利用贮存碳源与厌氧氨氧化实现垃圾渗滤液深度脱氮
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2008年,我国颁布了新的垃圾渗滤液排放标准,不仅对原有水质指标的排放浓度作了更加严格的规定,还增加了TN等指标。这给垃圾渗滤液的处理带来了挑战也带来了机遇。为了解决渗滤液处理难尤其是脱氮难的实际问题,本课题以实际垃圾渗滤液为研究对象,对如何实现垃圾渗滤液有机物和氮的同步深度去除进行了大量研究。根据不同的垃圾渗滤液水质特点,本研究提出四套不同的SBR组合工艺,以实现渗滤液有机物和氮素的有效去除。这四套SBR组合工艺包括:单级改进SBR,ASBR-SBR,SBR-ASBR和三级SBR生化系统。
     对于生物脱氮工艺,无论是传统的硝化反硝化脱氮还是最新的厌氧氨氧化脱氮,短程硝化都是基础。本试验以处理生活污水的全程硝化活性污泥为种泥,通过进水FA浓度抑制作用协同过程控制,好氧SBR可以通过50天的驯化实现稳定的短程硝化,亚硝态氮积累率稳定在98%以上。通过提高SBR的进水氨氮负荷,活性污泥的氨氮去除速率和比氨氮去除速率都会增加。最终,系统的氨氮去除速率和比氨氮去除速率分别达到了2KgN/m3·d和0.02591gN/gVSS·h。
     对于碳氮比在6:1以上的早期垃圾渗滤液,本试验采用ASBR-SBR的组合处理工艺。ASBR在工艺中主要起到去除有机物、回收部分能源以及调节渗滤液碳氮比的作用。SBR的主要作用是在进一步去除有机物的基础上,实现对渗滤液的深度脱氮。试验所用渗滤液COD为6000±500mg/L,氨氮为1000±100mg/L,ASBR通过快速启动,23天后可以实现对渗滤液有机物的有效去除,COD去除率达到80%以上,能源回收率达到了62.5%。同时,试验研究表明,在处理高氨氮废水时,ASBR的COD去除率和甲烷产率与进水氨氮的浓度成反比。当进水氨氮浓度大于2600mg/L时,ASBR的COD去除率将降至65%以下,甲烷产率低于0.21L/gCOD。COD和产气量减少的原因是由于高浓度将ASBR的发酵类型从乙酸发酵逐渐转变为丙酸发酵,同时抑制了产乙酸菌利用丙酸的能力,而高氨氮对产甲烷菌的抑制作用并不明显。
     SBR的进水由ASBR的出水和原水按一定比例混合而成,碳氮比控制在4:1左右。为了提高SBR的脱氮效率,在硝化时加入间歇搅拌并在硝化结束后继续搅拌以实现深度脱氮。通过改变操作模式,SBR可以在不添加碳源的条件下实现对渗滤液的深度脱氮,总氮去除率达到95%以上。整个系统出水COD为400~500mg/L,总氮为15~25mg/L,其中有机氮为13~22mg/L,去除率分别达到了90%和95%。由于充分利用了污泥内碳源进行内源反硝化,系统在运行期间污泥浓度基本保持不变。
     对于碳氮比在4:1-6:1的中期垃圾渗滤液,本试验采用单级SBR,改变了传统的运行模式,分别在曝气前后加入了厌氧和缺氧搅拌段来提高系统的脱氮效率。试验所用渗滤液的COD为3800-6000mg/L,氨氮为1000mg/L左右,经过41天的驯化,不仅污泥沉降性得到了很大的改善,还成功实现了在不添加碳源的条件下对渗滤液进行深度脱氮,出水COD和TN分别小于400mg/L和40mg/L,去除率分别达到了85%和95%以上。由于本工艺主要通过污泥所存储的内碳源(以PHA为主)实现对渗滤液的深度脱氮,在整个试验过程中(160天),SBR的污泥浓度保持基本不变,污泥减量效果明显。工艺的影响因素试验表明,为达到最佳的脱氮效果,曝气前的厌氧搅拌应控制在30min,硝化时的溶解氧应维持在0.5-0.8mg/L。研究结果还表明,对于改进SBR工艺,过曝气不仅会浪费能源,还会消耗活性污泥所存储的内碳源,大大降低系统的脱氮效率。
     对于碳氮比小于2:1的晚期垃圾渗滤液,本试验采用预曝气SBR+短程硝化SBR+厌氧氨氧化ASBR的组合工艺进行处理以达到深度脱氮的目的。前期试验采用短程硝化SBR+厌氧氨氧化ASBR组合工艺。试验结果表明,当渗滤液中的可生化有机物浓度大于150mg/L时,厌氧氨氧化菌的活性会受到严重的抑制,因此,短程硝化SBR+厌氧氨氧化ASBR组合工艺无法实现对晚期垃圾渗滤液稳定的深度脱氨。为了能够实现对晚期垃圾渗滤液稳定的深度脱氮,试验在原有的两级系统上加上了一级预曝气SBR以解除有机物对厌氧氨氧化菌的不利影响。65天的研究结果表明,三级SBR系统通过预曝气、短程硝化和厌氧氨氧化的联合作用可以实现晚期垃圾渗滤液稳定的深度脱氮,在进水氨氮和COD分别为2000mg/L和2200mg/L的条件下,出水总氮去除率达到了95%以上,充分发挥了自养脱氮的工艺优势。
In order to reduce the harm of landfill leachate to environment, Pollution Control onthe Landfill Site of Municipal Solid of PR China was published in the year of2008(GB16889-2008.07.01, carried out in July,2011). In the new Standard, the basic waterqualities were controlled more strictly. Besides, total nitrogen (TN) was also added inthe new discharge standard. This brought to the landfill leachate treatment challengesand opportunities.Because of cost-effective, biological treatment technology is widelyused in the field of wastewater treatment. The biggest advantage is that the methodscould achieve truly organic matter and nitrogen removal by convert wastewaterpollutants into CO2and H2O, or N2. Sequencing Batch Reactor Activated SludgeProcess (SBR) which belongs to biological treatment technology has the advantagesof simple structure of the reactor, the big reaction driving force, flexible operation.Therefore, SBR is often used as a special wastewater treatment.
     It is well known that the landfill leachate is difficult to treat, especially for theadvanced nitrogen removal. In this study, the real landfill leachate was used to explorehow to realize the advanced removal of nitrogen and organics in the landfill leachate.According to the different characteristics of different landfill leachate, four differentcombined processes were applied in this study. In the four combined processes, theoperation mode of SBR was modified to remove nitrogen and organics effectively.The four combined processes include single-stage modified SBR process, ASBR/SBRcombined process, SBR/ASBR combined process and three-stage SBR process.
     As biological treatments, the traditional nitrification/denitrification and the latestanaerobic ammonium oxidation (ANAMMOX) process are both based on thenitritation. The sludge treating domestic sewage through nitrification taken from apilot-scale SBR was used as the inoculums for the SBR. Via the inhibition of freeammonia (FA) combined with real-time control, stable nitritation was realized in SBRafter50days acclimatization. The NO2-N/NOx-N was maintained at above98%.During the period of acclimatization, the ammonia removal rate and specialammonia removal rate increased gradually by increasing the influent ammonialoading rate of SBR. The ammonia removal rate and special ammonia removal ratefinally reached at2KgN/m32d and0.02591gN/gVSS2h, respectively.
     For the landfill leachate with C/N ratio of6:1, a novel system coupling anaerobicsequencing batch reactor (ASBR) and SBR was proposed, in order to remove organicsand realize advanced nitrogen removal. ASBR in this system was used to produce methane maximumly through anaerobic fermentation and to adjust the C/N ratio ofleachate for SBR. The SBR operated under anaerobic/aerobic mode was to achieveideal performance of advanced nitrogen removal through endogenous denitritationand simultaneous nitritation and denitritation (SND) without external carbon sourcesadded. The leachate with COD of6000mg/L and NH4+-N of1000mg/L was used inthe experiment. After quick start-up of23days, the final COD removal efficiency ofASBR kept at above80%and the recycle efficiency of energy was62.5%. Besides,the experiment showed that COD removal efficiency and methane production ratiowere inversely proportional to the influent ammonia concentration when treating thewastewater of high ammonia. When the influent ammonia was above2600mg/L,COD removal efficiency and methane production ratio were below65%and0.21L/gCOD. The reason why NH4+-N would suppress anaerobic digestion appeared to bethat high NH4+-N concentration would change the fermentation type of acid formationbacterias from acetic into propionic, and reduce the abilities of propionic acidutilization for methanogens. Opposite to that, NH4+-N concentration didn’t have asignificant influenc on acetic acid utilization for methanogens.The influent of SBRwas the mixture of effluent of ASBR and raw landfill leachate with a certain volumeratio, which made the influent C/N maintained at4:1. In order to enhance the nitrogenremoval efficiency, the operation mode of SBR was modified. The modified SBR wasoperated at alternate anoxic/aerobic mode during nitritation and operated at anoxicmode after the anoxic/aerobic period. Under the modified mode, advanced nitrogenremoval could be realized without external carbon sources addition, and the TNremoval efficiency reached above95%. In the whole system, the effluent COD was400~500mg/L with the removal efficiency of90%. The effluent TN was15~25mg/L, including total organic nitrogen (TON)13~22mg/L, and TN removalefficiency could reache above95%. More significantly, low sludge was producedresulting from long-term endogenous metabolism, which simplified the wasted sludgedisposal.
     For the landfill leachate with C/N ratio of4:1-6:1, a single-stage SBR wasapplied in this experiment. The single-stage SBR was also modified by introducingthe anaerobic period and the anoxic period before and after nitritation, respectively, inorder to enhance the nitrogen removal efficiency. The excess sludge taken from apilot-scale SBR treating sanitary sewage was used as the80%inoculums for themodified SBR. The other20%inoculums came from a lab-scale SBR which hadrealized nitritation with the mature leachate. The SVI of the inoculums was290mg/L, which indicated the sludge bulking was serious. The COD and NH4+-N of the landfillleachate used in this experiment were3800-6000mg/L and1000-1500mg/L,respectively. After acclimation of41days, the effluent COD was below400mg/L withremoval efficiency of85%and the effluent TN was below40mg/L with removalefficiency of95%, which suggested the advanced nitrogen removal from landfillleachate was realized without external carbon source addition. Besides, the sludgesettleability was improved. Since the stored carbon source (mainly PHA) of sludgewas used to remove nitrogen, the MLSS kept stable. The tests of the influencingfactors showed that in order to reach the best performance of nitrogen removal, theanaerobic mode before nitritation should last30minutes and DO during nitritationshould be maintained at0.5-0.8mg/L.
     For the mature landfill leachate with C/N ratio of2:1or below2:1, a two-stagesystem consisting of SBR and ASBR was used in this experiment. Nitritation andANAMMOX were implemented in SBR and ASBR, respectively. However, the testsshowed that the activity of anammox could be inhibited seriously when thebiodegradable organics of the landfill leachate was above150mg/L. That resulted inthat the advanced nitrogen removal from the mature landfill leachate couldn’t berealized in two-stage system. So a three-stage system coupling two SBRs and ASBRwas applied. In this system, one SBR was used to remove organics in order to relievethe inhibition to anammox. ANAMMOX and Nitritation were conducted in ASBR andthe other SBR, respectively. The results of65days experiment showed that advancednitrogen removal from the mature landfill leachate could be realized in the three-stagesystem under the combination of organics removal, nitritation and ANAMMOX.When the influent ammonia and COD were2000mg/L and2200mg/L, respectively,the TN removal efficiency could reach above95%. It suggested that the combinedsystem made full use of the advantage of the autotrophic nitrogen removal.
引文
[1]王宝贞,王琳.城市固体废弃物渗滤液处理与处置[M].北京:化学工业出版社,2005.
    [2]楼子阳,赵由才.渗滤液处理处置技术及工程实例[M].北京:化学工业出版社,2006.
    [3Welander U, Henrysson T, Welander T. Biological nitrogen removal from municipal landfillleachate in a pilot scale suspended carrier biofilm process[J]. Water Research,1998,32,1564-1570.
    [4] Qasim S R, Chiang W. Sanitary landfill leachate generation[M], Controland treatment.Technomic Publishing Co.,1994.
    [5]曹京哲.城市垃圾渗滤液特性及处理对策[J].市政技术,2003,21(3):183-186.
    [6]倪骏,孙可伟.城市垃圾堆肥技术评述[J].中国资源综合利用,2004,(8):28-31.
    [7]聂永丰,刘富强,王进军.我国城市垃圾焚烧技术发展方向探讨[J].环境科学研究,2000,13(3):20-23.
    [8]李晶,华珞,王学江.国内外城市生活垃圾处理的分析与比较[J].首都师范大学学报(自然科学版),2004,25(3):73-79.
    [9]郭洪中,张展霞,张淑娟.城市固体垃圾填埋场中污染物浓度[J].华南理工大学学报,1996,24(12):178-183.
    [10]郑曼英.垃圾渗液中有机污染物初探[J].重庆环境科学,1996,18(4):41-43.
    [11]张兰英.垃圾渗滤液中有机污染物及去除[J].中国环境科学,1998,18(2):184-188.
    [12]沈耀良,杨铨大,王宝贞.垃圾填渗滤液的混凝-吸附预处理[J].中国给水排水,1999,15(11):10-14.
    [13]蒋建国,陈嫣,邓舟,等.沸石吸附法去除垃圾填渗滤液中的氨氮的研究[J].给水排水,2003,29(3):6-9.
    [14] Hos A. Chemical treatment of leachate from sanitary landfill[J]. Journal of the WaterPollution Control Federation,1974,46(7):1776-1791.
    [15] Amolrane A. Landfill leachate rretreatment by coagulation-folcculation[J]. WaterResearch,1997,31(11):2775-2782.
    [16] Keenan J D. Physical-chemical leachate treatment[J]. Journal of Engineering Education,1983,109(4):1371-1384
    [17]夏素兰,周勇,曹丽淑,等.城市垃圾渗滤液氨氮吹脱研究.环境科学与技术[J],2000,91(3):26-29.
    [18]候文俊,余健,孙江,等.垃圾渗滤液处理技术的新进展[J].中国给水排,2003,19(11):22-24.
    [19]黄本生,王里奥;吕红,等.用光催化氧化法处理垃圾渗滤液的实验研究[J].环境污染治理技术与设备,2003,4(4):22-26.
    [20]弓晓峰,樊华,孔新红.紫外光氧化法深度处理垃圾渗滤液的研究.环境保护,2003,(3):15-17.
    [21] Peter T A. Purification of landfill leachate with membrane technology.Water[J] Quality Intem,1996,9(10):23-26.
    [22] Blistad T. Leachate minimization by reverse osmosis[J]. Water Science and Technology,1992,25(1):117-120
    [23]袁维芳,王国生,汤克敏,等.反渗透法处理垃圾填埋场渗滤液[J].水处理技术,1997,23(6):333-329.
    [24] Henry H, Prasad J G, Young D, Removal of organics from leachates by anaerobic filter[J].Water Research.1987,21(11):1395-1399.
    [25]沈耀良,王宝贞,杨铨大,等.厌氧折流板反应器处理垃圾渗滤液混合废水[J].给水排水,1999,15(6):10-12.
    [26]张彤,赵庆祥,朱怀兰.城市垃圾渗滤液及其生物处理对策[J].城市环境与城市生态.1994,4:42-48.
    [27]张望军,王国生. SBR法处理城市垃圾渗滤液的研究[J].湖南大学学报,1995,22(3):115-120.
    [28]徐迪民.低氧-好氧两段活性污泥法处理垃圾填埋场渗滤水的研究.中国环境科学,1989,9(4):311-315.
    [29] Dollerer J, Wilderer P A. Biological treatment of leachates from hazardous waste landfillsusing SBBR technology[J]. Water Science and Technology,1996,34(7/8):437-444.
    [30]陈玉成,玉成,陈小龙,等.城市生活垃圾渗滤液土地处理模拟研究[J],城市环境与生态,2001,14(2):19-21.
    [31]张树军.两级UASB+A/O系统处理城市垃圾渗滤液及短程脱氮.北京工业大学博士学位论文,2006年12月
    [32]赵宗升,刘鸿亮,袁光钰,等. A2/O与混凝沉淀法处理垃圾渗滤液研究.中国给水排水[J],2001,17(11):13-16.
    [33]王宝贞,王承武,杨铨大,等. A(缺氧活性污泥)和B(A/O淹没式生物膜)复合系统处理垃圾填埋场渗滤液[J].给水排水,1996,22(5):16-18.
    [34] Timur H. Anaerobic treatment of leachate using sequencing batch reactor and hybric bedfilter[J]. Water Science and Technology,1997,36(6):501-508.
    [35] Kennedy K J. Treatment of landfill leachate using sequencing batch and continuous flowup-flow anaerobic sludge blanket (UASB) reactors[J]. Water Research,2000,34(14):3640-3656.
    [36]叶剑锋.废水生物脱氮新技术[M].北京:化学工业出版社,2006.
    [37]王亚宜.反硝化除磷脱氮机理及工艺研究.哈尔滨工业大学博士学位论文,2004年6月
    [38]杨庆.基于实时控制的SBR工艺短程深度脱氮基础研究与中试.北京工业大学博士学位论文,2009年3月
    [39] IPCC. Climate change2001: The Scientific Basis. Cambridge University Press[M],Cambridge, UK,2002.
    [40] Beccari M, Marani E, Ramadori R, et al. Kinetic of dissimilatory nitrate and nitrite reductionin suspended growth culture[J]. Water Pollution Control Fed,1983,(55):58-64.
    [41] Turk O, Mavinic D S. Benefits of using selective inhibition to remove vitrogen from highlynitrogenous wastes[J]. Environ ment Technology Lett,1987,8:419-426.
    [42]周少奇,周吉林.生物脱氮新技术研究进展[J].环境污染治理技术与设备,2000,1(6):11-13.
    [43] Mike S M J, Svein J H, Van Loosdrecht M C M. Towards a more sustainable municipalwastewater treatment system[J]. Water Science and Technology,1997,35(9):171-180.
    [44] Mulder J W, M. C. M. Van Loosdrecht M C M, HELLINGA C., et al. Full-scale applicationof the SHARON process for treatment of rejection water of digested sludge dewatering[J]. WaterScience and Technology,2001,43(11):127-134.
    [45] Van Kempen R, Mulder J W, Uijterlinde C A, et al. Overview: Full scale experience of theSHARON Process for treatment of rejection water of digested sludge dewatering[J]. WaterScience and Technology,2001,44(1):145-152.
    [46] Schmidt I, Zart D, Bock E. Gaseous NO2as a regulator for ammonia oxidation ofnitrosomonas eutropha[J]. Antonie Leeuwenhoek,2001(79):311-318.
    [47]高大文,彭永臻,王淑莹.不同控制模式下SBR的短程硝化反硝化[J].中国给水排水,2004,20(6):9-12.
    [48] Cui Y W, Peng Y Z, Gan X Q, et al. Achieving and maintaining biological nitrogen removalvia nitrite under normal conditions[J]. J Environment Science,2004(17):794-797.
    [49] Wu C Y, Chen Z Q, Liu X H, Peng Y Z. Nitrification–denitrification via nitrite in SBR usingreal-time control strategy when treating domestic wastewater[J]. J Biochem En,2007,36(2):87-92.
    [50] Peng Y Z, Gao S Y, Wang S Y, et al. Partial nitrification from domestic wastewater byaeration control at ambient temperature[J]. Chin J Chem Eng,2007,15(1):115-121
    [51] Wang S Y, Gao D W, Peng Y Z, et al. Nitrification-denitrification via nitrite for nitrogenremoval from high nitrogen soybean wastewater with on-line fuzzy control. Water Science andTechnology,2004,49:121-127.
    [52]刘秀红,王淑莹,高大文,等.短程硝化的实现、维持与过程控制的研究现状.环境污染治理技术与设备[J],2004,12(5):7-10.
    [53] Mulder J W, Van Loosdrecht M C M, Hellinga C, et al. Full-scale application of theSHARON process for treatment of rejection water of digested sludge dewatering[J]. WaterScience and Technology,2001,43(11):127-134.
    [54] Kempen V, Mulder R, Uijter J W, et al. Overview: Full scale experience of the SHARONProcess for treatment of rejection water of digested sludge dewatering[J]. Water Science andTechnology,2001,44(1):145-152.
    [55]王淑莹,曾薇,董文艺,等. SBR法短程硝化及过程控制研究[J].中国给水排水,2002,18(10):1-5.
    [56]高景峰,彭永臻,王淑莹.温度对亚硝酸型硝化/反硝化的影响[J].高技术通讯,2002,12(12):88-93.
    [57]曾薇,王淑莹,彭永臻,等.供氧方式对SBR法硝化过程控制的影响[J].环境化学,2002,21(6):571-575.
    [58] Laanbroek H J, Gerards S. Competition for limiting amounts of oxygen betweennitrosomanas europaea and Nitrobacteria Winogradsi grown in mixed continuous cultures[J]. ArchMicrobiology.1993,159:453-459.
    [59] Ruiz G, Jeison D, Chamy R. Nitrification with high nitrite accumulation for treatment ofwastewater withhigh ammonia concentration[J]. Water Research,2003,37(6):1371-1377.
    [60]高延耀,周增炎,朱晓军.生物脱氮工艺中的同步硝化反硝化现象[J].给水排水,1998,(12):6-9.
    [61] Bruce E, Wayne R E. Simultaneous denitrification with nitrification in a single-channeloxidation ditches[J]. J WPCF,1985,57(4):23-31.
    [62] Elisabeth V, Munch. Simultaneous nitrification and denitrification in bench-scale sequencingbatch reactor[J]. Water Research,1996,30(2):935-941.
    [63] Lee H J, Bae J H, Cho K M. Simultaneous nitrification and denitrification in a mixedmethanotrophic culture[J]. Biotechnol Lett,2001,23(12):935-941.
    [64] Pochana K, Keller J, Lant P. Model development for simultaneous nitrification anddenitrification[J]. Water Science and Technology,1999,39(1):235-243.
    [65] Zhang D J, Lu P L, Long T R, et al. The integration of methanogensis with simultaneousnitrification and denitrification in a membrane bioreactor[J]. Process Biochemical,2005,40:541-547.
    [66] Patureau D, Godon J J, Dabert P, et al. Microvirgula aerodenitrificans gen nov., sp. nov, anew gram-negative bacterium exhibiting co-respiration of oxygen and nitrogen oxides up tooxygen saturated conditions[J]. Int J Sys Bacteriol,1998,48:775-782.
    [67] Hu T L, Kung K T. Study of heterotrophic nitrifying bacteria from wastewater treatmentsystems treating acrylonitrile, butadiene and styrene resin wastewater[J]. Water Science andTechnology,2000,42(3/4):315-322.
    [68] Castignetti D, Thomas H C. Heterotrophic nitrification among denitrifiers[J]. Appl EnvironMicrobiol,1984,47(4):620-623.
    [69] Robertson L A, Van N E W J, R. A. Torremans M, et al. Simultaneous nitrification anddenitrification in aerobic chemostat of Thiosphaera Pantotrpha[J]. Apll Environ Microbiol,1988,54(11):2812-2818.
    [70] Holman J B, Wareham D G. COD, ammonia and dissolved oxygen time profiles in thesimultaneous nitrification/denitrifacationprocess[J]. J Biochem Eng,2005,(22):125-133.
    [71] Yoo H, Ahn K H, Lee H J, et al. Nitrogen removal from synthetic wasterwater bysimultaneous nitrification and denitrification (SND) via nitrite in an intermittently aeratedreactor[J]. Water Research,1999,33(1):145-154.
    [72] Rikke L M, Zeng R J, Giugliano V, et al. Challenges for simultaneous nitrification,denitrifation, and phosphorus removal in microbial aggregates: Mass transfer limitation andnitrousoxide production[J]. FEMS Microbiol Ecol,2005,(52):329-338.
    [73] Priyali S, Steven K D. Simultaneous nitrification-denitrification in a fluidized bed reactor[J].Water Science and Technology,1998,38(1):247-254
    [74] Puznava N, Payraudeau M, Thornberg D. Simultaneous nitrification and denitrification inbiofilters with real time aeration control[J]. Water Science and Technology,2001,43(1):269-276.
    [75] Kazuaki H, Akihiko T, Satoshi T. et al. Simultaneous nitrification and denitrification bycontrolling vertical and horizontal microenvironment in a membrane-aerated biofilm reactor[J]. JBiotechnol,2003,100(1):23-32.
    [76] Collivignarelli C, Bertanza G. Simultaneous nitrification-denitrification processes inactivated sludge plants: Performance and applicability[J]. Water Science and Technology,1999,40(4-5):187-194.
    [77] Katarzyna B, Irena W B. Carbon source in aerobic denitrification. Biochemical EngineeringJournal[J].2007,36(2):116-122.
    [78] Majone M, Massanisso P, Ramadori R. Comparison of carbon storage under aerobic andanoxic conditions[J]. Water Science and Technology.1998,38:77-84.
    [79] Qin L, Liu Y, Tay J H. Denitrification on poly-β-hydroxybutyrate in microbial granular sludgesequencing batch reactor[J]. Water research.2005,39(8):1503-1510.
    [80] Katarzyna B, Irena W B, Adriana D S. Denitrification with endogenous carbon source at lowC/N and its effect on P(3HB) accumulation. Bioresource technology[J].2008,99(3):2410-2418.
    [81] Broda E. Two kinds of lithotrophs missing in nature [J]. Zallg Milkrobiol,1977,17:491-493.
    [82] MikeS M J, Strous M, Katinka T, et al. The anaerobic oxidation of ammonium[J]. FEMSMicrobiology Review,1999,22:421-437.
    [83]郝晓地, Van Loosdrecht M.荷兰鹿特丹DOKHAVEN污水处理厂介绍[J].给水排水,2003,29(10):19-25.
    [84] Strous M, Gerven E, Zheng P, et a1. Ammonium removal from concentrated waste streamswith the anaerobic ammonium oxidation (ANAMMOX) process indifferent reactor configurations[J]. Water Resources,1997,31(8):1955-1962.
    [85] Abma W R, Schultz C E, Mulder J W. Full scale granular sludge Anammox process [J]. Waterscience and Technology,2007,55(8/9):27-33.
    [86] Wilderer P A, Irvine R L, Goronszy M C. Sequencing batch reactor trchnology.UAS:IWA,2001:1-3.
    [87] Timur H, zturk I. Anaerobic sequencing batch reactor treatment of landfill leachate[J].Water Research.1999,33(15):3225-3230.
    [88] Kettunen R H. HoilijokiT H. Rintala J A. Anaerobic and sequential anaerobic-aerobictreatments of municipal landfill leachate at low temperatures[J]. Bioresource Technology.1996,58(1):31-40.
    [89] Klimiuk E, Kulikowska D. Organics removal from landfill leachate and activated sludgeproduction in SBR reactors[J]. Waste Management.2006,26(10):1140-1147.
    [90] Alessandro S, Stefano M L. Nitrogen removal via nitrite in a sequencing batch reactortreating sanitary landfill leachate[J]. Bioresource Technology.2009,100(2):609-614.
    [91] Zhang H, Wu X, Li X. Oxidation and coagulation removal of COD from landfill leachate byFered-Fenton process[J]. Chemical Engineering Journal,2012,210(0):188-194.
    [92] ír M, Podhola M, Pato ka T, et al. The effect of humic acids on the reverse osmosistreatment of hazardous landfill leachate[J]. Journal Of Hazardous Materials,2012,207-208:86-90.
    [93] Top S, Sekman E, Ho ver S, et al. Characterization and electrocaogulative treatment ofnanofiltration concentrate of a full-scale landfill leachate treatment plant[J].Desalination,2011,268(1-3):158-162.
    [94] gajnar Gotvajn A, Zagorc-Kon an J, Cotman M. Fenton's oxidative treatment of municipallandfill leachate as an alternative to biological process[J]. Desalination,2011,275(1-3):269-275.
    [95] Cortez S, Teixeira P, Oliveira R, te al. Ozonation as polishing treatment of mature landfillleachate[J]. Journal Of Hazardous Materials,2010,182(1-3):730-734.
    [96] Li W, Hua T, Zhou Q, et al. Treatment of stabilized landfill leachate by the combined processof coagulation/flocculation and powder activated carbon adsorption[J].Desalination,2010,264(1-2):56-62.
    [97] Hermosilla D, Cortijo M, Huang C P. Optimizing the treatment of landfill leachate byconventional Fenton and photo-Fenton processes[J]. Science of The TotalEnvironment,2009,407(11):3473-3481.
    [98] Ahmed F N, Lan C Q, Treatment of landfill leachate using membrane bioreactors: Areview[J]. Desalination,2012,287:41-54.
    [99] Aziz S Q, Aziz H A, Yusoff M S, et al. Landfill leachate treatment using powdered activatedcarbon augmented sequencing batch reactor (SBR) process: Optimization by response surfacemethodology[J]. Journal Of Hazardous Materials,2011,189(1-2):404-413.
    [100]Ismail T, Tarek D, Mejdi S, et al. Cascade bioreactor with submerged biofilm for aerobictreatment of Tunisian landfill leachate[J]. Bioresource Technology,2011,102(17):7700-7706.
    [101]Sun H, Yang Q, Peng Y, et al. Advanced landfill leachate treatment using a two-stageUASB-SBR system at low temperature[J]. Journal of EnvironmentalSciences,2010,22(4):481-485.
    [102]Liu J, Zuo J, Yang Y, et al. An autotrophic nitrogen removal process: Short-cut nitrificationcombined with ANAMMOX for treating diluted effluent from an UASB reactor fed by landfillleachate[J]. Journal of Environmental Sciences,2010,22(5):777-783.
    [103] Anthonisen A C, Loehr R C, Prakasam T B S. Inhibition of nitrification by ammonia andnitrous acid[J]. Journal of Water Pollution Control Federation,1976,48(5):835-852.
    [103]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998
    [104] Aziz S Q, Aziz, H A, Yusoff M S, et al. Landfill leachate treatment using powdered activatedcarbon augmented sequencing batch reactor (SBR) process: Optimization by response surfacemethodology[J]. Journal of Hazardous Materials.2011,189(1-2):404-413.
    [105] Sun H W, Yang Q, Peng Y Z, et al. Nitrite Accumulation during the Denitrification Processin SBR for the Treatment of Pre-treated Landfill Leachate[J]. Chinese Journal of ChemicalEngineering.2009,17(6):1027-1031.
    [106]孙洪伟,王淑莹,王希明,等.高氨氮垃圾渗滤液SBR法短程深度生物脱氮[J].化工学报.2009,7(60):1806-1811.
    [107] Wei Y J, Ji M, Li R Y, et al. Organic and nitrogen removal from landfill leachate in aerobicgranular sludge sequencing batch reactors[J]. Waste Management.2012,22(3):448-455.
    [108] Wiszniowski J, Surmacz-Górska J, Robert D, et al. The effect of landfill leachatecomposition on organics and nitrogen removal in an activated sludge system with bentoniteadditive[J]. Journal of Environmental Management.2007,85(1):59-68.
    [109] Wu, L N, Peng, C Y, Zhang, S J, et al. Nitrogen removal via nitrite from municipal landfillleachate[J]. Journal of Environmental Sciences.2009,21(11):1480-1485.
    [110] Welander U, Henrysson T, Welander T. Biological nitrogen removal from municipal landfillleachate in a pilot scale suspended carrier biofilm process[J]. Water Research.1998,32(5):1564-1570.
    [111] Rodríguez D C, Pino N, Pe uel G. Monitoring the removal of nitrogen by applying aNitrification-denitrification process in a Sequencing Batch Reactor (SBR)[J]. BioresourTechnology.2011,102(3):2316-2321.
    [112] Vocks M, Adam C, Lesjean B, et al. Enhanced post-denitrification without addition of anexternal carbon source in membrane bioreactors[J], Water Research.2005,39(14):3360-3368.
    [113] Ewa N, Ma gorzata K, TomaszLach K, et al. Sequencing batch reactor system for theco-treatment of landfill leachate and dairy wastewater[J]. Desalination.2008,222(1-3):404-409.
    [114] Visvanathan C, Choudhary M K, Montalbo, M T, et al. Landfill leachate treatment usingthermophilic membrane bioreactor[J]. Desalination.2007,204(1-3):8-16
    [115]何仕均,王建龙,赵璇.氨氮对厌氧颗粒污泥产甲烷活性的影响[J].清华大学学报(自然科学版),2005,45:1294-1296.
    [116]刘牡,彭永臻,吴莉娜,等. FA与FNA对两级UASB-A/O处理垃圾渗滤液短程硝化的影响[J].化工学报,2010,61:172-179.
    [117] R. E.斯皮思.工业废水的厌氧生物技术[M].北京:中国建筑工业出版社,2001.
    [118] Borja R., Sanchez E., Weiland P. Influence of ammonia concentration on thermophilicanaerobic digestion of cattle manure in upflow anaerobic sludge blanket (UASB) reactors[J].Process Biochemical,1996,31:477-483.
    [119] Sossa K, Alarcon M, Aspe E. Effect of ammonia on the methanogenic activity ofmethylaminotrophic methane producing archaea enriched biofilm[J]. Anaerobe,2004,10(1):13-18.
    [120] Gerardi M H. The microbiology of Anaerobic Digesters[M]. Hoboken, New Jersey, USA:John Wiley and Sons,2003
    [121]李艳娜.产氢产乙酸细菌在厌氧产酸体系中的微生态机理分析.江南大学硕士学位论文.2008
    [122]赵杰红,张波,蔡伟民.厌氧消化系统中丙酸积累及控制研究进展[J].中国给水排水,2005,21:25-27.
    [123]刘冰,傅金祥,张荣新.高氨氮在厌氧发酵中的抑制作用[J].河南科技,2009,03:37-38.
    [124] Kayhanian M. Ammonia inhibition in high-solids biogasification: An overview and practicalsolutions[J]. Environment Technology,1999,20:355-365.
    [125]王艳捷.垃圾渗滤液对厌氧污泥的毒性研究.西安交通大学硕士学位论文.2008
    [126]何品晶,管冬兴,吴铎,等.氨氮和林可霉素对有机物厌氧消化的抑制效应[J].化工学报,2011,62:1389-1394
    [127] Kettunen R H, Hoilijoki T H, Rintala J A. Anaerobic and sequential anaerobic-aerobictreatments of municipal landfill leachate at low temperatures[J]. Bioresource Technology.1996,58(1):31-40.
    [128] Laitinen N, Luonsi A, Vilen J. Landfill leachate treatment with sequencing batch reactor andmembrane bioreactor[J]. Desalination.2006,191(1-3):86-91.
    [129] Martienssen M, Sch ps R. Biological treatment of leachate from solid waste landfillsites-Alterations in the bacterial community during the denitrification process[J]. Water Research.1997,31(5):1164-1170.
    [130] Welander U, Henrysson T, Welander T. Biological nitrogen removal from municipal landfillleachate in a pilot scale suspended carrier biofilm process[J]. Water Research.1998,32(5):1564-1570.
    [131] Chamchoi N, Nitisoravut S, Schmidt J E. Inactivation of ANAMMOX communities underconcurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification[J].Bioresource Technology.2008,99(9):3331-3336
    [132]王俊敏,王淑莹,霍明昕,等.低基质浓度下UASB厌氧氨氧化的脱氮性能及颗粒污泥特性[J].化工学报.2011,10:2914-2919.
    [133] Schmid M C, Maas B, Dapena A, et al. Biomarkers for in situ detection of anaerobicammonium-oxidizing (anammox) bacteria[J]. Applied and Environmental Microbiology.2005,71(4):1677-1684.
    [134] Zhu G B, Wang S Y, Wang Y, et al.Anaerobic ammonia oxidation in a fertilized paddy soil.The ISME Journal[J].2011,5(12):1905-1912.
    [135] Hu B L, Zheng P, Tang C J, et al., Identification and quantification of anammox bacteria ineight nitrogen removal reactors. Water Research,2010,44(17):5014-5020.
    [136] Yapsakli K, Aliyazicioglu C, Mertoglu B. Identification and quantitative evaluation ofnitrogen-converting organisms in a full-scale leachate treatment plant[J]. Journal ofEnvironmental Management,2011,92(3):714-723.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700