地总辐射的计算和分析.气象科学,1990,10(4):348-357
    [7]李占清,翁笃鸣.一个计算山地日照时间的计算机模式.科学通报,1987,32(17):1333-1335
    [8]李占清,翁笃鸣.丘陵山地总辐射的计算模式.气象学报,1988,46(4),461-468
    [9]李占清,翁笃鸣.坡面散射辐射的分布特征及其计算模式.气象学报,1988 46(3),349-356
    [10]李新,程国栋,陈贤章等.任意地形条件下太阳辐射模型的改进,科学通报,1999,44(9):993~998
    [11]Gamier, B.J. and A. Ohmura, A method of calculating the direct shortwave radiation income of slopes, J. of Applied Meteorology, 1968,7(5):796-800. Williams L D, Barry R G, Andrews J T. Application of computed global radiation for areas of high relief. Journal or Applied Meteorology, 1972, (11): 526~533
    [12]Dozier J, Frew J, Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE Transaction on Geoscience and Remote Sensing, 1990, 28(5):963~969.
    [13]Dozier J, Qutcalt S I. An approach to energy balance simulation over rugged terrain. Geograph. Anal., 1979, (11): 65~85
    [14]Bocquet G, Method of Study and Cartography of the Potential Sunny Periods in Mountainous Areas. Journal of Climatology, 1984, 1(4): 587~596
    
    
    [15]邱新法.基于GIS的我国辐射平衡精细时空分布.南京大学博士论文 2003
    [16]R.G.Barry, Mountain weather and Climate, Metheuen, London and New York,34~37(1981)
    [17]谢贤群等,格尔木地区 1979年5月~8月的辐射特征,青藏高原气象科学实验文集(一),科学出版社,48~60(1984)。
    [18]翁笃鸣、陈万隆等.拉萨河谷的太阳辐射特征研究(一),青藏高原气象科学实验文集(一),科学出版社,70~81(1984)。
    [19](1), (1931).
    [20]B.Y.H.Liu and R.C.Jordon, The interrelationship and characteristic distribution of direct, diffuse and total solar radiation, Sol.Energy, 4(3), 1~19(1960)
    [21]M.Iqbal.A study of Canadian diffuse and total solar radiation data, I.Monthly average daily horizontal radiation, Sol.Energy, 22(1),81~86(1979).
    [22]M.Iqbal. Correlation of averagy diffuse and beam radiation with hours of bright sunshine, Sol.Energy, 23(2), 169~173(1979).
    [23]S.Janjai,P.Praditwong, A new model for computing monthly average daily diffuse radiation for Bangkok WREC(1996), 1283~1286.
    [24]U.Ali Rahoma, Clearness index estimation for spectral composition of direct and global solar radiations. Applied Energy 68(2001)337~346.
    [25]Joseph C.Lam.Correlation between global solar radiation and its direct and diffuse components. Building and Environment, Vol.31(6)1996.527~535.
    [26]A.De.Migule, Diffuse solar irradiation model evaluation in the north Mediterranean belt area. Solar Energy 70(2)2001,143~153.
    [27]David B.Ampratwum, Estimation of solar radiation from the number of sunshine hours. Applied Energy 63 (1999) 161~167.
    [28]Michael L.Roderick, Estimation the diffuse component form daily and monthly
    
    measurements of global radiation. Aricultural and Forest Meteorology, 95(1999) 169~185.
    [29] Y.Q.Tian, Estimating solar radiation on slopes of arbitrary aspect, Aricultural and Forest Meteorology, 109(2001)67~74
    [30] Oleg Anionic. Modelling daily topographic solar radiation without site-specific hourly radiation data. Ecological Modelling, 113(1998)31~40.
    [31] Jan Asle Olseth, Spatially contimuous mapping of solar resources in a com;lex high latitude topography, Renewalbe Energy, 21 (2000)583~605.
    [32] A.A.Trabea, Analysis of solar radiation measurements at Al-Arish area, North Sinai, Egypt, Renewable Energy, 20(2000) 109~125.
    [33] Lin Wenxian, Distribution patterns of diffuse lolar radiation in yunnan provice, China, Energy Convers. Mgmt,37(5), 553~560,1996.
    [34] K.K.Gopinathan, Effect of sunshine and solar declination on the computation of monthly mean daily diffuse solar radiation, Renewable Energy, 7(1),89~93,1996.
    [35] A.Q.Malik, Estimation of monthly average daily diffuse radiation for Brunei Darussalam, Renewable Energy, 6(4),425~427,1995.
    [36] A.Khalil, Experimental and theoretical investigation of global and diffuse solar radiation in the united arab emirates, Renewable Energy, 6(5),537~543, 1995.
    [37] A.A.Lmaduekwe, Predicting the components of the total hemispherical solar radiation from sunshine duration measurements in Lagos, Nigeria, Renewable Energy, 6(7),807~812,1995.
    [38] Iqbal, M. An introduction to Solar radiation, Toronto: Academic Press, 1983.
    [39] American Society of Heating, Refrigerating and Airconditioning Engineers (ASHRAE) handbook: HVAC applications. Atlanta(GA): ASHRAE, 1999.
    [40] T.Muneer, Evaluation of sunshine and cloud cover based models for generating solar radiation data, Energy Conversion&Management, 41 (2000),461~482.
    [41] Enrique D.Albizzati, Bird and Riordan, Measurement and prediction of solar radiation
    
    incident on horizontal surfaces at Santafe, Argentina, Renewable Energy, 11(4),469~478,1997.
    [42] David W.Meek, Estimation of maximum possible daily global solar radiation, Agricultural and Forest Meteorology, 87(1997)223~241.
    [43] E.L.Maxewll, METSTAT----The solar radiation model used in the production of the national solar radiation data base (NSRDB),Solar Energy, 62(4), 263~279,1998.
    [44] Kathy L, Simple Approaches to Modelling Solar Radiation in the Arctic, Solar Energy, 54(1), 33~40,1995.
    [45] P.C.Grindley, Mathematical model for predicting the Magnitudes of Total, Diffuse, and Direct-Beam Insolation, Applied Energy, 52(1995), 89~110.
    [46] N.C.coops, Estimating mean monthly incident solar radiation on horizontal and inclined slopes from mean monthly temperatures extremes, Int.J.Biometeorol(2000)44:204~211.
    [47] F.J.Olmo, Performance reduction of solar irradiance parametric models due to limitation in required aerosol data: case of the CPCR2 model, Theor.Appl.Climatol. 69, 253~263(2001).
    [48] B.E.Psiloglou, Atmospheric Broadband Model for computation of Solar Radiation at the Earth's Surface Application to Mediterranean Climate, Pure appl.geophys. 157(2000)829~860.
    [49] Christian Gueymard,Critical Analysis and Performance Assessment of Clear Sky Solar Irradiance Models Using Theoretical and Measured Data, Solar Energy, Vol.51 No.2.pp.121-138
    [50] 翁笃鸣,试论总辐射的气候学计算方法,气象学报,34(3),304~314 (1964)。
    [51] 高国栋、陆渝蓉,中国地表面的辐射平衡和热量平衡,科学出版社,28~41 (1982)。
    [52] 祝昌汉,我国散射辐射的计算方法及其分布.太阳能学报,5(3),242~249(1984)
    [53] Duffie, J.A. and W. A. Beckman, Solar Energy Thermal Processes, John Wiley&Sons,
    
    New York, 1974.
    [54] B.Y.H.Liu and R.C.Jordon, The Long-Term average performance of flat-plate Solar Energy collectors, Solar Energy, 7(2),53~74(1963)
    [55] Kondratyev,K.Ya.et al., Distribution of the Energetical and Light Intensity of Diffuse Atmospheric Tadiation over the Celestial Sphere, Bull.Leningrad Univ, 119~129.1955.
    [56] Klucher,T.M., Evaluation of Models to predict insolation on tilted surfaces, Solar Energy, 23(2),111~114,1979.
    [57] Hay,J.E., Study of shortwave radiation on nonhorizontnl surfaces, Rep.No.79~121, Atmospheric Environment Service, Downsview, Ontario, 1979.
    [58] Liu, B. Y., Jordan R. C., Daily insulation on surfaces tilted towards the equator, Trans ASHRAE, 1962, 67, 526-541
    [59] Ma C., Iqbal M., Statistical comparison of models for estimating solar radiation on inclined surface, Solar Energy, 1983, 31, 313-317.
    [60] Duffle, J. A., and Beckman, W. A., Solar Engineering of Thermal Processes (New York:John Wiley &Sons). 1991.
    [61] 高正旭,实际地形下我国潜在太阳辐射的空间分布研究,南京气象学院硕士论文,2004。
    [62] Kreith, F., and Kreider, J. F., Principles of Solar Engineering (New York:Mc Graw Hill). 1978.
    [63] LIST, R J. Smithsonian Meteorological Tables. 6th revversion Smith inst press shington. 1984.
    [64] Gates, D. M., Biophysical Ecology (New York:Springer-Verlag),1980.
    [65] Shafiqur Rehman, Saleem G. Ghori, Spatial estimation of global solar radiation using geostatisties. Renewable Energy. 2000, 21:583-605.
    [66] 史岚,基于DEM的重庆辐射研究,南京气象学院硕士论文,2003。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700