基于MATLAB的温室作物适宜环境参数优化与调控技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设施农业是现代化农业的基本特征和必然趋势,作为高新技术产业,是世界各国用以提供新鲜农产品的重要技术措施。随着社会的进步和科技发展,设施农业已成为国民经济中的支柱产业。然而,长期以来,如何改善生产条件、调节和控制温室环境、最大限度地降低能耗、提高温室能源利用率和生产效率一直是温室产业发展面临的主要问题。本文在综述国内外已有文献资料的基础上,通过理论分析与试验研究确定影响温室环境主要因素,并对影响温室环境因子的设施条件和环境因子对作物生长的影响进行了试验研究,确定影响番茄评价指标的环境因素(温度、相对湿度、光照强度)的最优组合,并对影响作物生长的环境参数进行了多目标优化求解。通过研究设施条件对环境参数影响,改进温室设施,并设计温室环境调控系统,并以番茄、黄瓜为例,作出了经济最优目标的对比性试验。
     论文主要工作及研究成果:
     1.通过单因素试验研究了温室环境因子(光照、温度、湿度)对番茄根、茎、叶片、果径、果实干重、果实鲜重、作物长势的影响,确定了二次回归的通用旋转组合设计的试验因素及适合的变化范围。
     2.采用二次回归的通用旋转组合设计的试验方法,选择番茄鲜重、干重、产投比作为评价指标,分别确定了开花到结果时期环境影响因素(温度、湿度、光照强度)的最优参数组合。根据试验得出的鲜重、干重和产投比的方程,运用方差法和权值法进行目标函数的统一,将主观赋权法中的AHP法和客观赋权法中的熵值法、均方差法结合到一起,得到一个主客观综合赋权法,该权值综合反映了主客观评价程度,其权值结果更具有可靠性;运用MATLAB软件对这三个目标函数进行多目标优化求解,并用三维实体上的颜色来描述函数值的变化情况,绘出三维实体的四维切片色图,当目标达到最优时,x_1=0.49(实际温度值23.9℃);x_2=0.46(实际相对湿度值79.6%):x_3=1.628(实际光照强度值71klx),最优解为f~*=59.5。
     3.试验研究了温室内环境因子的变化规律和不同设施条件对温室环境参数的影响。通过研究温室覆盖层材料、内保温幕设置、灌溉条件对温室环境参数影响程度,确定了温室设施的合理选择与设计。
     4.应用模糊控制理论和方法,对温室环境控制系统硬件进行了设计,确定系统的总体电路结构,包括系统的核心部分,扩展部分及配置部分,选择合适的传感器、控制芯片等器件。进行整个系统的软件设计,系统软件选用C语言进行编程,采用了模块化的程序设计方法,各程序模块相互独立,使软件具有扩展性强、维护方便、可靠性高的特点。
     5.试验研究了温室内黄瓜生长的环境因素(温度、湿度、光照强度)对成本的影响,确定了温室环境因子的最佳参数组合。以番茄、黄瓜为研究对象,以经济最优目标——产投比作为评价指标进行决策,运用方差分析分别对番茄和黄瓜产投比的变化作显著性检验,在5%水平上差异均显著,说明设施的调整可以提高产投比。
The facility agriculture is a basic feature and inevitable trend of agriculture modernization.As a high-tech industry,it is an important technical measure to provide fresh products in all countries in the world.With social progress and technological development, facility agriculture has become a pillar industry in national economy.However,for a long time,how to improve production conditions,regulate and control greenhouse environment, minimize the energy consumption,improve energy efficiency and production efficiency has been a key problem of greenhouse industry development.Based on comprehensive analysis of facility agriculture and references,the experiment factors that affect greenhouse environment was conducted.Optimum parameters(temperature,relative humidity,light intensity) of microclimate system were studied,and the environment parameters that affect evaluating indicator of tomato in greenhouse were optimized.Based on Experimental study of the effect of facility conditions on environment parameters,conditions of greenhouse were improved. The regularity of soil moisture dynamics for greenhouse microclimate under the drop irrigation were studied.With the help of regularity mathematic models was created,and the drop irrigation was designed.Taken tomato and cucumber as sample,contrast experiment of economic optimization were studied.
     Main research results of the study were as following:
     1.Based on single factor experiment,the different factors such as light intensity, temperature,relative humidity and so on,influencing tomato root,stem,leafage,dry weight and fresh weight of fruit,and the growth of tomato,were analyzed systemically in greenhouse environment,and the main parameters and interval were determined in this paper.
     2.Base on the method of general rotatory combination design quadratic regression,the experiment about the influence of parameters of microclimate(temperature,relative humidity, light intensity) upon the greenhouse fresh weight,dry weight,input/output of tomato were conducted during fructification,and optimum parameters of microclimate system were studied in this paper.The parameter optimizations have reached under optimization objective. Based on the test,the functions of fresh weight,dry weight and input/output were deduced in this paper.This model integrates the analytic hierarchy process method,entropy method and mean-variance method,and proposes a subjective and objective weighting method,which can not only reflect the objectivity and subjectivity of evaluation but also improve the reliability of weights.Based on MATLAB,multiobjective optimization of greenhouse environment parameter was put forward.By slice of three-dimensional produced four-dimensional images that expressed functions with changing in color.The optimization results show that the optimized combination of factors is temperature 23.9℃,relative humidity 79.6%and light intensity 71klx when optimum objective function,optimum solution is f~*=59.5.
     3.The different conditions in greenhouse that impact on greenhouse environment and the altering regularity of factors of environment were studied.The influences of different covering materials,inside thermal screen and irrigation of different methods on environment inside greenhouse were studied,so facility conditions and design were conducted.With the application of creation of mathematics models,parameters for greenhouse environment were simulated by MATLAB and measured curve.
     4.Hardware design of greenhouse fuzzy control system applies fuzzy control theory and method.It determines overall circuit structure,system hardcore section,expansion and configuration section,selection of right sensors and control chips included.Software design of greenhouse control system selects language C to program,it's readable and easy to update, meanwhile adopts modular programming method,each program module is mutual independent,the software has the advantages of extendibility,easy maintenance and high reliability.
     5.Experimental study was conducted that affect economic optimization in greenhouse cucumber.The influence of parameters of microclimate(temperature,relative humidity,light intensity) upon the greenhouse input/output and optimum parameters of microclimate system were studied in this paper.Using variance analysis to make significance test of input/output of tomato and cucumber,difference are significance on the 5%level,which can be adjusted facilities to improve input/output.
引文
1.包文娟.2007.基于Fuzzy-control的工业温度控制器的研究[D].苏州大学硕士学位论文
    2.卜清.2007.基于P87C552单片机的温室大棚环境与滴灌控制系统设计与研究[D].南京农业大学硕士学位论文
    3.车忠仕,佟国红,王铁良,白义奎,山口智治,文哲民.2005.典型天气下大跨度日光温室内的微气候特点[J].沈阳农业大学学报,36(4):462-465
    4.陈京培,徐永梅.2008.基于AT89S52单片机的液晶显示控制电路设计[J].现代电子技术,22:22-24
    5.陈青云.1996.节能型日光温室热环境的动态模拟[J]中国农业大学学报,1996(1):67-72
    6.陈建仁,崔杰军.2000.利用单片机控制的温湿度测试系统[J].郑州粮食学院学报,21(2):81-83
    7.陈峰,潘海鹏,顾敏明.2007.基于单片机的湿度专家控制系统[J].自动化与仪器仪表,4:21-23
    8.程冬玲,邹志荣.2001.高效设施农业中的水分调控与节水灌溉技术[J].西北农林科技大学学报(自然科学版),29(1):122-125
    9.崔建云,董晨娥,左迎之,高晓梅,徐文正.2006.外部环境气象条件对日光温室气象条件的影响[J].气象,32(3):101-106
    10.戴剑锋,金亮,罗卫红,倪纽恒,李永秀,袁昌梅,徐刚.2006.长江中下游Venlo型温室番茄蒸腾模拟研究[J].农业工程学报,22(3):99-103
    11.邓玲黎,李百军,毛罕平.2004.长江中下游地区温室内温湿度预测模型的研究[J].农业工程学报,2004(1):263-266
    12.杜尧东,刘作新.2000.渗灌-设施园艺先进的节水灌溉技术[J].资源开发与市场,16(5):266-267
    13.樊琦,俞永华,杨祥龙.2006.连栋塑料温室自然通风系统数值模拟研究[J].农机化研究,2006(8):60-62
    14.冯广和.2004.国内外现代温室的发展[J].新疆农机化(设施农业)2004(3):50-51
    15.冯绍元,丁跃元.2001.曾向辉温室滴灌线源土壤水分运动数值模拟[J].水利学报,(2):59-68
    16.高江林,李灵芝.2007.晋中地区节能日光温室光照和温度特性研究[J].山西农业科学,35(6):83-86
    17.高振波,赵立强,毛学辉,高星,王纲.2007.日光温室温度分析模型与模拟[J].河北科技师范学院学报,21(2):51-56
    18.郜庆炉,梁云娟,段爱旺.2003.日光温室内光照特点及其变化规律研究[J].农业工程学报,19(3):201-204
    19.胡弘劫,毛罕平.2006.夏季温室内黄瓜蒸腾规律的研究[J].农业装备技术,32(3):36-37
    20.黄启元.1997.南方日光温室的改进及其效果[J].中国蔬菜,1997(1):9-10
    21.金志凤,周胜军,朱育强,袁德辉,冯涛.2007.不同天气条件下日光温室内温度和相对湿度的变化特征[J].浙江农业学报,19(3):188-191
    22.姜晨光,吕中谦.2000.提高日光温室太阳能利用率的措施[J].新能源,22(12):91-93
    23.雷水玲,孙忠富.2006.基于气候阻力的温室黄瓜蒸腾速率模拟[J].农业工程学报,22(9):176-179
    24.李道西,罗金耀.2004.地下滴灌土壤水分运动数值模拟[J].节水灌溉,(4):4-7
    25.李道西,彭世彰.2004.地下滴灌灌水设计参数对土壤水分分布影响的计算机模拟[J].沈阳农业大学学报,35(5-6):507-509
    26.李国师,谢士估.1995.日光温室地温变化调控[J].安徽农业科学.23(4):38-40
    27.李良才.2001.温室自然通风率测试方法介绍[J].青海大学学报,19(3):38-39
    28.李天来.2005.我国日光温室产业发展现状与前景[J].沈阳农业大学学报,36(2):131-138
    29.李惟毅,李兆力,雷海燕等.2005.农业温室微气候研究综述与理论模型分析[J].农业机械学报,36(5):137-140
    30.李小芳.2005.日光温室的热环境数学模拟及其结构优化[D].中国农业大学博士学位论文
    31.梁称福,陈正法等.2005.不同天气条件下南方温室内主要环境因子日变化规律研究[J].农业现代化研究,525(3):236-239
    32.刘杰,李保明等.2001.NJ-6型连栋塑料温室冬季光温环境的试验研究[J].中国农业大学学报,6(6):59-62
    33.刘克长,张继祥,任宗兴.2001.日光温室气象条件的观测研究[J].山东农业大学学报(自然科学版),32(1):50-54
    34.刘振林.1996.梯形栽培床温室的设计及其减少温室阴影的探索[J].石河子农学院学报,14(3):38-40
    35.明月,白义奎.2007.辽宁省不同地区发展日光温室适宜性分析[J].节能,2007(2):47-49
    36.潘洪刚.2006.智能温室模糊控制系统的研究[D].河北工业大学硕士学位论文
    37.彭其圣,刘松龄.2004.单片机温室大棚种植参数监控系统[J].中南民族大学学报,23(2):52-53
    38.彭致功,段爱旺,部庆炉.2003.节能日光温室光照强度的分布及其变化[J].干旱地区农业研究,21(2):37-40
    39.彭致功,杨培岭,段爱旺,何晖,吴海卿.2004.日光温室条件下番茄植株蒸腾规律研究[J].干旱地区农业研究,22(1):62-64
    40.曲红云,林密.2006.日光节能温室茄子产量形成与环境因子关系分析[J].北方园艺,2006(4):80-81
    41.任志雨,乔晓军.1999.春季日光温室的湿度分布及其变化规律[J].蔬菜,1999(8):18-19
    42.沈明卫,郝飞麟.2006.自然通风下栽培番茄的单栋温室内气流场稳态模拟[J].农业机械学报,37(5):101-105
    43.司慧萍,苗香雯,崔绍荣.2003.温室动态温度预测模型及试验研究[J].农机化研究,2003(4):182-184
    44.司慧萍,苗香雯.2005.华东型连栋塑料温室自然通风开窗度模型及试验研究[J].浙江大学学报,31(1):113-118
    45.宋希强,彭春生等.2001.新型节能日光温室光环境动态模拟及其数值实验[J].海南师范学院学报,14(2):48-50
    46.宋胭脂,张建平等.2006.现代温室番茄产量规律及其与环境因子的关系[J].甘肃农业大学学报,41(6):38-42
    47.孙宁宁,董斌,罗金耀.2006.大棚温室作物需水量计算模型研究进展[J].节水灌溉,2006(2):16-19
    48.佟国红,王恩志,王铁良,孟少春.2003.辽沈Ⅰ型日光温室内环境的测试分析[J].辽宁农业科学,2003(5):11-12
    49.佟国红,王铁良.2003.日光温室墙体传热特性的研究[J].农业工程学报,19(3):186-189
    50.童莉,张政,陈忠购,张天柱.2003.机械通风条件下连栋温室速度场和温度场的CFD数值模拟[J].中国农业大学学报,8(6):33-37
    51.涂同明.2007.设施农业工程机械化技术[J].当代农机,2007(11):48-51
    52.汪懋华.1998.实现现代集约持续农业的工程科学技术:以色列,荷兰科技考察观感[J].农业工程学报,14(3):1-9
    53.汪小旵.2003.南方现代化温室小气候模拟及其能耗预测研究[D].南京农业大学博士学位论文
    54.王健,蔡焕杰,李红星,陈新明.2006.日光温室作物蒸发蒸腾量的计算方法研究及其评价[J].灌溉排水学报,25(6):11-14
    55.王晓丽,邓璐娟.2004.温室作物模糊蒸腾模型的设计与仿真[J].现代化农业,10:30-32
    56.王晓丽,邓璐娟.2005.基于Matlab语言的温室作物蒸腾模型[J].控制工程,12(增刊):99-100
    57.王忠等.1999.植物生理学[M].北京:中国农业大学出版社,172-172
    58.魏春阳.2004.温室滴灌条件下黄瓜根区水分动态的研究[D].吉林大学博士学位论文
    59.魏义长,刘作新等.2004.土壤持水曲线van Genuchten模型求参的Matlab实现[J].土壤学报,41(3):380-386
    60.魏义长.2004.日光温室渗灌土壤水分运动数值模拟[D].中国科学院博士学位论文
    61.吴国兴.2000.保护地蔬菜生产实用大全[M].北京:中国农业出版社,51-51
    62.吴元中,李军,杨秋珍.2002.蔬菜三连栋大棚内外冬季温度变化研究[J].中国生态农业学报, 2002(12):38-39
    63.胥芳,盛军强.2007.基于Matlab的温室温度模糊专家控制仿真研究[J].系统仿真学报,19(11):2464-2471
    64.胥芳,张立彬等.2005.玻璃温室小气候温湿度动态模型的建立与仿真[J].农业机械学报,36(11):102-131
    65.徐淑贞.2001.日光温室滴灌番茄需水规律及水分生产函数的研究与应用[J].节水灌溉,2001(4):26-28
    66.闫恩诚,谢小妍,刘鹏.2002.塑料温室通风降温的试验研究[J].农机化研究,2002(3):115-117
    67.闫世霞.2001.我国设施农业现状分析[J].北方园艺,2001,(6):4-5
    68.杨彬.2006.温室温、湿度智能控制系统的研究[D].甘肃农业大学硕士学位论文.
    69.杨其长.2001.设施农业现状与发展趋势[J].中国农村科技,2001(3):10-11
    70 杨其长,李宝海.2001.国外设施农业的现状及我国的对策[J].西藏农业科技.23(2):6-12
    71.杨延杰,李天来等.2007.光照强度对番茄生长及产量的影响[J].青岛农业大学学报,24(3):199-202
    72.杨振超,邹志荣,陈双臣,王军.2006.西北型日光温室内风速分布及其与室外风速和通风面积的关系[J].西北农林科技大学学报,34(9):36-40
    73.于海业等.1997.发达国家温室设施自动化研究的现状[J].农业工程学报,1997(13)(增刊)
    74.于凤颖,张胜利.1996.塑料大棚种番茄灌溉的研究[J].吉林农业科学,1996(4):82-84
    75.余纪柱,金海军.2002.塑料三连栋温室的温、湿度变化规律初探及相应调控措施[J].上海农业学报,18(4):63-69,
    76.原保忠.2000.滴灌条件下日光温室环境要素及作物耗水规律研究[D].兰州大学博士学位论文
    77.原保忠.2000.番茄滴灌在日光温室内耗水规律的初步研究[J].节水灌溉,2000(3):25-27
    78.张继祥,刘克长,魏钦平等.2002.气象要素(气温、太阳辐射、风速和相对湿度)日变化进程的数理模拟[J].山东农业大学学报自然科学版,33(2):179-183
    79.张胜亮.2003.塑料薄膜大棚的小气候效应[J].甘肃科技,2003(8):134-136
    80.张修峰.2002.江淮地区棚室小气候特征及其调控效应研究[D].安徽农业大学硕士学位论文
    81.张永志.2005.温室智能控制系统的研究与设计[D].山东农业大学硕士学位论文
    82.张振华,蔡焕杰等.2002.滴灌土壤湿润体影响因素的实验研究[J].农业工程学报,18(2):17-20
    83.张志新.2007.滴灌工程规划设计原理与应用[M].北京:中国水利水电出版社,487
    84.赵云.2005.机械通风温室内部温度模型的试验验证[J].农机化研究,2005(5):166-168
    85.赵子征,彭高军,辛本胜.2005.夏季日光温室环境条件分析[J].北方园艺,2005(4):20-21
    86.钟应善,杨家强,邓劲莲.2001.温室温度和湿度的多变量模糊控制技术[J].农业机械学报,32(3):75-78
    87 周长吉.2004.温室灌溉系统设备与应用[M].北京:中国农业出版社
    88.周长吉.2005.温室灌溉[M].北京:化学工业出版社,170-215
    89.周萍,陈杰,戴丹丽,朱育强,周胜军,徐志豪.2007.不同天气条件下连栋温室内光照分布规律研究[J].农机化研究,2007(6):123-125
    90.周绪元,顾三军.1997.阴转晴天气日光温室内环境因素日变化研究[J].长江蔬菜,1997(5):27-29
    91.朱育强,袁华,周胜军,戴丹丽,周萍,陈杰,徐志豪.2005.早春设施内平面光照日变化规律探讨[J].浙江农业科学,2005(3):181-183
    92.Araki V.1993.Effeets of environmental conditions on plant water status in tomato[J].Journal of the Japanese Society for Horticultural Science,61(4):827-837
    93.Boulard T,Baille A.Modeling of air exchange rate in a greenhouse equipped with continuous roof vents[J].Journal of Agricultural Engineering Research.1995,61:37-48
    94.Boulard,T.,Wang,S.,Haxaire,R.2000.Mean and turbulent air flows and inside climatic patterns in an empty greenhouse tunnel[J].For.Meteorol,2000(100):169-181
    95.Boulard,T,Haxaire,R,Lamrani,MA,etal.1998 Characterization and modeling of the air fluxes induced by natural ventilation in a greenhouse[J].AgEng Oslo 98.International Conference in Agricultural Engineering,Oslo8:24-27
    96.Choi JaeHee,Chung Gap Chae,Lee SeongHee,Choi JH,Chung GC,Lee SH.1999.Influence of night humidity on the distribution of calcium and sap flow in tomato plants[J].Journal of Plant Nutrition,22(2):281-290
    97.Comstock J,Ehleringer J.1993.Stomatal response to humidity in common bean(Phaseolus vulgaris):implications for maximum transpiration rate,water use efficiency and productivity[J].Australian Journal of Plant Physiology,20(6):669-691
    98.Dale F.Rucher,Ty P.A.2004.Ferre.Parameter Estimation for Soil Hydraulic Properties Using Zero-Offset Borehole Radar:Analytical Method[J].Soil Science Society of Americal Journal,68(5):1560-1567
    99.David B L,Ortiz-Monasterio J I.2006.Regional importance of crop yield constraints:Linking simulation models and geostatistics to interpret spatial patterns[J].Ecological Modelling,196(10):173-182
    100.David M,C(?)dric N,Marie-H(?)l(?)ne J et al.2006.Global sensitivity analysis for calculating the contribution of genetic parameters to the variance of crop model prediction.Reliability Engineering &System Safety[J],In Press,Corrected Proof,Available online 9 January 2006
    101.De Zwart,F.1993.Determination of direct transmission of a multispan greenhouse using vector algebra[J].Journal of Agricultural Engineering Research,56:39-49
    102.Diaz Alvarez J R.1999.Modeling of greenhouse structure and characteristics for an ideal economic structure for growing vegetables,flowers or fruit crops[J].Ciheam Options Mediterraneennes,1999 (31) :29-43
    103 .Dhungana P,Eskridge K M,Weiss A et al.2006.Designing crop technology for a future climate:An example using response surface methodology and the CERES-Wheat mode[J]l.Agricultural Systems,87(1):63~79
    104.F P Weibel and J A de Vos.Transpiration measurements on apple trees with an improved stem heat balance method [J].Plant andSoil,1994,166:203-219
    105.Francisco Domingo Molina-Aiz,Diego Luis Valera,Antonio Jesus Alvarez.2004.Measurement and simulation of climate inside Almeria-type greenhouse using computational fluid dynamics[J].Agricultural and Forest Meteorology,2004( 125):33-51
    106.Frausto H U,Pieters J G,Deltour J M.2003 .Modelling greenhouse temperature by means of auto regressive models.Biosystems Engineering[J].Academic Press,London,UK,84(2):147-157.
    107.H Fatnassi,T,Boulard.2004.Simple Indirect Estimation of Ventilation and Crop Transpiration Rates in a Greenhouse [J].Biosystems Engineering,88(4):467-478
    108.Harmant,V.M.Salokhe.2005.Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment [J].Agrcultural Water Management,71:225-242
    109.Ido Seginer.2002.The Penman-Monteith Evapotranspiration Equation as an Element in Greenhouse Ventilation Design [J].Biosystems Engineering.82(4):423-439
    110.J.B.Campen,GP.A.Bot.2001.Design of a low-energy dehumidifying system for greenhouse[J].J.agric.Engng Res,78 (1):65-73
    111.John S.Tyner,G O.2004.Brown.Improvements to Estimating Unsaturated Soil Properties from Horizontal Infiltration [J].Soil Science Society of America Journal,68(1):1-6
    112.KIM Y H,PARK S H,KIM G H,et al.2004.High frequency shoot regeneration from leaf explants of some chrysanthemum cultivars [J].J Plant Biotech,6:51-54
    113.Lamrani M A,boulard T,Roy J C,etal.2001.Airflows and temperature patterns induced in a confined greenhouse [J].J.agric.Engng Res,78(1):75-88
    114.Lee B W,Shin J H.1998.Optimal irrigation management system of greenhouse tomato based on seem diameter and transpiration monitoring [J].Aaric Info Tech.in Asia and Oceania,1998:87-90
    115.Lee J S,KIM H J,LEE Y S.2003.A new anti-HIV flavonoid glucuronide from chrysanthemum morifolium [J].Planta Med,69(9):859-861
    116.Leonardi C,A.Baille&S.Guichard.2000.Predicting transpiration of shaded and non-shaded tomato fruits under Greenhouse environments [J].Scientia Horticulturae,84:297-307
    117.Meir Teitel.Josef Tanny.1999.Natural Ventilation Of greenhouses:experiments and model[J].Agricultural and Forest Meteorology,96:59-70
    118.Montero,J.2001.Transpiration from geranium growth under high temperatures and low humidities in greenhouses [J].Agricultural and Forest Meteorology,107:323-332
    119.MURAYAMAT,YADA H,KOBORI M,et al.2002.Evalution of three antioxidants and their identification and radical scavenging activities in edible chrysarthemum [J].J Japan Soc Hort Sci,71(2):236-242
    120.Ranga G,Katerji N,Mastrorilli M.1998.Canopy resistance modeling for crops in contrasting water conditions [J].Phys.Chem.Earth.23(4):433-438
    121.Roberto R Filgueira,Yakov A Pachepsky et al.2003.Time-mass Scaling in Soil Texture Analysis[J].Soil Science Society of America Journal,67 (6):1703-1706
    122.SINGH R P,AGRAWAL P,YIM D,et al.2005.Acacetin inhibits cell growth and cell cycle progression,and induces apoptosis in human prostate cancer cells:structure-activity relationship with linarin and linarin acetate [J].Carcinogenesis,26(4):845-854
    123.T Boulard,S Wang.2000.Greenhouse crop transpiration simulation from external climate conditions [J].Agricultural and Forest Meteorology,100:25-34
    124.Thomas C.Walk,Erik Van Erp et al.2004.Modeling Applicability of Fractal Analysis to Efficiency of Soil Exploration by Roots[J].Annals of Botany,(94):119-128
    125.Trigui M,Barrington S F,Gauthier L.1999.Effects of humidity on tomato (Lycopersicon esculentum cv.Truss) water uptake,yield,and dehumidification cost [J].Canadian Agricultural Engineering,41(3):135-140
    126.Uzun S,Demir Y,Cemek B.2000.The effect of different roof ventilation gaps and plastic Types applied to Plastic greenhouses on the growth,development and yield of some vegetable crops[J].Ondokuzmayis Universitesi,Ziraat Fakultes Dergisi,15(1):46-53
    127.Von Eisner B,Briassoulis D,Waaijenberg D,et al.2000.Review of Structural and Functional Characteristics of Greenhouses in European Union Countries:Part Ⅰ,Design Requirements[J].Journal of Agricultural Engineering Research,75(1):1-16
    128.Wang,S,Boulard,T,Air aped profiles in a naturally ventilated greenhouse with a tomato crop[J].Agric.For.Meteorol.1999,2664:1-8
    38.Xu H L,Wang R,Gauthier L,Gosselin A.1999.Tomato leaf photosynthetic responses to humidity and temperature under salinity and water deficit[J].Pedosphere,9(2):105-112
    129.Yazar A.How ellTA,Dusek DA.etal.1999.Evaluation of crop water stress index for LEPA irrigated corn[J].Irrigation Science,18:171-180
    130.ZHANG HAITAO etal.2003 .Analysis and Design of Soils and Terrain Digital Database (SOTER) Management System Based on Object-Oriented Method[J].Pedosphere,13(2):111-119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700