真空/生物脱氮及对废水C/N值影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮素污染日益严重,对其控制成为研究的热点,在众多影响氮素去除的因素中,C/N值是主要的因素之一。针对这个问题,本文研发了真空反应器的脱氮效果,试验了藻类对氨氮的去除率,在氧化沟中首次成功实现了低氧较高效SND技术。通过氨氮的去除、有机氮的转化、COD的降解,初步分析了高,中,低氨氮浓度条件下,不同处理技术对废水C/N值的影响。
     结果显示:
     (1)在利用自制的真空脱氮反应器处理高浓度氨氮废水时,发现氨氮的脱除主要发生在前30分钟,且开始时反应速率较快,随着时间的推移,速率逐渐降低,最终达到平衡;实验中较重要的因素:真空度、空气的搅拌作用、不同的真空产生设备对原水中氨氮的去除及C/N值的提高,均有一定程度的影响,氨氮初始浓度影响最小。
     开发的多功能真空反应器兼具脱氮,输水,混凝作用,用该工艺处理中浓度氨氮废水的过程中:pH值、真空度、水流状态(连续流与间歇流)等因素均能影响废水C/N值;混凝剂的加入大大改善了原水C/N值;真空脱氮技术在处理低pH值废水时,氨氮脱出率不够高,但对比常温常压下,相同pH值时游离氨的浓度,高出5-20%。
     (2)用藻类进行了三因素三水平正交试验设计,结果表明,对较低浓度氨氮废水的去除,最佳组合为pH6.5,鞘藻,反应时间为9天;颤藻的处理效果接近于鞘藻;COD去除最优组合为pH8.5,水网藻,处理9天。藻种、pH、反应时间对氨氮、COD的去除影响均很显著。半连续处理养猪废水的实验结果表明:颤藻和鞘藻能有效地利用污水中的氨氮,实现对水质的净化。藻类属于自养生长,利用它们的这种特性,可实现工业污水或低碳氮比废水中C/N值的提升。
     (3)在常温下,采用Pasveer氧化沟工艺处理低C/N、低氨氮值污水,通过控制好氧区DO为0.2-0.4mg/L,缺氧区DO小于0.1mg/L,保持好氧区与缺氧区体积比约1:1,成功启动了低氧脱氮过程;两种模式启动低氧SND反应器均能成功,且模式2速度更快;两种模式COD去除率为40-62%,氨氮去除率达99%以上,总氮去除率稳定在75%左右;低氧SND稳定运行后,C/N为4.19、3.00和1.94情况下,TN去除率均达到70%以上,说明进水C/N处于较低值时,不影响低氧SND的实现;通过对Pasveer氧化沟断面的分析,发现了各类含氮物质之间的相互转化;在低DO水平下,反应器没有发生污泥膨胀现象,沉降性能得到明显改善,SVI值仅60-70mL/g;氧化沟出水碳氮值达到6-10:1,COD的去除主要由异养反硝化菌承担,分析反应器COD去除值/TN去除值,发现短程SND起主要作用;氧化沟SND过程中,各种物理指数与水质指标滞后性相关,并逐渐稳定,实测ORP值最终收敛于计算ORP值,可用ORP值来指示低DO环境下脱氮的过程;分析Pasveer氧化沟中SND效果较好的原因,可能是采用了点源曝气设备,和氧化沟独有的推流模式,有助于宏观和微观好---缺氧环境的形成。
With the increase of nitrogen pollution, nitrogen pollution control is one of themost hottest field for the researchers, in all the factors which influence the removal ofnitrogen, C/N is one of the most important factors. This manuscript aims at it, vacuumreactors was developed and studied on the effect of nitrogen removal by it, theexperiment on removal rate of ammonia by algae was made, it is achieved thathigher–efficiency removal rate of nitrogen by SND with low oxygen concentrationsuccessfully at first.by the removal of ammonia, the transportation of organic-nitrogen,the degrading of COD, Different concentration of ammonia–high, intermediate, low arepriliminary tested to analyze the effect on the C/N of wastewater by different techniques.
     The results are showing as follows:
     (1) By self-made vacuum reactor to treat high-ammonia waste water, it is found thatthe removal of ammonia occurs in the early30minutes, reacting rate is somewhat fast inthe beginning, and is becoming slower with the time passed, finally, it enters the balancestate; In the experiment, the key factors:vacuum degree, the mixing of air, the differentapparatus of vacuum-produce effect the nitrogen removal and C/N, but the influence ofprimary concentration is not obvious.
     On the test of medium concentration ammonia, a multifunction vacuum reactor wasused which can remove ammonia, abstract, coagulate. in that process, pH value,vacuum-degree, different flow states (the continuous flow and intermittent flow) canchange the C/N; the add of flocculent can change the C/N largely;When using vacuumreactor to treat low pH value wastewater, the removal rate of ammonia nitrogen is not veryhigh, but compared with the free ammonia concentration at normal temperature, pressureand the same pH value, it can improve the removal rate by5-20%.
     (2) By three factors three levels orthogonal test design, the results show that theoptimal combination of lower ammonia nitrogen removal is pH=6.5, Oedogonium sp.,reaction time for nine days; Oscillatoria’s efficiency is close to Oedogonium sp.; theoptimal combination of COD removal is pH=8.5, Hydrodictyon reticulatum, nine days.pH value, reaction of time, the type of algae, can influence the ammonia nitrogen removal, COD removal efficiency significantly. The experimental on semicontinuous swinewastewater treatment results show that Oscillatoria and Oedogonium sp can effectivelyuse the ammonia nitrogen in wastewater to purify the water. The algae belong toautotrophic organisms, this characteristic can be used to raising C/N value of industrywastewater or other low C/N waste water.
     (3) At room temperature, using Pasveer oxidation ditch to treat low ammonia and lowC/N sewage, by controlling DO in aerobic area at0.2-0.4mg/L, DO in anaerobic arealower than0.1mg/L, keeping the volume rate of oxidation zone and anoxic zone at1:1,start the process of removal of nitrogen under low oxygen condition successfully;It can befound that both the two models used to start SND reactor is useful, and model2is faster,results show that the removal rate of COD is40%-62%, of ammonia nitrogen is above99%, of total nitrogen is75%. By monitoring the effluent quality of reactor at differentC/N(C/N=1.943.004.19) after the stabilizing of Pasveer oxidation ditch, we found thatthe removal rate of TN can overpass70%, so it can say that at low C/N, low oxygen,SND can be achieved; By analyzing the inner section of Pasveer oxidation ditch, it can befound that the translation among different nitrogen matters; At low oxygen level, sludgebulking did not happen, settle ability was obviously improved, the mean SVI is60-70mL/g; the C/N of effluent of the oxidation ditch is up to6-10:1, it also can be foundthat heterotroph is responsible for the removal of COD at low oxygen, by analyzising theremoval value of COD/TN, we can make conclusion that short-cut nitrification anddenitrifcation is predominant;during the reacting, those physical parameters are hystereticrelevance with water quality criterion and be stable gradually, in this paper, we count theORP value, it is found that the measured value converge to the counting ORP, so ORPcan indicate the process of ammonia remova of SND, Especially in low oxygenenvironment; Analyzing the reasons why effect of SND is good in Pasveer oxidation ditchunder low oxygen, probably because of the adoption of point source aeration facility andspecial Plug-flow in oxidation ditch, contributing to the form of aerobic-anoxiaenvironment.
引文
[1]沈耀良,王宝贞.废水生物处理新技术-理论与应用[M].北京:中国环境科学出版社,1999:24
    [2]钱易.环境保护与可持续发展[M].北京:高等教育出版社,2000:50-51
    [3] Zhimin Fu, Fenglin Yang, Feifei Zhou, et al. Control of COD/N ratio for nutrientremoval in a modified membrane bioreactor(MRB) treating high strengthwasterwater. Bioresource Tenhnology,2009,100:136-141
    [4] Choi C., Lee J., Kwangho Lee., et al. The effects on operation conditions of sludgeretention time and carbon/nitrogen ratio in an intermittently aerated membranebioreactor(IAMBR)[J]. Bioresource Technology,2008,99:5397-5401
    [5] Xin-Hui Xing, Byong-Hee Jun, Mari Yangagida, et al. Effect of C/N on microbialsimultaneous removal of carbonaceous and nitrogenous substances in wasterwaterby single continuous-flow fluidized-bed bioreactor containing porous carrier porouscarrier particles[J]. Biochemical Engineering Journal,2000(5):29-37
    [6] Carrera J., Vicent T., Lafuente J.. Effect of influent COD/N ratio on biologicalnitrogen removal (BNR) from high-strength ammonium industrial wastewater[J].Process Biochemistry,2004,39:2035-2041
    [7]张朝升,林峰,荣宏伟. C/N对Carrousel2000氧化沟同步脱氮除磷的影响研究[J].环境工程学报,2009(3):451-454
    [8]夏岚,刘艳臣,施汉昌等.不同工况条件对Carrousel氧化沟脱氮除磷影响研究[J].环境工程学报,2012,6(1):74-76
    [9] Yoshiteru Aoi, Tomoko Miyoshi, Toshiyuki Okamoto, et al. Microbial Ecology ofnitrifying bacteria in waster water treatment process examined by fluorescent in situhybridization[J]. Journal of bioscience and bioengineering,2000,90(3):234-240
    [10] Zongli Xie, Tuan Duong, Manh Hoang, et al. Ammonia removal by sweep gasmembrane distillation[J]. Water research,2009,43:1693-1699
    [11] Cussler E. L. Diffusion: Mass Transfer in Fluid Systems. seconded. CambridgeUniversity Press, New York,2000
    [12] Semmens M. J., Foster D. M., Cussler E. L. Ammonia removal from water usingmicroporous hollow fibers[J]. Membr. Sci.,1990,51:127-140
    [13] EL-Bourawi M. S., Khayet M., Ma R., et al. Application of vacuum membranedistillation for ammonia removal[J]. Journal of Membrane Science,2007,301:200-209
    [14]谢宇.改良真空脱氨装置用于高氨废水处理的效果研究[J].污染及防治,2009(4):159
    [15] Sebnem Aslan, Ilgi Karapinar Kapdan. Batch kinetics of nitrogen and phosphorusremoval from synthetic wastewater by algae[J]. Ecological Engineering,2006,28:64-70
    [16] Alejandro Ruiz-Marin, Leopoldo G,. Growth and nutrient removal in free andimmobilized green algae in batch and semi-continuous cultures treating realwastewater[J]. Bioresource Technology,2010,101:58-64
    [17] Castingnetti D., Hollocher T. C. Heterotrophic nitrification among denitrifiers[J].Appl. Env. Microbial,1984,7:16-20
    [18] Sergey Kalyuzhnyia, Marina Gladchenkoa, Arnold Mulderb.DEAMOX—Newbiological nitrogen removal process based on anaerobic ammonia oxidation coupledto sulphide-driven conversion of nitrate into nitrite[J]. Water research,2006,40:3637-3645
    [19] WaKi M., Tanaka Y. T. Osaka Effects of nitrite and ammonia on methane-dependentdenitrification[J]. Appl Microbiol,2002,59:338-343
    [20] Kuenen J. G., Robertson. L. A. Combined nitrification denitrification process[J].FEMS. Microbial Rev,1994,15(2):109-117
    [21] Ruiz G., Jeison D., Rubilar O., et al nitrification-denitrification via nitriteaccumulation for nitrogen removal from wastewater[J]. bioresource technology,2006,97(2):330-335
    [22] Mike S. M. Jetten, Svein J. H., M. C. M. van Loosdrecht. Towards a MoreSustainable Municipal Wastewater Treatment System[J]. Wat. Sci. Tech.,1997,35(9):171-180
    [23] Kim D. J., Chang J. S., Lee D. I., et al. Nitrification of High Strength AmmoniaWastewater and Nitrite Accumulation Characteristics[J]. Wat. Sci. Tech.,2003,47(11):45-51
    [24] Yang L., Alleman J. E. Investigation of Batch-wise Nitrite Build-up by an EnrichedNitrificaiton Culture[J]. Wat. Sci. Tech.,1992,26(5-6):997-1005
    [25] Noophan P., Figueroa L. A., Munakat-Marr J. Nitrite Oxidation Inhibition byHydroxylamine: Experimental and Model Evaluation[J]. Wat. Sci. Tech.2004,50(6):295-304
    [26] Hellinga C., Schellen A. A. J. C., Minder J. W., et al. The SHARON Process: anInnovative Method for Nitrogen Removal from Ammonium Rich Wastewater[J].Wat. Sci. Tech.,1998,37:135-142
    [27] Hyungseok Yoo, Kyu H. A., Hyung-Jie L., et al. Nitrogen Removal from SyntheticWastewater by Simultaneous Nitrification and Denitrification via Nitrite in anIntermittently-aerated Reactor[J]. Wat. Res.,1999,33(1):146-149
    [28] Hao X. D., Hans J. D., Van Groenestijn J. W. Conditions and MechanismAffectingSimultaneous Nitrification and Denitrification in a Passveer Oxidation Ditch[J].Bioresource Technology,1997,59:207215
    [29] Hellinga C., Schellen A. A. J. C., Minder J. W., et al. The SHARON Process: anInnovative Method for Nitrogen Removal from Ammonium Rich Wastewater[J].Wat. Sci. Tech.,1998,37:135-142
    [30] Peng Y. Z., Li Y. Z., Peng C. Y., et al. Nitrogen Removal from PharmaceuticalManufacturing Wastewater with High Concentration of Ammonia and FreeAmmonia via Partial Nitrification and Denitrification[J]. Wat. Sci. Tech.,2004,50(6):31-36
    [31] Peng Y. Z., Chen Y., Peng C. Y., et al. Nitrite Accumulation by Aeration Controlledin Sequencing Batch Reactors Treating Domestic Wastewater[J]. Wat. Sci Tech.,2004,50(10):35-43
    [32] Wei Zeng, Lei Li, Yingying Yang, et al. Nitritation and denitritation of domesticwastewater using a continuous anaerobic-anoxic-aerobic (A2O) process at ambienttemperatures[J]. Bioresource Technology,2010,101:8074-8082
    [33] Chung J., Bae W. Nitrite reduction by a mixed culture under conditions relevant toshortcut biological removal[J]. Biodegradation,2002,13:163-70
    [34]支霞辉,黄霞,李朋.污水短程脱氮工艺中亚硝酸盐积累的影响因素[J].中国环境科学,2009,29(5):486-492
    [35] Voet J. P. Removal of nitrogen from highly nitrogenous wastewater[J]. JWPCF,1975(47):394-398
    [36] Maurer M., Fux C., Lange D., et al. Modelling denitrification in a moving bed ofporous carriers from a low-loaded wastewater treatment plant[J]. Water Science andTechnology,1999(39):251-259
    [37] Gali A., Dosta J., Mace S., et al. Comparison of reject water treatment withnitrification/denitrification via nitrite in SBR and SHARON chemostat process[J].Environ. Technol.,2007,28(2):173-176
    [38] Jinwook Chung, Wookeun Bae, Yong-Woo Lee, et al. Shortcut biological nitrogenremoval in hybrid biofilm/suspended growth reactors[J]. Process Biochemistry,2007,42:320-328
    [39] Abeliovich A., Vonshak A. Anaerobic Metabolism of Nitrosomonas europaea[J].Archives of Microbiology,1992,158:267-270
    [40] Muller E. B., Stouthamer A. H., van Verseveld H. W. Simultaneous NH3Oxidationand N2Production at Reduced O2Tensions by Sewage Sludge Subcultured withChemolithotrophic Medium[J]. Biodegradation.1995,6:339-349
    [41] Kuai L., Verstraete W. Ammonium Removal by the Oxygen Limited AutotrophicNitrification Denitrification(OLAND)System[J]. Appl. Environ. Microbiol,1998,64(11):4500-4506
    [42] Verstraete W., Philips S. Nitrification-denitrification processes and technologies innew contexts[J]. Environmental Pollution,1998(1):717-726
    [43] Than Khin, Ajit P. Annachhatre. Novel microbial nitrogen removal processes[J].Biotechnology Advances,2004,22:519-532
    [44] Mike S. M. Jetten, Markus Schmid, Ingo Schmidt Improved nitrogen removal byapplication of new nitrogen-cycle bacteria[J]. Re/Views in Environmental Science&Bio/Technology,2002(1):51-63
    [45] K. A. Third A. Olav Sliekers, J. G. Kuenen, et al. The CANON System underAmmonium limitation interaction and competiton between three groups of bacteriaSystem[J]. Appl. Microbiol,2001,24:588-596
    [46] Koch G., Egli K., van der Meer J. R., et al. Mathematical Modeling of AutotrophicDenitrification in a Nitrifying Biofilm of a Rotating Biological Contactor[J]. Wat.Sci. Tech.,2000,41:191-198
    [47] Mulder A., van de Graaf A. A, L. A. Rovertson, J. G. Kuenen. AnaerobicAmmonium Oxidation Discovered in a Denitrifying Fluidized Bed Reactor[J].FEMS Microbiol Ecol,1995,16:177-184
    [48] Kazuichi Isaka Tatsuo Sumino, and Satoshi Tsuneda High Nitrogen RemovalPerformance at Moderately Low Temperature Utilizing Anaerobic AmmoniumOxidation Reactions[J]. Journal Of Bioscience And Bioengineering,2007,103(5):486-490
    [49] Strous M., Kuenen J. G., Jetten M. S. M. Key physiology of anaerobic ammoniumoxidation[J]. Appl. Environ. Microbiol.,1999,65:3248-3250
    [50] Paredes D., Kuschk P., Oser H. K. Influence of plants and organic matter On thenitrogen removal in laboratory-scale model substrate flow constructed wetlandsinoculated with anaerobic ammonium oxiding bacteria[J]. Eng Life Sci,2007,7(6):565-576
    [51] Jetten M. S. M., Strous M., van de Pas-Schoonen K. T., et al. The anaerobicoxidation of ammonium[J]. FEMS Microbiol Rev.,1998,22(5):421-437
    [52] Mike S. M. Jetten, Wagner M., Fuerst J., et al. Microbiology and Application of theAnaerobic Ammonium Oxidation (ANAMMOX)Process[J]. Curr Opin Biotechnol,2001,12:283-288
    [53] Klangduen P., Jurg K, Study of Factors Affecting Simultaneous Nitrification andDenitrification (SND)[J]. Wat. Sci. Tech.,1999,39(6):61-68
    [54] Holman J. B., Wareham D. G. COD, Ammonia and Dissolved Oxygen Time Profilein the Simultaneous Nitrification/Denitrification Process[J]. BiochemicalEngineering Journal,2005,22:125-133
    [55] Priyali Sen, Steven K. Dentel. Simultaneous Nitrification-Denitrification in aFluidized Bed Reactor[J]. Wat. Sci. Tech.,1998,38(1):247-254
    [56] Torsten wik. Adsorption and Denitrification in Nitrining Trickling Filters[J]. Wat.Res.,1999,33(6):1500-1508
    [57] Francisco J. Cervantes, David A. De la Rosa, Jorge Gomez. Nitrogen Removal fromWastewaters at Low C/N Rations with Ammonium and Acetate as ElectronDonors[J]. Bioresource Technology,2001,79:165-170
    [58] Robertson L. A., van Niel E. W. J., Torremans R. A. M., et al. SimultaneousNitrification and Denitrification in Aerobic Chemostat Cultures of ThiosphaeraPantotropha[J]. Appl. Env. Microbiology,1988,54:28122818
    [59] Patureau D., Bernet N., Moletta R. Combined Nitrification and Denitrification in aSingle Aerated Reactor Using the Aerobic Denitrifier Comanonas sp. StrainSgly2[J]. Wat. Res.,1997,31(6):1363-1370
    [60] Albert Koeig, Tong Zhang, Ling-Hua Liu, Herbert H. P. Fang. MicrobialCommunity and Biochemistry Process in Auto sulfurotrophic DenitrifyingBiofilm[J]. Chemosphere,2005,58:1041-1047
    [61] Filipe C. D. M., Daigger G. T. Evaluation of the Capacity of Phosphours-accumulating Organisms to Use Nitrate and Oxygen as Final Electron Acceptors: aTheoretical Study on Population Dynamics[J]. Water Environment Research,1999,71:1140-1150
    [62] Meiberg J. B. M., Bruinenberg P. M., Harder W. Effect of dissolved oxygen tensionon the metabolism of methylated amines in Hyphomicrobium X in the absence andpresence of nitrate: aerobic denitrification[J]. GenMicrobiol,1980,120:453-463
    [63]污水综合排放标准(GB8978-1996)
    [64]城镇污水处理厂污染物排放标准(GB18918-2002)
    [65][丹]Mogens Henze编.污水生物处理:原理设计与模拟.施汉昌译.北京:中国建筑工业出版社,2011:150-209
    [66]娄金生,谢水波,何少华生物脱氮除磷原理与应用.长沙:国防科技大学出版社,2002:72-170
    [67] Kuba T. Phosphorus and nitrogen removal with minimal COD requirement byintegration of denitrifying dephosphatation and nitrification in a two-sludge system[J]. Water Res.,1996,30(7):1702-1710
    [68] Mino T. Microbiology and biochemistry of the enhanced biological phosphateremoval process[J]. Water Res,1997,32:3193-3201
    [69] Purkhold U., Pommerening-Roser A., Juretschko S., et. al. Phylogeny of AllRecognized Species of Ammonia Oxidizers Based on Comparative16S rRNA andAmoa Sequence Analysis: Implications for Molecular Diversity Surveys [J]. Appl.Environ. Microbiol,2000,66:5368-5382
    [70] Bateman A. The Structure of a Domain Common to Archaebacteria and theHomocystinuria Disease Protein [J]. Trends Biochem. Sci.,1997,22:12-13
    [71] Merzouki M., Bernet N., Delgenes J. P., et al. Biological denitrifying phosphorusremoval in SBR: effect of added nitrate concentration and sludge retention time [J].Wat Sci Tech.,2001,43(3):191-194
    [72] Lee D. S., Jeon C. O., Park J. M. Biological nitrogen removal with enhancedphosphate uptake in a sequencing batch reactor using single sludge system[J].Water Res.,2001,35(16):3965-76
    [73] Tzu-Yi Pai. Modeling nitrite and nitrate variations in A2O process under differentreturn oxic mixed liquid using an extended model [J]. Process Biochemistry,2007,42:978-987
    [74] Sergey Kalyuzhnyi, Marina Gladchenko. DEAMOX-New microbiological processof nitrogen removal from strong nitrogenous wastewater[J]. Separation Science andTechnology,2008,43:3183-3199
    [75]孙艳波,周少奇,李伙生等. SBR工艺处理晚期垃圾渗滤液的脱氮特性研究[J].环境科学,2010,31(2):357-362
    [76]管运涛,宁涛,张丽丽. HRT和载体对一体化生物膜反应器脱氮除磷效果的影响[J].清华大学学报(自然科学版),2009,49(3):360-364
    [77]张忠祥,钱易.废水生物处理新技术[M].清华大学出版社,2004
    [78] Kyung-Guen Song. Jinwoo Cho. Kyu-Hong Ahn. Effects of internal recycle timemode and hydraulic retention time on biological nitrogen and phosphorus removalin a sequencing anoxic/anaerobic membrane bioreactor process[J]. BioprocessBiosyst Eng,2009,32:135-142
    [79]刘艳臣. Carrousel氧化沟单沟脱氮优化条件及其控制策略研究:[博士学位论文].清华大学,2008
    [80] Seongjun Park, Wookeun Bae, Bruce E. Rittmann a, Seungjin Kim, Jinwook Chung.Operation of suspended-growth shortcut biological nitrogen removal (SSBNR)based on the minimum/maximum substrate concentration[J]. water research,2010,44:1419-1428
    [81]邹联沛,刘旭东,王宝贞. MBR中影响同步硝化反硝化的生态因子.环境科学,2001,22(4):51-55
    [82] Yoshiteru Aoi, Tomoko Miyoshi, Toshiyuki Okamoto, et al. Microbial Ecology ofnitrifying bacteria in waster water treatment process examined by fluorescent in situhybridization[J]. journal of bioscience and bioengineering,2000,90(3):234-240
    [83]泵站设计规范[M].北京:中国计划出版社,1997:30
    [84]朱俊华.往复泵及其它类型泵[M].北京:机械工业出版社,1982:12
    [85]卢荣.化学与环境[M].武汉华中科技大学出版社,2008:8
    [86]徐雪芹,李小明.固定化微生物技术及其在重金属废水处理中的应用[J].环境污染治理技术与设备,2006,7(7):99-105
    [87]魏群,胡智泉,肖波等.利用藻类生物膜技术处理生活污水研究[J].中国给水排水,2008,24(5):27-30
    [88]胡鸿钧,李尧英,魏印心等.中国淡水藻类[M].上海:上海科学技术出版社,1980:59,314,374
    [89] Bierman V. J., Dolan D. M. Modeling of phytoplankton-nutrient dynamics inSaginaw Bay, Lake Huron[J]. Journal of Great Lakes Research,1981,7:409-439
    [90]史晓丽.扰动外源性磷在模拟水生态系统中迁移的影响[J].中国环境科学,2002,22(6):537-541
    [91]孔繁翔,宋立荣.蓝藻水华形成过程及其黄金特征研究[M].北京:科学出版社,2011:281
    [92] Zhou W. A hetero-photoautotrophic two-stage cultivation process to improvewastewater nutrient removal and enhance algal lipid accumulation[J]. Bioresource.Technol.,2012(1):63
    [93]周少奇,周吉林,范家明.同时硝化反硝化生物脱氮技术研究进展[J].环境科学与技术,2002(2):38-44
    [94] Kimura K., Nishiasko R., Miyoshi T., et al. Baffled membrane bioreactor ofefficient nutrient removal from municipal wastwater[J]. Wat Res,2008,42(3):625-632
    [95] Komesli O. T., Teschner K., Hegemann W., et al. Vacuum membrane applicationsin domestic wastewater reuse[J]. Desalination,2007,215(1-3):22-28
    [96]竺云波,王建新.低氧MBR内有机物对脱氮和污泥性能的影响[J].西北农林科技大学学报,2009,37(9):168-174
    [97]高廷耀,周增炎,朱晓君.生物脱氮工艺中的同步硝化反硝化现象[J].城市给排水,1998,24(12):6-9
    [98]王海东,王淑莹,彭永臻.进水负荷对硝化菌与异养菌竞争关系的影响[J].中国给水排水,2006,22(23):26-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700