傅里叶变换大振幅伏安法与时域电化学阻抗谱的理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学系统在本质上是非线性的,非线性系统在大振幅交流信号的激发下会出现非常明显的谐波响应成分。电化学系统中的谐波响应具有非常特殊的性质,如背景电流抑制能力强,动力学分辨率高等,因此利用电化学谐波的这些优良性质来构建电分析方法具有非常重要的理论意义和实用价值。本论文研究工作旨在通过对电化学谐波性质和行为规律的系统性研究,建立一系列基于谐波分析的电分析方法,并尝试将这些分析方法用于各种实际电化学问题的研究之中。
     本研究工作首先研制了一个USB2.0-FPGA-24bit DA/AD-恒电位仪结构的通用性任意波形伏安仪,并编写了一系列仪器控制,电化学系统仿真和数据处理软件。这些工作为后续仿真和实验工作的开展提供了一个完备的软硬件平台。
     基于以上平台,本研究以傅里叶变换大振幅交流伏安法(FT-ACV)为切入点,对谐波分析中具有共性的数据处理方法,谐波的共性行为规律等进行了研究。完善了傅里叶变换-傅里叶逆变换模式的谐波数据处理方法;提出了高次谐波和高次微分在外在形式和内在性质上均具有相似性的规律;解释了傅里叶变换大振幅正弦伏安法之所以可以通过谐波的“指纹相角”来实现电分析的高选择性,是因为高次谐波波瓣交界处的相位会急剧变化从而放大了各个共存电化学过程细微的形式电位差异;提出了基于高次谐波波瓣对称性的电子转移系数的高灵敏测量方法。
     为克服FT-ACV中激发信号频带窄,谐波数量少的缺点,提出了傅里叶变换大振幅方波伏安法(FT-SWV)。研究发现通过FT-SWV可得到极为丰富的偶次谐波,且偶次谐波幅度谱为一个钟形,对应有一个与动力学相关的最大值(准可逆最大,QRM)。依此原理提出了一个基于FT-SWV偶次谐波QRM的表面体系电子转移动力学数据快速测定方法,即假设QRM所对应的频率为临界频率(f~(max)),则电子转移速率常数可表示为k0=k~(max)f~(max)。其中,k~(max)是一个由实验参数决定的常数。分别通过仿真和细胞色素c体系以及偶氮苯体系实验对该方法进行了验证和系统研究。在当今电化学的研究相当大程度上已经从过去的纯溶液体系转移到表面、界面、微观等领域的背景下,该方法具有非常宽的应用范围。
     本研究将上述动力学数据快速测定方法推广到扩散受限电化学体系,提出了液/液界面离子转移动力学参数同样可以通过FT-SWV的偶次谐波予以快速测定的理论推断,并通过仿真和薄层电极实验对此予以证实。提出了基于FT-SWV的液/液界面离子转移动力学参数和热力学参数同步测定的快速方法,即利用FT-SWV偶次谐波频谱实现动力学测定,利用其各次谐波伏安图实现热力学测定。该方法通过各种阴离子在三相电极油/水界面的转移实验得到证实。
     在利用大振幅激发下进行电化学谐波研究的同时,本研究工作同时开展了电化学体系在小幅度交流信号激发下表现线性时的阻抗谱研究。本研究结合阻抗免疫传感器的仪器需求,对基于电位阶跃函数和傅里叶变换的阻抗谱测量方法进行改进,设计了一个实用性的仪器,并对仪器性能,使用限制等进行了讨论。
Electrochemical system is inherently nonlinear, and a great number of harmonic responses will be induced if the system is perturbed with a large-amplitude AC signal. The harmonics of an electrochemical system own many unique properties, such as excellent background current suppression ability and superb performance with respect to kinetic discrimination. Therefore, it is of great theoretical importance and application value to develop analytical methods based on electrochemical harmonics. The intention of this study is to carry out a systematic investigation on the properties and patterns of behavior of electrochemical harmonics, and then to develop a series of harmonic analysis based electroanalytical techniques and finally to try to find the applications of the as-developed methods.
     We started the study by development of a versatile hardware/software platform to facilitate further investigations. The platform mainly consists of a USB2.0-FPGA-24bit DAC/ADC-Potentiostat structured arbitrary waveform voltammeter and a number of instrument controlling, digital simulation and data processing programs.
     Based on the platform mentioned above, data processing algorithms shared by all harmonic analysis based techniques and the patterns of behavior of electrochemical harmonics were investigated with Fourier transformed large-amplitude Alternating Current Voltammetry (FT-ACV) as an example. As a result of this study, the Fourier transform-invert Fourier transform based data processing method was improved; close similarities was found between higher harmonics and higher derivatives with respect to their intuitive curve shape and intrinsic properties; the underlying reason why high selectivity can be realized by―fingerprint phase‖in Fourier transformed Sinusoidal Voltammetry(FT-SV) was revealed as follows: the instant phase of harmonics changes dramatically in the crossover region between two neighboring lobes, and therefore marginal formal potential difference between species to be discriminated can be converted and amplified to be significant phase difference; a charge transfer coefficient measurement technique was proposed based on the symmetry of the lobes of each harmonics.
     In order to overcome the drawbacks of FT-ACV, such as very limited excitation bandwidth and very a few harmonics, Fourier transformed large-amplitude Square Wave Voltammetry (FT-SWV) was proposed. We found that the profile of even harmonics power spectra in FT-SWV was bell shaped, and there is an electron transfer kinetics dependent ~(max)imum (quasireversible ~(max)imum, QRM). A fast and simple electron transfer kinetics measurement method was proposed. Specifically, the frequency corresponding to the QRM was termed as critical frequency (f~(max)), and the charge transfer constant can be expressed as k0=k~(max)f~(max), where k~(max) is an experiment parameters dependent constant. This method was verified by cytochrome c and azobenzene system, and the influence factors were investigated by the above systems as well.
     The FT-SWV based fast and simple electron transfer kinetics evaluation method mentioned above was employed to evaluate the kinetics of anion transfer across liquid/liquid interfaces, which has been proven to be a diffusion limited process. FT-SWV was further utilized to simultaneously evaluate the thermodynamics and kinetics of interfacial anion transfer. The proposed methods were verified by a model system with thin film electrode as well as a three-phase electrode.
     We also investigated Electrochemical Impedance Spectroscopy (EIS) measurement methods involving perturbation the system under research with a potential step followed by appropriate data processing. We made the standard method more simple and easy of implementation by several technical modifications, and we further designed a portable and low-cost instrument based on the modified method for practical impedimetric biosensing. The performance and limitations of the instrument were discussed in detail.
引文
[1] Lubert K.H., Kalcher K.. History of electroanalytical methods [J]. Electroanalysis, 2010, 22:1937-1946
    [2] Bond A.M., Duffy N.W., Guo S.X., et al. Change the look of voltammetery [J]. Anal. Chem., 2005, 77: 186A-195A
    [3] Singhal P.S., Kawagoe K.T., Christian C.N., et al. Sinusoidal voltammetry for the analysis of carbohydrates at copper electrodes [J]. Anal. Chem., 1997, 69: 1662-1668
    [4] Long J.T., Weber S.G.. Voltammetry in static and flowing solutions with a large-amplitude sine wave potential [J]. Electroanalysis, 1992, 4:429-437
    [5] Weber S.G., Long J.T.. Detection limits and selectivity in electrochemical detectors [J]. Anal. Chem., 1988, 60: 903A-913A
    [6] Reich G., Wolf J., Long, J.T., el al. Recovery of voltammograms by target factor analysis of current-time data in electrochemical detection [J]. Anal. Chem., 1990, 62:2643-2646
    [7] Cullison J.K., Weber S.G.. Cyclic voltammetry with harmonic lock-in detection: applications to flow streams [J]. Electroanalysis, 1996, 8: 314-419
    [8] Brazill S.A., Bender S.E., Hebert N.E., et al. Sinusoidal voltammetry: a frequency based electrochemical detection technique [J]. J. Electroanal. Chem., 2002, 531:119-132
    [9] Brazill S.A.. The implementation of a frequency based electrochemical detection system for the analysis of biomolecules [D]. Riverside, CA, USA: University of California Riverside, 2002
    [10]刘杰,平建峰,吴坚等.正弦波伏安法检测尿酸的研究[J].传感技术学报, 2009, 22:1083-1087
    [11] Singhal P., Kuhr W.G.. Direct electrochemical detection of purine- and pyrimidine-based nucleotides with sinusoidal voltammetry [J]. Anal. Chem., 1997, 69:3552-3557
    [12] Singhal P., Kuhr W.G.. Ultrasensitive voltammetric detection of underivatized oligonucleotides and DNA [J]. Anal. Chem., 1997, 69:4828-4832
    [13] Brazill S.A., Singhal P.S., Kuhr W.G.. Detection of native amino acids and peptides utilizing sinusoidal voltammetry [J]. Anal. Chem., 2000, 72:5542-5548
    [14] Brazill S.A., Kuhr W.G.. A Single base extension technique for the analysis of known mutations utilizing capillary gel electrophoreisis with electrochemical detection [J]. Anal. Chem., 2002, 74:3421-3428
    [15] Hebert N.E., Kuhr W.G., Brazill S.A.. A microchip electrophoresis device withintegrated electrochemical detection: a direct comparison of constant potential amperometry and sinusoidal voltammetry [J]. Anal. Chem., 2003, 75:3301-3307
    [16] Hebert N.E., Snyder B., McCreery R.L., et al. Performance of pyrolyzed photoresist carbon films in a microchip capillary electrophoresis device with sinusoidal voltammetric detection [J]. Anal. Chem., 2003, 75:4265-4271
    [17] Hebert N.E., Kuhr W.G., Brazill S.A.. Microchip capillary electrophoresis coupled to sinusoidal voltammetry for the detection of native carbohydrates [J]. Electrophoresis, 2002, 23:3750-3759
    [18] Brazill S.A., Kim P.H., Kuhr W.G.. Capillary gel electrophoresis with sinusoidal voltammetric detection: a strategy to allow Four-―Color‖DNA sequencing [J]. Anal. Chem., 2001, 73:4882-4890
    [19] HázìJ, Elton D.M, Czerwinski W.A, et al. Microcomputer-based instrumentation for multi-frequency Fourier transform alternating current (admittance and impedance) voltammetry [J]. J. Electroanal. Chem., 1997, 437:1-15
    [20] Smith D.E.. Fourier Transform faradaic admittance measurements (FT-AFM): description and some application [A]. Marshall A.G. Fourier, Hardamard and Hilbert Transform in Chemistry [C]. New York:Plenum Press, 1982:453-523
    [21] Bond A.M., Flego U.S.. Measurement of higher harmonics with a lock-in amplifier: phase-selective and other forms of sinusoidal, wawtooth, square wave, triangular wave, and white noise alternating current polarography [J]. Anal. Chem., 1975, 47:2321-2324
    [22] Smith D.E., Reinmuth W.H.. Second harmonic alternating current polarographhy with a reversible electrode process [J]. Anal. Chem., 1961, 33:482-485
    [23] Glover D.E., Smith D.E.. Alternating current polarography in the harmonic multiplex mode:Observations on the use of digital signal conditioning with the Fast Fourier Transform algorithm [J]. Anal. Chem., 1973, 45:1869-1877
    [24] Gavaghan D.J., Bond A.M.. A complete numerical simulation of the techniques of alternating current linear sweep and cyclic voltammetry: analysis of a reversible process by conventional and fast Fourier transform methods [J]. J. Electroanal. Chem., 2000, 480:133-149
    [25] Engblom S.O., Myland J.C., Oldham K.B.. Must ac voltammetry employ small signals? [J]. J. Electroanal. Chem., 2000, 480:120-132
    [26] Guo S.X., Zhang J., Elton D.M., et al. Fourier Transform large-amplitude alternating current cyclic voltammetry of surface-bound azurin [J]. Anal. Chem., 2004, 76:166-177
    [27] Fleming B.D., Zhang J., Elton D., et al. Detailed analysis of the electron-transferproperties of azurin adsorbed on graphite electrodes using dc and large-amplitude Fourier Transformed ac voltammetry [J]. Anal. Chem., 2007, 79:6515-6526
    [28] Rosvall S.J.M., Honeychurch M.J., Elton D.M., Bond A.M.. A practical approach to applying short time Fourier transform method in voltammetric investigations [J]. J. Electroanal. Chem., 2001, 515:8-16
    [29] Sher A.A., Bond A.M., Gavaghan D.J., et al. Resistance, Capacitance, and Electrode Kinetic Effects in Fourier-Transformed Large-Amplitude Sinusoidal Voltammetry: Emergence of Powerful and Intuitively Obvious Tools for Recognition of Patterns of Behavior [J]. Anal. Chem., 2004, 76:6214-6228
    [30] Zhang J., Guo S.X., Bond A.M., et al. Large-amplitude Fourier Transformed high-harmonic alternating current cyclic voltammetry: kinetic discrimination of interfering faradaic processes at glassy carbon and at boron-doped diamond electrodes[J]. Anal. Chem., 2004, 76:3619-3629
    [31] Fleming B.D., Zhang J., Bond A.M., et al. Separation of electron-transfer and coupled chemical reaction components of biocatalytic processes using Fourier transform ac voltammetry [J]. Anal. Chem., 2005, 77:3502-3510
    [32] Lertanantawong B.L., O’Mullane A.P., Zhang J., et al. Investigation of mediated oxidation of ascorbic acid by ferrocenemethanol using large-amplitude Fourier transformed ac voltammetry under quasi-reversible electron-transfer conditions at an indium tin xxide electrode [J]. Anal. Chem., 2008, 80:6515-6525
    [33] Lee C.Y., Bullock J.P., Kennedy G.F., et al. Effects of coupled homogeneous chemical reactions on the response of large-amplitude AC voltammetry: extraction of kinetic and mechanistic information by Fourier transform analysis of higher harmonic data [J]. J. Phys. Chem. A, 2010, 114:10122-10134
    [34] Zhang J., Guo S.X., Bond A.M.. Discrimination and evaluation of the effects of uncompensated resistance and slow electrode kinetics from the higher harmonic components of a Fourier transformed large-amplitude alternating current voltammogram [J]. Anal. Chem., 2007, 79:2276-2288
    [35] Gavaghan D.J., Bond A.M.. Numerical simulation of the effects of experimental error on the higher harmonic components of Fourier transformed AC voltammograms [J]. Electroanalysis, 2006, 18:333-344
    [36] O’Mullan A.P., Zhang J., Brajter-Toth A.B., et al. Higher harmonic large-amplitude Fourier transformed alternating current voltammetry: analytical attributes derived from studies of the oxidation of ferrocenemethanol and uric acid at a glassy carbon electrode[J]. Anal. Chem., 2008, 80:4614-4626
    [37] Harris A.R., Zhang J., Konash A., et al. Efficient strategy for quality control of screen-printed carbon ink disposable sensor electrodes based on simultaneous evaluation of resistance, capacitance and Faradaic current by Fourier transform AC voltammetry [J]. J. Solid State Electrochem., 2008, 12:1301-1315
    [38] Konash A., Harris A.R., Zhang J., et al. Theoretical and experimental evaluation of screen-printed tubular carbon ink disposable sensor well electrodes by dc and Fourier transformed ac voltammetry [J]. J. Solid State Electrochem., 2009, 13:551-563
    [39] Lertanantawong B.L., O’Mullan A.P., Surareungchai M.S., et al. Study of the underlying electrochemistry of polycrystalline gold electrodes in aqueous solution and electrocatalysis by large amplitude Fourier transformed alternating current voltammetry [J]. Langmuir, 2008, 24:2856-2868
    [40] Lee C.Y., Bond A.M.. Evaluation of levels of defect sites present in highly ordered pyrolytic graphite electrodes using capacitive and faradaic current components derived simultaneously from large-amplitude fourier transformed ac voltammetric experiments [J]. Anal. Chem., 2009, 81:584-594
    [41] Bond A.M., Duffy N.W., Elton D.M., et al. Characterization of nonlinear background components in voltammetry by use of large amplitude periodic perturbations and Fourier transform analysis [J]. Anal. Chem., 2009, 81:8801-8808
    [42] Lee C.Y., Bond A.M.. A comparison of the higher order harmonic components derived from large-amplitude Fourier transformed ac voltammetry of myoglobin and heme in DDAB films at a pyrolytic graphite electrode [J]. Langmuir, 2010, 26:5243-5253
    [43] Lee C.Y., Fleming B.D., Zhang J., et al. Systematic evaluation of electrode kinetics and impact of surface heterogeneity for surface-confined proteins using analysis of harmonic components available in sinusoidal large-amplitude Fourier transformed ac voltammetry [J].Anal. Chim. Acta, 2009, 652:205-214
    [44] Mashkina E., Bond A.M.. Implementation of a statistically supported heuristic approach to alternating current voltammetric harmonic component analysis: re-evaluation of the macrodisk glassy carbon electrode kinetics for oxidation of ferrocene in acetonitrile [J]. Anal. Chem., 2011, 83:1791-1799
    [45] Tan Y.J., Stevenson G.P., Baker R.E., et al. Designer based Fourier transformed voltammetry: a multi-frequency, variable amplitude, sinusoidal waveform [J]. J. Electroanal. Chem., 2009, 634:11-21
    [46] Anastassiou C.A., Parker K.H., O’Hare D.. Determination of Kinetic andThermodynamic Parameters of Surface Confined Species through ac Voltammetry and a Nonstationary Signal Processing Technique: The Hilbert Transform [J]. Anal. Chem., 2005, 77:3357-3364
    [47] Baranski A.S., Boika A.. Effect of Large-Amplitude Alternating Current Modulation on Apparent Reversibility of Electrode Processes [J]. Anal. Chem., 2010, 82:8137-8145
    [48] Sher A.A., Bond A.M., Gavaghan D.J., et al. Fourier Transformed large amplitude square-wave voltammetry as an alternative to impedance spectroscopy: evaluation of resistance, capacitance and electrode kinetic effects via an heuristic approach [J]. Electroanalysis, 2005, 17:1450-1462
    [49] Gavaghan D.J., Elton D., Bond A.M.. A comparison of sinusoidal, square wave, sawtooth, and staircase forms of transient ramped voltammetry when a reversible process is analysed in the frequency domain [J]. J. Electroanal. Chem., 2001, 513:73-86
    [50] Honeychurch M.J., Bond A.M.. Numerical simulation of Fourier transform alternating current linear sweep voltammetry of surface bound molecules [J]. J. Electroanal. Chem., 2002, 529: 3-11.
    [51] Rosvall S.J.M., Sharp M., Bond A.M.. An experimental investigation of large amplitude reversible square wave voltammetry [J]. J. Electroanal. Chem., 2002, 536:161-169
    [52] Zhang J., Guo S.X., Bond A.M., et al. Novel kinetic and background current selectivity in the even harmonic components of Fourier transformed square-wave voltammograms of surface-confined azurin [J]. J. Phys. Chem. B, 2005, 109:8935-8947
    [53] Rosvall S.J.M., Sharp M., Bond A.M.. Remarks on the even harmonic current response in large amplitude reversible square wave voltammetry [J]. J. Electroanal. Chem, 2003, 546:51-58
    [54] Fleming B.D., Barlow N.L., Zhang J., et al. Application of power spectra patterns in Fourier transform square wave voltammetry to evaluate electrode kinetics of surface-confined proteins [J]. Anal. Chem., 2006, 78:2948-2956
    [55] O’Dea J.J., Osteryoung J.G.. Characterization of quasi-reversible surface processes by square wave voltammetry [J]. Anal. Chem., 1993, 65:3090-3097
    [56] Komorsky-Lovri? ?., Lovri?, M.. Kinetic measurements of a surface confined redox reaction [J]. Anal. Chim. Acta, 1995, 305:248-255
    [57] Komorsky-Lovri? ?., Lovri?, M.. Measurments of redox kinetics of adsorbed azobenzene by a―quasireversible maximum‖in square-wave voltammetry [J]. Electrochim. Acta, 1995, 40:1781-1784
    [58] Komorsky-Lovri? ?., Lovri?, M.. Square-wave voltammetry of quasi-reversible surfaceredox reactions [J]. J. Electroanal. Chem., 1995, 384:115-122
    [59] Barsoukov E., Macdonald J.R.. Impedance spectroscopy theory, experiment, and applications 2nd ed.[M]. New Jersey:Wiley-sons, 2005:129-167
    [60] Lasia A.. Electrochemcial impedance spectroscopy and its applications [A].Conway B.E., Bockris J., White R.E. Edts. Modern aspects of electrochemistry [C]. New York:Kluwer Academic/Plenum Publishers, 1999:1-70
    [61] Bard A.J., Inzelt G., Scholz F. (Eds.) Electrochemical Dictionary [M]. Berlin: Springer, 2008:542-543
    [62] Ragoisha G.A., Bondarenko A.S.. Potentiodynamic electrochemical impedance spectroscopy [J]. Electrochim. Acta., 2005, 50:1553-1563
    [63] Roy D.. Time resolved Fourier transform electrochemical impedance spectroscopy (FT-EIS) [EB/OL] http://people.clarkson.edu/~surop/fteis.htm, 2011
    [64] Garland J.E., Pettit C.M., Roy D.. Analysis of experimental constraints and variables for time resolved detection of Fourier transform electrochemical impedance spectra [J]. Electrochimica Acta, 2004, 49:2623-2635
    [65] HázìJ., Elton D.M., Czerwinski W.A., et al. Microcomputer-based instrumentation for multi-friquency Fourier transform alternating current (admittance and impedance) voltammetry [J]. J. Electroanal. Chem., 1997, 437:1-15
    [66] Popkirov G.S., Schindler R.N.. A new impedance spectrometer for the investigation of electrochemical systems [J]. Rev. Sci. Instrum., 1992, 63:5366-5372
    [67] Popkirov G.S., Schindler R.N.. The perturbation signal for fast Fourier transform electrochemical impedance spectroscopy (FT-EIS) [J]. Bulgarian Chem. Commu., 1994, 27:459-467
    [68] Popkirov G.S.. Fast time-resolved electrochemical impedance spectroscopy for investigations under nonstationary conditions [J]. Electrchim. Acta, 1996, 1023-1027
    [69] Darowicki K.. Theoretical description of the measuring method of instantaneous impedance spectra [J]. J. Electroanal. Chem., 2000, 486:101-105
    [70] Darowicki K., ?lepski P.. Determination of electrode impedance by means of exponential chirp signal [J]. Electrochem. Commu., 2004, 6:898-902
    [71] Arutunow A., Darowicki K.. DEIS evaluation of the relative effective surface area of AISI 304 stainless steel dissolution process in conditions of intergranular corrosion [J]. Electrochim. Acta, 2009, 54:1034-1041
    [72] Arutunow A., Darowicki K.. DEIS assessment of AISI 304 stainless stell dissolution process in conditions of intergranular corrosion [J]. Electrochim. Acta, 2008,53:4387-4395
    [73] Pettit C.M., Goonetilleke P.C., Sulyma C.M., and Roy D.. Combining impedance spectroscopy with cyclic voltammetry measurement and analysis onf kinetic parameters for faradaic and nonfaradaic reactions on thin-film gold [J]. Anal. Chem., 2006, 78:3723-3729
    [74] Pettit C.M., Goonetilleke P.C., Roy D.. Measurement of differential capacitance for faradaic systems under potentiodynamic conditions: Considerations of Fourier transform and phase-selective techniques [J]. J. Electroanal. Chem., 2006, 589:219-231
    [75] Yoo J.S., Park S.M.. An electrochemical impedance measurement technique employing Fourier transform [J]. Anal. Chem., 2000, 72:2035-2041
    [76] Park S.M., Yoo J.S., Chang B.Y., and Ahn E.S.. Novel instrumentation in electrochemical impedance spectroscopy and a full description of an electrochemical system [J]. Pure Appl. Chem., 2006, 78:1069-1080
    [77] Park S.M., Yoo J.S.. Electrochemical impedance spectroscopy for better electrochemical measurements [J] Anal. Chem., 2003, 75:455A-461A
    [78] Chang B.Y., Park S.M.. Fourier transform analysis of chronoamperometric currents obtained during staircase voltammetric experiments [J]. Anal. Chem., 2007, 79:4892-4899
    [79] Hong S.Y., Park S.M.. Electrochemistry of conductive polymer 40. Earlier phases of aniline polymerization studied by Fourier transform electrochemical impedance spectroscopy [J]. J. Phys. Chem. B, 2007, 111:9779-9786
    [80] Park S.M., Yoo J.S.. Apparatus and method for measuring electrochemical impedance at high speed [P]. US: 6,339,334,B1, Jan.15, 2002
    [81] Ragoisha G.A., Bondarenko, A.S., Osipovich N.P., et al. Multiparametric characterisation of metal-chalcogen atomic multilayer assembly by potentiodynamic electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2008, 53:3879-3888
    [82] Ragoisha G.A., Bondarenko A.S.. Potentiodynamic electrochemical impedance spectroscopy [A/OL]. http://preprint.chemweb.com/physchem/0308001, 7. Aug. 2003
    [83] Ragoisha G.A., Bondarenko A.S.. Potentiodynamic electrochemical impedance spectroscopy for solid state chemistry [A/OL]. http://preprint.chemweb.com/physchem/0301002, 7. Jan. 2003
    [84] Ragoisha G.A., et al. Potentiodynamic Electrochemical Impedance Spectroscopy [EB/OL]. http://www.abc.chemistry.bsu.by/vi/, 2008
    [85] Lasia A.. Comments on the article―an electrochemical impedance measurementtechnique employing Fourier transform‖by J.-S. Yoo and S.-M. Park [J]. Anal. Chem., 2001, 73:4059-4059
    [86] Yoo J.S., Park S.M.. Reply to comments on the article―An electrochemical impedance measurement techniques employing Fourier transform‖[J]. Anal. Chem., 2001, 73:4060-4060
    [87] Jurczakowski R., Lasia A.. Limitations of the potential step technique to impedance measurements using discrete time Fourier transform [J]. Anal. Chem., 2004, 76:5033-5038
    [88] Katz E., Willner I.. Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors [J]. Electroanalysis, 2003, 15:913-947
    [89] Pejcic B., Marco R.D.. Impedance spectroscopy: Over 35 years of electrochemical sensor optimization [J]. Electrochim Acta, 2006, 51:6217-6229
    [90] K’Owino I.O., Sadik O.A.. Impedance spectroscopy: a powerful tool for rapid biomolecular screening and cell culture monitoring [J]. Electroanalysis, 2005, 17:2101-2113
    [91] Luong J.H.T., Male K.B., Glennon J.D.. Biosensor technology: Technology push versus market pull [J]. Biotech. Advances, 2008, 26:492-500
    [92] Daneils J.S., Pourmand N.. Label-free impedance biosensors:opportunities and challenges [J]. Electroanalysis, 2007, 19:1239-1257
    [93] Lisdat F., Sch?fer D.. The use of electrochemical impedance spectroscopy for biosensing [J]. Anal. Bioanal. Chem., 2008, 391:1555-1567
    [94] Guan J.G., Miao Y.Q., Zhang Q.J.. Impedimetric biosensors [J]. J. Biosci. Bioeng., 2004, 97:219-226
    [95] Wang L.S., Huang X.J.. A versatile system for arbitrary function large-amplitude Fourier transformed voltammetry [J]. Electroanalysis, 2007, 19:1421-1427
    [96] Kissinger P.T., Heineman W.R.. Laboratory techniques in electroanalytical chemistry [M]. NewYork: Marcel Dekker, 1984:163-192
    [97] Bard A.J., Faulkner L.R.. Electrochemical methods fundamentals and applications [M].第二版.邵元华,朱果逸,董献堆等译.化学工业出版社,2005:279-282,437-455
    [98] Doelling R.. Potentiostats an introduction [G]. 2nd Edition, Bank Elektronic, 2000
    [99] Oppenheim A.V., Willsky A.S.. Signals and Systems [M].第二版.刘树棠译.信号与系统,西安交通大学出版社, 2010: 371-401
    [100]阙大顺,高勇,王燕莉. -△模数转换器工作原理及应用[J].武汉理工大学学报(交通科学与工程版), 2003, 27:864-867
    [101] Cirrus Logic, Datasheet of CS4221 [EB/OL]. http://www.cirrus.com. 1999
    [102] Altera Corporation, Cyclone Device Handbook, V2.1[EB/OL]. http://www.altera.com. 2003
    [103] Britz D.. Digital simulation in electrochemistry [M] 3rd Edition, Berlin-Heidelberg: Springer, 2005:1-10
    [104] Cooley J.W., Tukey J.W.. An algorithm for the machine computation of the complex Fouier Series [J]. Mathematics of Computation, 1965, 19:297-301
    [105]徐士良.常用算法程序集(C语言描述) [M].第三版.北京:清华大学出版社,2004:392-395
    [106] Frigo M., Johnson S.G.. FFTW home page [EB/OL]. http:www.fftw.org, 2008
    [107] Duhamel P., Vetterli M.. Fast Fourier transforms: A tutorical review and a state of the art [J]. Signal Processing, 1990, 19:259-299
    [108] MATLAB 7.0.1 Function reference about fft [Z]. 2004
    [109] Sher A.A., Bond A.M., Gavaghan D.J., et al. Resistance, Capacitance, and Electrode Kinetic Effects in Fourier-Transformed Large-Amplitude Sinusoidal Voltammetry: Emergence of Powerful and Intuitively Obvious Tools for Recognition of Patterns of Behavior—Supporting information [J]. Anal. Chem., 2004, 76:6214-6228
    [110] Feldberg S.W., Goldstein C.I.. Examination of the behavior of the fully implicit finite-difference algorithm with the Richtmyer modification: behavior with an exponentially expanding time [J] J. Electroanal. Chem., 1995, 371:1-10
    [111]郑咸义.计算方法[M].广州:华南理工大学出版社,2002:36-42, 94-98
    [112]丁康,谢明.离散频谱分析校正理论与技术[M].北京:科学出版社,2008:10-88
    [113] Bond A.M., Smith D.E.. Direct measurement of E1/2with reversible and EC electrode processes by second harmonics alternating current polarography and voltammetry [J]. Anal. Chem., 1974, 46:1946-1951
    [114] Andrieux C.P., Hapiot P., Pinson J., et al. Determination of formal potentials of chemically unstable redox couples by second-harmonic alternating current voltammetry and cyclic voltammetry. Application to the oxidation of thiophenoxide ions [J]. J. Am. Chem. Soc., 1993, 115:7783-7788
    [115] Blutstein H., Bond A.M.. Alternating current linear sweep and stripping voltammetry with phase-selective second harmonic detection [J]. Anal. Chem., 1974, 46:1531-1538
    [116] Ogawa N., Watanabe I., Ikeda S.. Analytical application of second-harmoinc A.C. polarography [J]. Anal. Chim. Acta, 1982, 141:123-129
    [117] Laviron E.J.. General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems [J]. J. Electroanal. Chem., 1979, 101:19-28
    [118] Koper M.T.M.. Temperature Dependence of the Transfer Coefficient of Simple Electrochemical Redox Reactions Due to Slow Solvent Dynamics [J]. J. Phys. Chem. B, 1997, 101:3168-3173
    [119] Antonello S., Maran F.. The Role and Relevance of the Transfer Coefficient R in the Study of Dissociative Electron Transfers: Concepts and Examples from the Electroreduction of Perbenzoates [J]. J. Am. Chem. Soc., 1999, 121:9668-9676
    [120] Darowicki K., Orlikowski J.. Fast method for the determination of the charge transfer coefficient of an electrode reaction [J]. Electrochim. Acta, 1998, 44:433-436
    [121] Aoki K.. An interpretation of small values of the transfer coefficient at conducting polymers [J]. J. Electroanal. Chem., 2004, 569:121-125
    [122] Armstrong F.A.. Insights from protein film voltammetry into mechanisms of complexbiological electron-transfer reactions [J]. J. Chem. Soc., Dalton Trans., 2002, 5:661-671
    [123] Armstrong F.A.. Recent developments in dynamic electrochemical studies of adsorbed enzymes and their active sites [J]. Current Opinion in Chemical Biology, 2005, 9:110-117
    [124] Wijma H.J., Jeuken L.J.C., Verbeet M.P., et al. Protein film voltammetry of copper-containning nitrite reductase reveals reversible inactivation [J]. J. Am. Chem. Soc., 2007, 129:8557-8565
    [125] Walcarius A., Kuhn A.. Ordered porous thin films in electrochemical analysis [J]. Trends Anal. Chem., 2008, 27:593-603
    [126] Chen X.L, Hu N.F., Zeng Y.H., et al. Ordered electrochemically active films of hemoglobin didodecyldimethylammonium ions and clay [J]. Langmuir, 1999, 15:7022-7030
    [127] Zhang Z., Rusling J.F.. Electron transfer between myoglobin and electrodes in thin films of phosphatidlcholines and dihexadecylphosphate [J]. Biophys. Chem., 1997, 63:133-146
    [128] Krishnan, S., Abeykoon A., Amila S., et al. Control of electrochemical and ferryloxy formation kinetics of cyt P450s in polyion films by heme iron spin state and secondarystructure [J]. J. Am. Chem. Soc., 2009, 131:16215-16224
    [129]董绍俊,车广礼,谢远武.化学修饰电极[M].第二版,北京:科学出版社, 2002:1-50
    [130]鞠熀先.电分析化学与生物传感技术[M].北京:科学出版社, 2005:263-289
    [131] Hirst J., Armstrong F.A.. Fast-scan cyclic voltammetry of protein films on pyrolytic graphite edge electrodes: characteristics of electron exchange [J]. Anal. Chem., 1998, 70:5062-5071
    [132] Creager S.E., Wooster T.. A new way of using ac voltammetry to study redox kinetics in electroactive monolyers [J]. Anal. Chem., 1998, 70:4257-4263
    [133] Muziká? M. Fawcett W.R.. Use of ac admittance voltammetry to study very fast electron-transfer reactions. The [Ru(NH3)6] system in water [J]. Anal. Chem., 2004, 76:3607-3611
    [134] Molinaá., González J., Abenza N.. Application of chronopotentiometry and derivative chronopotentiometry with an alternating current to the study of a slow charge transfer in a surface confined redox system [J]. Electrochim. Acta, 2006, 51:4358-4366
    [135] Smalley J.F., Chalfant K., Felderberg S.W.. An indirect laser-induced temperature jump determination of the surface pKa of 11-mercaptoundecanoic acid monolayers self-assembled on gold [J]. J. Phys. Chem. B, 1999, 133:1676-1685
    [136] Lecomte S., Wackerbarth H., Soulimane T., et al. Time-resolved surface-enhanced resonance raman spectroscopy for studying electron-transfer dynamics of heme proteins [J]. J. Am. Chem. Soc., 1998, 120:7381-7381
    [137] Feng Z.Q., Sagara T., Niki K.. Application of potential-modulated UV-Visible reflectance spectroscopy to electron transfer rate measurements for adsorbed species on electrode surfaces [J]. Anal. Chem., 1995, 67:3564-3570
    [138] Mir?eski V., Lovri? M.. Suqare-wave voltammetry of a cathodic stripping reaction complicated by adsorption of the reacting ligand [J]. Anal. Chim. Acta, 1999, 386:47-62
    [139] Mir?eski V., Lovri? M.. Quasireversible maximum in cathodic stripping square-wave voltammetry [J]. Electroanalysis, 1999, 11:984-989
    [140] Quentel F., Mir?eski V.. Catalytic adsorptive stripping voltammetry of molybdenum: redox kinetic measurements [J]. Electroanalysis, 2004, 16:1690-1696
    [141] Mir?eski V.. Charge transfer kinetics in thin-film voltammetry. Theoretial study under conditions of square-wave voltammetry [J]. J. Phys. Chem. B, 2004, 108:13719-13725
    [142] Gulaboski R., Mir?eski V., Lovri? M., et al. Theoretical study of a surface electrode reaction preceded by a homogeneous chemical reaction under conditions of square-wave voltammetry [J]. Electrochem. Commun., 2005, 7:515-522
    [143] Quentel F., Mir?eski V., L’Her M.. Liquid/liquid interface of a thin organic-film modified electrode, studied by means of square-wave voltammetry [J]. Anal. Chem., 2005, 77:1940-1949
    [144] Huang X.J., Wang L.S., Liao S.J.. Method of evaluation of electron transfer kinetics of a surface-confined redox system by means of Fourier transformed square wave voltammetry [J]. Anal. Chem., 2008, 80:5666-5670
    [145] Heering H.A., Wiertz F.G.M., Dekker C.. Direct immobilization of native yeast iso-1 cytochrome c on bare gold: fast electron relay to redox enzymes and zeptomole protein-film voltammetry [J]. J. Am. Chem. Soc., 2004, 126:1103-11112
    [146] Petrovi? J., Clark R.A.. Impact of surface immobilization and solution ionic strength on the formal potential of immobilized cytochrome c [J]. Langmuir, 2005, 21:6308-6316
    [147] Feng Z.Q., Imabayashi S., Kakuichi T. et al. Long-range electron-transfer reaction rates to cytochrome c across long- and short-chain alkanethiol self-assembled monolayers: Electroreflectance studies [J]. J. Chem. Soc., Farady Trans., 1997, 93:1367-1370
    [148] Wei J.J., Liu H., Khoshtariya D.E., et al. Electron-transfer dynamics of cytochrome c: a change in the reaction mechanism with distance [J]. Angew. Chem. Int. Ed., 2002, 41:4700-4703
    [149]董绍俊.用普通玻璃封接金属金制备金电极[P].中国:98125653. X, 2002
    [150] Leopold M., Bowden E.F.. Influence of gold substrate topography on the voltammetry of cytochrome c adsorbed on carboxylic acid terminated self-assembled monolayers [J]. Langmuir, 2002, 18:2239-2245
    [151] Armstrong F.A., Camba R., Heering H.A., et al. Fast voltammetric studies of the kinetics and energetics of coupled electron-transfer reactions in proteins [J]. Faraday Discuss., 2000, 116:191-203
    [152] Mir?eski V., Gulaboski R.. Surface catalytic mechanism in square-wave voltammetry [J]. Electroanalsys, 2001, 13:1326-1334
    [153] Wang L.S., Chen H.L., Huang X.J., et al. An experimental investigation of quasireversible maximum of azobenzene on mercury electrode by Fourier transformed square-wave voltammetry [J]. Electroanalysis, 2009, 21:755-761
    [154] Nakano K., Yoshitake T., Yamashita Y., et al. Cytochrome c self-assembly on alkanethiol monolayer electrodes as characterized by AFM, IR, QCM, and directelectrochemistry [J]. Langmuir, 2007, 23:6270-6275
    [155]邓海强.薄层及三相电极液/液界面电化学及其应用研究[D].广州:华南理工大学图书馆, 2010
    [156] Wang E.K., Pang Z.C.. A study of ion transfer across the interface of two inniscible electrolyte solution by chronopotentiometry with cyclic linear current scanning. Part I. Single component system [J]. J. Electroanal. Chem., 1985, 189:1-20
    [157]邵元华.扫描电化学显微镜及其最新进展[J].分析化学, 1999, 27:1348-1355
    [158] Laforge F., Sun P., Mirkin M.. Shuttling mechanism of ion transfer at the interface between two immiscible liquids [J]. J. Am. Chem. Soc., 2006, 128:15019-15025
    [159] Shi C., Anson F.C.. A simple method for examining the electrochemistry of metalloporphyrins and other hydrophobic reactants in thin layers of organic solvents interposed between graphite electrodes and aqueous solutions [J]. Anal. Chem., 1998, 70:3114-3118
    [160] Shi C., Anson F.C.. Simple electrochemical procedure for measuring the rates of electron transfer across liquid/liquid interfaces formed by coating graphite electrodes with thin layers of nitrobenzene [J]. J. Phys. Chem. B, 1998, 102:9850-9854
    [161] Scholz F., Komorsky-Lovri? ?., Lovri? M.. A new access to Gibbs energies of transfer of ions across liquid/liquid interface and a new method to study electrochemical process at well-defined three-phase junctions [J]. Electrochem. Commun., 2000, 2:112-118
    [162] Gulaboski R., Riedl K., Scholz F.. Standard Gibbs energies of transfer of halogenate and pseudohalogenate ions, halogen substituted acetates, and cycloalkyl carboxylate anions at the water/nitrobenzene interface [J]. Phys. Chem. Chem. Phys., 2003, 5:1286-1289
    [163] Mir?eski V., Quentel F., L’Her M., et al. Studying the kinetics of the ion transfer across the liquid/liquid interface by means of thin film-modified electrodes [J]. Electrochem. Commun., 2005, 7:1122-1128
    [164] Quentel F., Mir?eski V., L’Her M., et al. Comparative study of the thermodynamics and kinetics of the ion transfer across the liquid/liquid interface by means of three-phase electrodes [J]. J. Phys. Chem. B, 2005, 109:13288-13236
    [165] Mir?eski V., Quentel F., L’Her M.. Studying the coupled electron-ion transfer reaction at thin film-modified electrode by means of square-wave voltammetry [J]. J. Electroanal. Chem., 2006, 586:86-97
    [166] Mirceski V., Gulaboski R., Bogeski I., et al. Redox chemistry of Ca-transporter 2-palmitoylhydroquinone in an artificial thin organic film membrane [J]. J. Phys. Chem. C, 2007, 111:6068-6076
    [167] Scholz F. Gulaboski R.. Determining the Gibbs energy of ion transfer across wate-organic liquid interface with three-phase electrodes [J]. Chem. Phys. Chem., 2005, 6:16-28
    [168] Mir?eski V.. Modificatin of the step-function method for solving linear integral equations and application in modeling of a voltammetric experiment [J]. J. Electroanal. Chem., 2003, 545:29-37
    [169] Scholz F.. Recent advances in the electrochemistry of ion transfer process at liquid-liquid interfaces [J]. Annu. Rep. Prog. Chem., Sect. C, 2006, 102:43-70
    [170] Deng H.Q., Huang X.J., Wang L.S., et al. Estimation of the kinetics of anion transfer across the liquid/liquid interface by means of Fourier transformed square-wave voltammetry [J]. Electrochem. Commun., 2009, 11:1333-1336
    [171] Deng H.Q., Huang X.J., Wang L.S.. A simultaneous study of kinetics and thermodynamics of anion transfer across liquid/liquid interface by means of Fourier transformed large-amplitude square-wave voltammetry at three-phase electrode [J]. Langmuir, 2011, 26:19209-19216
    [172] Komorsky-Lovri? ?., Lovric M. Scholz F.. Cyclic voltammetry of decamethylferrocene at the organic liquid/aqueous solution/graphite three-phase junction [J]. J. Electroanal. Chem., 2001, 508:129-137
    [173] Popkirov G.S., Schindler R.N.. Optimization of the perturbation signal for electrochemical impedance spectroscopy in the time domain [J]. Rev. Sci. Instrum., 1993, 64:3111-3115
    [174] Popkirov G.S., Schindler R.N.. Effect of sample nonlinearity on the performance of time domain electrochemical impedance spectroscopy [J]. Electrochim. Acta, 1995, 40:2511-2517
    [175] Wang J.. Electrochemical biosensors: Towards point-of-care cancer diagnostics [J]. Biosens. Bioelectron., 2006, 21:1887-1892
    [176] Yun Y.H., Dong Z.Y., Shanov V.N., et al. Electrochemical impedance measurement of prostate cancer cells using carbon nanotube array electrodes in a microfluidic channel [J]. Nanotech., 2007, 18:465505/1-7
    [177] Huang X.J., Chen H.L., Deng H.Q., et al. A Fast and simple electrochemical impedance spectroscopy measurement technique and its application in portable, low-cost instrument for impedimetric biosensing [J]. J. Electroanal. Chem., 2011, In press
    [178] Yang L.J., Li Y.B., Erf G.F.. Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7 [J]. Anal. Chem., 2004, 76:1107-1113
    [179] Ruan C.M., Yang L.J., Li Y.B.. Immunobiosensor chips for detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy [J]. Anal. Chem., 2002, 74:4814-4820
    [180] Bogomolova A., Komarova E., Reber K., et al. Challenges of electrochemical impedance spectroscopy in protein biosensing [J]. Anal. Chem., 2009, 81: 3944-3949
    [181] Berggren C., Bjarnason B. Johansson G.. An immunological interleukine-6 capacitive biosensor using perburbation with a potentiostatic step [J]. Biosens. Bioelectron., 1998, 13:1061-1068
    [182] Berggren C., Bjarnason B., Johansson G.. Capacitive biosensors [J]. Electroanalysis, 2001, 3:173-180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700